8年级下册数学北师大版第4单元复习教案
《第四单元复习》(教案)北师大版三年级数学上册

第四单元乘与除·第5课时单元复习·教案班级:课时:课型:一、学情分析本单元进一步学习了整十、整百、整千乘(或除以)一位数的口算方法,两位数乘(或除以)一位数的口算方法。
本课时将进行整个单元的知识复习与练习,继续巩固学生对本单元知识的掌握程度。
二、教学目标1.巩固整十、整百、整千数乘(或除以)一位数及两位数乘(或除以)一位数的口算方法。
2.能正确利用含有乘除法的混合运算知识解决有关实际问题。
三、重点难点【教学重点】巩固整十、整百、整千数乘(或除以)一位数及两位数乘(或除以)一位数的口算方法。
【教学难点】能正确利用含有乘除法的混合运算知识解决有关实际问题。
四、教学过程设计第一板块【整理知识理清思路】1.回顾本单元所学知识点。
2.看谁算的快。
4×6= 5×8=40×6= 50×8=400×6= 500×8=同学们快速口算回答。
师:你们能说一说整十、整百、整千数乘一位数的口算方法是什么吗?生:先用整十、整百、整千数0前面的数与一位数相乘,再在乘得的积的末尾添上相应个数的0。
3.圈一圈,算一算。
师:你知道上面两种计算用的是什么方法?生:第一个是画点子图;第二个是表格。
师:说一说你是怎样算的。
学生汇报自己的算法。
师:两位数乘一位数的口算方法是什么?生:先把两位数分成整十数和一位数,再分别与一位数相乘,最后把两次乘得的积相加。
4.国国和粒粒进行跳绳比赛。
谁跳得快?师:请同学们在练习本上算一算,同桌交流结果。
师:这里运用到了整十、整百、整千除以一位数的口算方法,你知道怎样计算吗?学生回答。
5.买文具。
(1)一个手摇削笔机的价格是卷笔刀的多少倍?(2)王老师有50元,买了1个手摇削笔机,剩下的钱能买多少个卷笔刀?师:说一说两位数除以一位数的口算方法。
生:先把被除数分成一个整十数和一个一位数,然后分别除以除数,最后把所得的两个商相加。
6.乐乐给售货员100元,找回7元,每个足球多少元?设计意图:通过知识点复习和针对性的练习,巩固本单元所学知识。
北师大版数学二年级下册第四单元《整理与复习》教案

3.出示图3。 看图,说说你发现了什么?
活动二:我的成长足迹:与同伴说一说。
1.说一说。请同学们勇敢地展示最满意的数学作业展示给同学看。 请你向同学们介绍自己的展示内容。
(1)指名说说想法。
(2)指名板演、集体交流。
【达标检测】
完成教材第41页6——9题。
课件出示情境图。
课件出示成长记录表格。
板书
设计
《整理与复习》
作
业
设
计
课堂
作业
1.必做题:课本第40页,第2题。
2.选做题:课本第40 页,第3,4题。
课后
作业
课
后
反
思
2.评一评。
活动三:忆一忆。
1.回忆自己影响最深刻的一节数学课、最喜欢的一节数学活动,或用数学知识解决一个问题等。
2.在老师或同学面前讲一讲。
3.说说自己取得的进步。
4.写一写。教师可以为学生纪录成长纪实。学生完成。
【巩固提升】
1.教材第40页第1、2题。组织学生独立完成,并指名口答。
2.教材第40页第3、4、5题。
课题
整理与复习
所属单元
四
课时
第1课时
教学
目标
1.通过整理与复习,提高运用所学知识解决实际问题。
2.培养学生主动学习的精神,更好的掌握有关的知识。
3.通过展示与交流,使学生体验到成功的喜悦,增加学数学的信心和兴趣。
教学
重难点
1.培养学生主动学习的精神,更好的掌握有关的知识。
2.通过展示与交流,使学生体验到成功的喜悦。
北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计一. 教材分析北师大版八年级下册数学《第一章复习》主要是对八年级上册的知识进行复习,包括实数、不等式、函数、几何等知识点。
本章的目的是使学生对已学的知识有一个全面、深入的理解,并为后续的学习打下坚实的基础。
教材通过大量的例题和练习题,帮助学生巩固知识点,提高解题能力。
二. 学情分析八年级的学生已经学习了实数、不等式、函数、几何等知识点,对数学有了一定的认识和理解。
但是,由于学习时间的推移,部分学生可能对一些知识点的理解和掌握有所遗忘。
因此,在复习过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.知识与技能:使学生对实数、不等式、函数、几何等知识点有一个全面、深入的理解,提高解题能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。
四. 教学重难点1.实数的性质和运算2.不等式的解法和应用3.函数的性质和图像4.几何图形的性质和计算五. 教学方法采用讲练结合的教学方法,通过讲解、示范、练习、讨论等方式,引导学生主动参与学习,提高学生的学习兴趣和积极性。
六. 教学准备1.教材和教学参考书2.PPT和教学课件3.练习题和测试题4.板书和教学工具七. 教学过程1.导入(5分钟)通过提问的方式,了解学生对已学知识的掌握情况。
然后,教师简要介绍本章的复习内容,激发学生的学习兴趣。
2.呈现(15分钟)教师利用PPT和教学课件,呈现本章的主要知识点,包括实数的性质和运算、不等式的解法和应用、函数的性质和图像、几何图形的性质和计算。
在呈现过程中,教师引导学生积极参与,提出问题和观点。
3.操练(20分钟)教师给出一些练习题,让学生独立完成。
然后,教师选取部分学生的作业进行讲解和示范,引导学生掌握解题方法和技巧。
对于学生的错误,教师要及时指出并给予纠正。
4.巩固(10分钟)教师给出一些测试题,让学生在规定时间内完成。
北师大版数学八年级下册 第四章复习 教案

第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳 ——能力提升――活学活用——永攀高峰.第一环节 知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
北师大版八年级数学下册全册复习课件(共206张PPT)

难易度
易
1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20
中
9,10,21,22
难
16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角
形
直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24
第一章 | 复习 ►考点五 角平分线与“截长补短” 例5
图1-8
图1-9
第一章 | 复习
[解析] 结论是CD=AD+BC,可考虑用“截长补短法”中的“ 截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这 就转化为证明两线段相等的问题,从而达到简化问题的目的.
第一章 | 复习
[方法技巧]“截长补短法”是解决这一类问题的一种特殊方法,利 用此种方法常可使思路豁然开朗。掌握好“截长补短法”对于更 好的理解数学中的化归思想有较大的帮助。
第二章 | 复习
三、一元一次不等式和它的解法 1.一元一次不等式 不等式的左、右两边都是整式,只含有一个未知数,并且未 知数的最高次数是1,像这样的不等式,叫做 __一__元__一__次__不__等__式____. 2.一元一次不等式的解法 一元一次不等式的解法步骤和解的情况与一元一次方程对比 如下表所示.
第二章 | 复习
解法步骤 解的情况
解一元一次方程
(1)去分母; (2)去括号;
(3)移项; (4)合并同类项;
(5)系数化为1
一元一次方程只有一个解
解一元一次不等式
(1)去分母; (2)去括号;
《第四单元复习》教案北师大版四年级数学上册

1.理论介绍:首先,我们要复习整数的基本概念,包括整数的位数、数位顺序以及整数的大小比较。整数是数学中的基础概念,它在我们的日常生活中有着广泛的应用。
2.案例分析:接下来,我们通过一个购物找零的案例来分析整数运算的实际应用,展示如何运用整数加减法来解决问题。
3.重点难点解析:在讲授过程中,我会特别强调整数的大小比较和加减法运算这两个重点。对于难点部分,如多位数的比较和复杂加减运算,我会通过具体例题和对比分析来帮助大家理解。
二、核心素养目标
《第四单元复习》教学着重培养以下核心素养目标:培养学生运用数学知识解决实际问题的能力,通过整数运算和简便运算的实践,增强学生的逻辑思维与运算能力;提高学生空间观念,加深对几何图形特征的理解和运用;强化学生合作交流意识,通过小组讨论与互动,提升团队协作解决问题的能力。同时,注重培养学生对数学学习的好奇心和探索精神,激发学生主动发现、提出、分析并解决问题的兴趣,使学生在掌握知识的同时,全面提升数学学科核心素养,符合新教材对学生全面发展要求。
在教学过程中,教师需针对这些难点进行重点讲解和指导,通过实际例题和练习,帮助学生逐步突破难点,确保学生对核心知识的掌握和理解透彻。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《第四单元》的内容。在开始之前,我想先问大家一个问题:“你们在购物时是否遇到过需要找零的情况?”这个问题与我们将要复习的整数运算密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾整数的运算规律和应用。
总的来说,今天的复习课达到了预期的效果,学生们对整数运算和简便运算的理解更加深入。但在教学过程中,我也发现了自己需要改进的地方,如在指导学生进行实际应用时,要更加注重培养他们的灵活性和创新意识。在今后的教学中,我会不断反思和调整,以期提高教学效果,让学生们在数学学习中取得更好的成绩。
《第4章因式分解》期末复习能力提升训练(附答案)2020-2021学年八年级数学北师大版下册

2021年北师大版八年级数学下册《第4章因式分解》期末复习能力提升训练(附答案)一.因式分解的意义1.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣62.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣1 3.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.4.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.5.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).6.多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.7.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.8.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.9.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.二.公因式10.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.11.2x3y2与12x4y的公因式是.12.多项式m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣16中,它们的公因式是.三.提公因式法因式分解13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.15.分解因式:2m(m﹣n)2﹣8m2(n﹣m)四.运用公式法因式分解16.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个17.请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.18.已知,求下列各式的值:(1)x2+2xy+y2(2)x2﹣y2.五.提公因式法与公式法的综合运用19.因式分解:4a3﹣16a=.20.因式分解:(1)﹣3ma2+12ma﹣12m;(2)n2(m﹣2)+4(2﹣m).21.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.六.分组分解法因式分解22.分解因式:2x2+7xy﹣15y2﹣3x+11y﹣2=.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.因式分解:(1)6x2﹣13x+5(2)1﹣x2+2xy﹣y225.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.七.十字相乘法等因式分解26.你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.八.实数范围内分解因式27.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1九.因式分解的应用28.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.202229.已知x2﹣3x+1=0,则=.30.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.参考答案一.因式分解的意义1.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.2.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.3.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.4.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.5.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.6.解:x2+mx+6因式分解得(x﹣2)(x+n),得x2+mx+6=(x﹣2)(x+n),(x﹣2)(x+n)=x2+(n﹣2)x﹣2n,x2+mx+6=x2+(n﹣2)x﹣2n,﹣2n=6,m=n﹣2.解得n=﹣3,m=﹣5,故答案为:﹣5.7.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)8.解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.9.解:设另一个因式为2x2+mx﹣,∴(x﹣3)(2x2+mx﹣)=2x3﹣5x2﹣6x+k,2x3+mx2﹣x﹣6x2﹣3mx+k=2x3﹣5x2﹣6x+k,2x3+(m﹣6)x2﹣(+3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴另一个因式为:2x2+x﹣3.二.公因式10.解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.11.解:∵2x3y2=2x3y•y,12x4y=2x3y•6x,∴2x3y2与12x4y的公因式是2x3y,故答案为:2x3y.12.解:m(m﹣3)+2(3﹣m)=m(m﹣3)﹣2(m﹣3)=(m﹣3)(m﹣2);m2﹣4m+4=(m﹣2)2;m4﹣16=m4﹣24=(m2+4)(m2﹣4)=(m2+4)(m+2)(m﹣2).各项都含有m﹣2,因此它们的公因式是m﹣2.三.提公因式法因式分解13.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.14.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.15.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).四.运用公式法因式分解16.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.17.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.18.解:x+y=2,xy=()2﹣()2=4,x﹣y=2(1)x2+2xy+y2=(x+y)2=(2)2=24;(2)x2﹣y2=(x+y)(x﹣y)=2×2=8.五.提公因式法与公式法的综合运用19.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)20.解:(1)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2;(2)原式=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).21.解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).六.分组分解法因式分解22.解:∵2x2+7xy﹣15y2=(x+5y)(2x﹣3y),∴可设2x2+7xy﹣15y2﹣3x+11y﹣2=(x+5y+a)(2x﹣3y+b),a、b为待定系数,∴2a+b=﹣3,5b﹣3a=11,ab=﹣2,解得a=﹣2,b=1,∴原式=(x+5y﹣2)(2x﹣3y+1).故答案为:(x+5y﹣2)(2x﹣3y+1).23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.解:(1)原式=(2x﹣1)(3x﹣5);(2)原式=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y);25.解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=15.七.十字相乘法因式分解26.解:(1)设x2+x=y,则原式=(y﹣4)(y+3)+10=y2﹣y﹣2=(y﹣2)(y+1)=(x2+x﹣2)(x2+x+1)=(x+2)(x﹣1)(x2+x+1);(2)设x2+6=m,原式=(x2+6+7x)(x2+6+5x)+x2=(m+7x)(m+5x)+x2=m2+12xm+35x2+x2=m2+12xm+36x2=(m+6x)2=(x2+6x+6)2;(3)设x+y=m,xy=n(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(m﹣2n)(m﹣2)+(n﹣1)2=m2﹣2m﹣2mn+4n+n2﹣2n+1=m2﹣2m﹣2mn+n2+2n+1=m2﹣2m(1+n)+(n+1)2=(m﹣n﹣1)2=(x+y﹣xy﹣1)2=(y﹣1)2(1﹣x)2八.实数范围内分解因式27.解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.九.因式分解的应用28.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.29.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.30.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.。
八年级下册数学北师大版第一单元复习 教学设计 教案(1)

第1单元三角形的证明复习教案一、复习目标1.在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.二、课时安排1课时三、复习重难点重点:线段垂直平分线与角平分线的性质和判定.难点:线段垂直平分线与角平分线的综合应用.四、教学过程(一)知识梳理1.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.2.勾股定理及其逆定理勾股定理:直角三角形两条直角边的平方和等于斜边的.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是三角形3.线段的垂直平分线的性质定理及判定定理性质定理:线段的垂直平分线上的点到这条线段两个端点的距离.判定定理:到一条线段两个端点距离相等的点,在这条线段的上.4.三线共点三角形三条边的垂直平分线相交于,并且这一点到三角形三个顶点的距离.5.角平分线的性质定理及判定定理性质定理:角平分线上的点到这个角两边的距离.判定定理:在一个角的内部,且到角的两边相等的点,在这个角的平分线上.[注意] 角的平分线是在角的内部的一条射线,所以它的逆定理必须加上“在角的内部”这个条件.6.三角形三条角平分线的性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离.(二)题型、技巧归纳考点一勾股定理及逆定理的应用例1如图,在△ABC中,∠C=90°,∠B=30°,点P在BC上,PD⊥AB于点D,PD=2,PC=11,求AP的长.考点二线段垂直平分线的性质及判定例2、如图,△ABC中,DE是AC边的垂直平分线,交AC边于点E,交BC边于点D,且△ABC的周长为19,△ABD的周长为13,求AE的长为多少?例3、如图,△ABC中,AB=AC,直线l经过△ABC的顶点A,点D在直线l上,且∠1=∠2.求证:直线l是线段BC的垂直平分线考点三角平分线的性质及判定例4、如图,已知∠1=∠2,P为BN上一点且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°例5、如图,CE⊥AB于E,BF⊥AC于F,BF于CE交于点D,BE=CF.求证:AD平分∠BAC(三)典例精讲1.下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,同位角互补C.等腰三角形的两个底角相等D.直角三角形中两锐角互补2.若三角形三边长之比为12,则这个三角形中的最大角的度数是()A.60° B.90°C.120° D.150°3.在△ABC中,若∠A∶∠B∶∠C=3∶1∶2,则其各角所对边长之比等于()A∶1∶2 B.1∶2C.1∶2 D.2∶14.到线段AB两个端点距离相等的点,在.5.直角三角形ABC中,∠C=90°,AC的垂直平分线交AB于D,若AD=2 cm,则BD =cm.6.如图1-80所示,△ABC中,AB,AC的垂直平分线分别交BC于点D,E,已知△ADE 的周长为12 cm,求BC的长.7.如图1-81所示,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1 km,B村到公路l的距离BD=2 km,B村在A村的南偏东45°方向上.(1)求A,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置.(保留清晰的作图痕迹,并简要写明作法)(四)归纳小结1.本节课学习了哪些主要内容?2.勾股定理,垂直平分线以及角平分线的性质与判定的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4单元 因式分解
复习教案
一、复习目标
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式。
2.通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力。
二、课时安排
1课时
三、复习重难点
重点:复习综合应用提公因式法,运用公式法分解因式.
难点:利用分解因式进行计算及讨论.
四、教学过程
(一)知识梳理
1. 分解因式,就是把一个多项式化为几个整式的积的形式.
2. 公因式 在多项式中,如果每一项都含有相同的因式,就把这个因式称为公因式. 多项式各项的公因式的确定应该符合以下三条:
(1)所含的字母或因式是每一项都共有的.
(2)同一字母或因式的指数是它在各项中是最低的.
(3)各项系数为整数时,公因式的系数是它们的最大公约数.
3. 公式法
①平方差公式:))((2
2b a b a b a -+=-
②完全平方公式:,)(2222b a b ab a +=++.)(2222b a b ab a -=+-
运用公式分解因式要根据多项式的形式和特点,正确的选择公式,值得注意的是公式中
的b a 、可以是一个数,也可以是一个单项式或多项式.
如何正确选用分解因式的方法?
由于多项式的形式多种多样,所以因式分解的方法也有多种.要迅速选择恰当的方法,必须注意从多项式的项数、各项符号、各项之间的关系几方面综合分析.一般地可遵循下列步骤进行:
(1)先看各项有无公因式,有公因式的先提取公因式;
(2)提公因式后或各项无公因式,再看多项式的项数:①若多项式为两项,则考虑用平方差公式分解因式;②若多项式为三项,可考虑用完全平方公式;③若多项式有四项或四项以上,就考虑综合运用上面的方法.
(3)若上述方法都不能分解,则考虑把多项式重新整理、变形,再按上面步骤进行.
(4)检查分解后的每个因式是否是质因式.要分解到多项式的每个因式在要求的数的范围内都不能再分解为止.
(二)题型、方法归纳
考点一:分解因式的概念
例1 请指出下列式子中,属于分解因式的是( )
A. 22(3)69t t t +=++ )1
1(44422a
a a a -=- 24(2)(2)x x x -=+- )64(642-=-x x x x
解析:(1)因式分解与整式乘法是两种互逆的恒等变形的过程.如:22(3)69t t t +=++是整式乘法.反过来,2269(3)t t t ++=+则是因式分解.
(2)分解因式的结果中的几个因式必须是整式.而)11(44422a
a a a -=-.结果虽然是乘积的形式,但a
1不是整式,所以其结果不能算是分解因式. (3)分解因式的结果中各因式中的各项系数的最大公约数是1.而)64(642-=-x x x x .结果中的因式64-x 中4和6的公约数不为1,正确的分解结果应是)32(2642-=-x x x x .
故C 是正确答案.
考点二:提取公因式法
例2 把2234()5()7()m n n m m n -+---分解因式.
分析:()m n -与()n m -各项符号都相反,可以通过添括号化为同一因式,[]2
22()()()n m m n m n -=--=- 解:
[]()22322322 4(-)5(-)-7(-)4(-)5(-)-7(-)
(-)(45-7(-)(-)9-77m n n m m n m n m n m n m n m n m n m n +=+=+=+
考点三:公式法
例3 把44161a b -+分解因式.
分析:观察题中两项符号正好是相反,可以考虑运用平方差公式.先变换两项位置,使之与公式一致,从而得以利用公式.
解:44222222161(14)(14)(14)(12)(12)a b a b a b a b ab ab -+=+-=++-
考点四:因式分解的拓展
例4 求满足4x 2-9y 2=31的正整数解.
分析:因为4x 2-9y 2可分解为(2x+3y )(2x -3y )(x 、y 为正整数),而
31为质数.所以有⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+31
32132y x y x 。
解:∵4x 2-9y 2=31
∴(2x+3y )(2x -3y )=1×31
∴⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+31
32132y x y x 解得⎩⎨⎧==58y x 或⎩
⎨⎧-==58y x 因所求x 、y 为正整数,所以只取x=8,y=5.
(三)典例精讲
1.列各式的变形中,哪些是因式分解?哪些不是?说明理由.
(1)x 2+3x+4=(x+2)(x+1)+2
(2)6x 2y 3=3xy·2xy 2
(3)(3x -2)(2x+1)=6x 2-x -2
(4)4ab+2ac=2a (2b+c )
2.将下列各式分解因式.
(1)8a 4b 3-4a 3b 4+2a 2b 5
(2)-9ab+18a 2b 2-27a 3b 3
(3)41-9
1x 2 (4)9(x+y )2-4(x -y )2
(5)x 4-25x 2y 2
(6)4x 2-20xy+25y 2
(7)(a+b )2+10c (a+b )+25c 2
3.利用因式分解进行计算
(1)9x 2+12xy+4y 2,其中x=34,y=-2
1; (2)(2b a +)2-(2b a -)2,其中a=-8
1,b=2. (四)归纳小结
(五)随堂检测
1.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式__________________.
2.把代数式269mx mx m -+分解因式,下列结果中正确的是( )
A .2(3)m x +
B .(3)(3)m x x +-
C .2(4)m x -
D .2(3)m x -
3.在三个整式222
2,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
4.已知(19x -31)(13x -17)-(13x -17)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则a +b +c =( )
A .-12
B .-32
C .38
D .72
5.若多项式mx x +2+4能用完全平方公式分解因式,则m 的值可以是( )
A .4
B .-4
C .±2
D .±4 五、板书设计
第4章 因式分解
1.因式分解的概念
2.公因式
3.提取公因式法
4.完全平方公式
5.平方差公式
六、作业布置
完成单元检测
七、教学反思
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。
但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。
这样直接导致有些题目分解错误,有些题目分解不完全。
所以在因式分解的步骤这一块还要继续加强。
其实公式法分解因式。
学生比较会将平方差和完全平方式混淆。
这是对公式理解不透彻,彼此的特征区别还未真正掌握好。
大体上可以从以下方面进行区分。
如果是两项的平方差则在提取公因式后优先考虑平方差公式。
如果是三项则优先考虑完全平方式进行因式分解。