《一元二次方程》单元教材分析

合集下载

苏科版数学七年级上册4.1《一元二次方程》教学设计

苏科版数学七年级上册4.1《一元二次方程》教学设计

苏科版数学七年级上册4.1《一元二次方程》教学设计一. 教材分析《一元二次方程》是苏科版数学七年级上册第四单元的第一节内容。

本节内容主要介绍一元二次方程的定义、解法及其应用。

教材通过引入生动有趣的故事情境,激发学生的学习兴趣,让学生在情境中感受数学与生活的紧密联系。

教材内容由浅入深,逐步引导学生掌握一元二次方程的知识,为学生后续学习函数、不等式等知识打下基础。

二. 学情分析七年级的学生已经具备了一定的代数基础,掌握了方程、不等式等基本概念。

但学生对于一元二次方程的理解和应用还需加强。

通过本节课的学习,学生需要能够理解一元二次方程的概念,掌握一元二次方程的解法,并能运用一元二次方程解决实际问题。

三. 教学目标1.知识与技能:理解一元二次方程的概念,掌握一元二次方程的解法,能够运用一元二次方程解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生发现一元二次方程的解法规律,培养学生的逻辑思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的紧密联系,培养学生的团队合作意识。

四. 教学重难点1.重点:一元二次方程的概念、解法及应用。

2.难点:一元二次方程的解法及其在实际问题中的应用。

五. 教学方法1.情境教学法:通过引入生动有趣的故事情境,激发学生的学习兴趣,让学生在情境中感受数学与生活的紧密联系。

2.启发式教学法:引导学生观察、分析、归纳,发现一元二次方程的解法规律。

3.小组合作学习:培养学生团队合作意识,提高学生解决问题的能力。

六. 教学准备1.教学课件:制作生动有趣的故事情境课件,引导学生进入学习状态。

2.教学素材:准备一些实际问题,供学生练习使用。

3.板书设计:设计简洁明了的板书,帮助学生理解和记忆一元二次方程的知识。

七. 教学过程1.导入(5分钟)利用课件展示一个生动有趣的故事情境,引导学生进入学习状态。

例如,讲述一个关于国王奖励国际数学家的问题,引发学生对数学的兴趣。

初中数学_一元二次方程教学设计学情分析教材分析课后反思

初中数学_一元二次方程教学设计学情分析教材分析课后反思

第八章一元二次方程8.1 一元二次方程(1)【学习目标】1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。

2、能力培养:能根据具体情景应用知识。

3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。

【学习重点】1、一元二次方程的定义;2、一元二次方程的一般形式。

【学习过程】一、前置准备:1.单项式和多项式统称为整式.2.含有未知数的等式叫做方程.3.计算:(x+2)2=x2+4x+4;(x-3)2=x2-6x+9.4.计算:(5-2x)(8-2x)=4x2-26x+40.二、自学探究:理解一元二次方程的概念,并会把一元二次方程化为一般形式。

自学教材,回答:(1)如果设未铺地毯区域的宽为xm,那么地毯中央长方形图案的长为 m,宽为为 m.根据题意,可得方程(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m,梯子顶端距地面的垂直距离为 m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;这样的方程叫做。

其中我们把称为一元二次方程的一般形式,ax2,bx,c分别称为、、,a、b分别称为、。

1、分别把上述三个方程化为ax2+bx+c=0的形式,并说明每个方程的二次项系数、一次项系数和常数项:(1)(2)(3)四、典例分析:1、下列方程哪些是一元二次方程?(1)(1)7x2-6x=0 (2)2x2+-5xy+6y=0(3)13122-+x x =0 (4)22y =0 (5)x 2+2x-3=0五、能力提升:1、从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。

人教版数学九年级上册教学设计21.1《一元二次方程》

人教版数学九年级上册教学设计21.1《一元二次方程》

人教版数学九年级上册教学设计21.1《一元二次方程》一. 教材分析《一元二次方程》是人民教育出版社九年级上册数学的一个重要内容,它标志着学生从简单方程的认识过渡到更复杂的一元二次方程的解决。

本节内容通过实例引入一元二次方程,使学生了解一元二次方程的定义、特点以及解法。

教材通过问题驱动,引导学生探索求解一元二次方程的方法,培养学生运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了简单方程的解法、不等式的性质等知识,具备了一定的数学基础。

但一元二次方程较为抽象,学生可能难以理解其定义和解法。

因此,在教学过程中,需要关注学生的认知困难,通过实例和问题引导学生理解和掌握一元二次方程。

三. 教学目标1.理解一元二次方程的定义和特点;2.学会求解一元二次方程的配方法、公式法等基本方法;3.能够应用一元二次方程解决实际问题;4.培养学生的数学思维能力和问题解决能力。

四. 教学重难点1.一元二次方程的定义和特点;2.一元二次方程的解法;3.一元二次方程在实际问题中的应用。

五. 教学方法1.实例导入:通过生活中的实际问题,引导学生认识一元二次方程;2.问题驱动:提出问题,引导学生探索求解一元二次方程的方法;3.小组合作:分组讨论,共同探索一元二次方程的解法;4.归纳总结:引导学生总结一元二次方程的解法,并应用于实际问题。

六. 教学准备1.教学课件:制作课件,展示一元二次方程的定义、解法等知识;2.实例材料:准备生活中的实际问题,用于导入和巩固知识;3.练习题库:准备一定数量的一元二次方程练习题,用于巩固和拓展知识。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线与x轴的交点问题,引导学生认识一元二次方程。

通过问题驱动,激发学生的学习兴趣。

2.呈现(10分钟)讲解一元二次方程的定义、特点和解法。

通过实例演示和讲解,使学生理解和掌握一元二次方程的基本解法。

3.操练(10分钟)学生分组讨论,共同探索一元二次方程的解法。

人教版初中数学《一元二次方程》单元教材教学分析

人教版初中数学《一元二次方程》单元教材教学分析
3.若方程kx3-(x-1)2=3(k-2)x3+1是关于x的一元二次方程,则k=___
4.K为何值方程(k2-9)x2+(k-5)x+3=0不是关于x的一元二次方程
课时安排
一元一次方程:3课时
解一元一次方程:3课时
……
说明
人教版初中数学《一元二次方程》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《一元二次方程》
单元教材主题内容与价值作用
一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。为接下来的学习起到很好的铺垫作用
结合学生实际,在教学中教师通过引导,让学生学会学习数学的方法和数学思想。学生通过两个实际问题,得出一元二次方程的具体例子,再引导学生观察整理后的方程,发现形式上的共同点,给出一元二次方程的概念及其表示,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,学生通过思想的碰撞互相学习,激发学习兴趣,提高学习效率,并能活跃课堂气氛,让学生在思考中加深定义理解和掌握。
通常可写成如下的一般形式:
ax2+bx+c=0(a、b、c是已知数,a≠0)。其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数,c叫做常数项

浙教版数学八年级下册2.1《一元二次方程》说课稿2

浙教版数学八年级下册2.1《一元二次方程》说课稿2

浙教版数学八年级下册2.1《一元二次方程》说课稿2一. 教材分析《一元二次方程》是浙教版数学八年级下册第2章第1节的内容。

本节内容是在学生已经掌握了实数、方程、不等式等知识的基础上,进一步引导学生学习一元二次方程。

一元二次方程是初中数学中的重要内容,也是高考的必考知识点。

通过学习一元二次方程,学生可以更深入地理解方程的概念,提高解题能力。

二. 学情分析学生在学习本节内容前,已经具备了一定的数学基础,如实数、方程、不等式等知识。

但部分学生可能对一元二次方程的概念和求解方法不够了解,因此在教学过程中需要关注这部分学生的学习情况,引导学生逐步掌握一元二次方程的解法。

三. 说教学目标1.知识与技能:使学生掌握一元二次方程的概念,了解一元二次方程的解法,能够运用一元二次方程解决实际问题。

2.过程与方法:通过自主学习、合作交流等方式,培养学生探究问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.重点:一元二次方程的概念、解法及应用。

2.难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导等教学方法。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。

六. 说教学过程1.导入新课:通过复习实数、方程、不等式等知识,引导学生进入一元二次方程的学习。

2.自主学习:让学生自主探究一元二次方程的概念,了解一元二次方程的一般形式。

3.合作交流:学生分组讨论,分享各自的学习心得,共同解决问题。

4.教师讲解:讲解一元二次方程的解法,重点讲解因式分解法和求根公式的运用。

5.例题解析:分析并解决典型例题,巩固所学知识。

6.练习巩固:学生自主练习,教师个别指导。

7.拓展提高:引导学生运用一元二次方程解决实际问题。

8.课堂小结:总结本节课的学习内容,强调重点知识点。

七. 说板书设计板书设计如下:一元二次方程:形式:ax^2 + bx + c = 0(a≠0)1.因式分解法2.求根公式法应用:解决实际问题八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

《一元二次方程》大单元教学设计

《一元二次方程》大单元教学设计

单元学习重难点 重点:
1.一元二次方程及其它有关的概念
2.用配方法、公式法、因式分解法降次解一元二次方 程
3利用实际问题建立一元二次方程的数学模型, 并解决 这个问题
单元学习重难点 难点: 1.一元二次方程配方法解题
2.用公式法解一元二次方程时的讨论 3.一元二次方程根的判别式 4.一元二次方程根与系数的关系 5.建立一元二次方程实际问题的数学模型;方程解 与实际问题解的区别
3
专题三
一元二次方程的应用
(4课时)
第一课时
第二课时
第三课时
第四课时
以目标为导向的”教—学—评“一体化活动设计
课 型 一元二次方程的应用
教学目标
1.能根据具体几何实际问题中的数量关系列出一元二次方程并求解. 2.体会方程建模思想,培养数形结合意识.
教学活动 创设几何类型的一元二次方程问题
学生找出等量关系探究设计方案
以目标为导向的”教—学—评“一体化活动设计
复习回顾配方法解一元二次方程的步骤
教学活动 点拨总结公式法解一元二次方程的步骤
达成评价 会用公式法解一元二次方程
探究推导一元二次方程求根公式 跟踪练习
讨论求根公式的条件
精讲
第一课时
第二课时
第三课时
题目
用公式法解一元二次方程
以目标为导向的”教—学—评“一体化活动设计
专题二主要讨论一元二次方程的基本解法, 为专题三提供方法支 持, 最后增加了选学内容“一元二次方程的根与系数的关系”, 学习这一内容可以进一步加深对一元二次方程及其根的认识。
专题三
专题三结合实际问题, 重点分析实际问题中的数量关系并以一元 二次方程的形式进行表示, 进而巩固专题二中一元二次方程的解 法。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。

人教版初中数学《第21章一元二次方程》单元教材教学分析

人教版初中数学《第21章一元二次方程》单元教材教学分析
学生思想教育和行为习惯的培养及学习方法
1.为学生构建研究一元二次方程解法的连贯过程
学生已经具备解一元二次方程的基本思想—化归,即把方程转化为一次方程,但在面对解一元二次方程的任务时,不知该用什么解法,因此,在教学中应加强类比、从特殊到一般等思想方法的引导。
2.加强数学抽象能力和数学建模能力的建构
许多现实问题的数量关系都可以抽象为一元二次方程,与一元一次方程相比,一元二次方程有更广泛的应用,这可以通过建立和求解一元二次方程模型的完整过程,即从具体情境中抽象出数学问题建立方程表示数量关系,从而把模型思想、应用意识的培养落在实处。
人教版初中数学《第21章一元二次方程》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《第21章一元二次方程是刻画数量关系的重要数学模型,一元二次方程的解法和实际应用是初中阶段的核心内容。并学习利用一元二次方程模型解决简单的实际问题,为后续的二次函数等打下学习基础。
单元目标
会用直接开平方法、配方法、公式法、分解因式法解一元二次方程,掌握根的判别式的应用,以及能够用一元二次方程解决有关实际问题。
重点、难点与关键
1.重点:解一元二次方程的基本思路和具体解法
2.难点:建立一元二次方程模型解决实际问题
教学方法和手段的设计
第一节课采用问题和情景引入,如“什么是一元二次方程,你能举个例子吗?”,对于解法“基本思路:通过恒等变形,把方程逐步转化为x=a的形式”
课时安排
第一课时:一元二次方程
第二课时:解一元二次方程—直接开平方法
第三课时:解一元二次方程—配方法(一)
第四课时:解一元二次方程—配方法(二)
第五课时:解一元二次方程—公式法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程》单元教材分析一. 教学内容:复习目标:(辅导时各位老师要学生掌握的点,每节课可以视情况巩固两点)⑴了解一元二次方程的有关概念.⑵能灵活运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.⑶会根据根的判别式判断一元二次方程的根的情况.⑷知道一元二次方程根与系数的关系,并会运用它解决有关问题.⑸能运用一元二次方程解决简单的实际问题.⑹了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.二. 基础知识回顾1. 方程中只含有_______•个未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_____ __()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2. 解一元二次方程的一般解法有⑴_________;⑵________;⑶•_________;•⑷•求根公式法,•求根公式是______________.3. 一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:⑴x(5x+21)=20 ⑵x2+9=6x ⑶x2-3x=-54. 设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5. 设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.三. 重点讲解1. 了解一元二次方程的概念,对有关一元二次方程定义的题目,要充分考虑定义的三个(强调是三个)特点,即①是整式方程(重点强调);②化简后只含有一个未知数;③未知数的最高次数是2.2. 解一元二次方程时,应根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(通过教材课后习题的演练,可以很明显的发现利用十字相乘法解方程时二次项系数时常不是一,而有些学生十字相乘法中对于二次项系数不为一的题目会无所适从,不妨多加练习,但厦门近三年的中考中没有出现过类似的题目)3 .一元二次方程20(0)ax bx c a++=≠的根的判别式正反都成立.利用其可以⑴不解方程判定方程根的情况(有根,有两个根,有两个不同的根分别代表⊿的取值范围);⑵根据参系数的性质确定根的范围(有两正根,两负根,一根正一根负,只有一个根大于某常数);针对只有一个根大于某一常数的题型举例如下:⑶解与根有关的证明题(判断三角形的形状,某一恒等式证明).举例如下:4. 一元二次方程根与系数的应用很多:⑴已知方程的一根,不解方程求另一根及参系数;⑵已知方程,求含有两根对称式的代数式的值及有关未知数系数;⑶已知方程两根,求作以方程两根或其代数式为根的一元二次方程.5. 能够列出一元二次方程解应用题.能够发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.6. 本章解题思想总结:⑴转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.⑵从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.(对于理解力好的学生,可以要求其掌握公式法的求根公式的由来,以及怎样用两根推导根与系数的关系)⑶分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想(在目前单元测试的压轴性题目中出现的频率较高). 举例如下:四. 易错点点拨易错点1:对一元二次方程的定义的理解.判断一个方程是否一元二次方程,关键是将整式方程化简后只含有一个未知数,且未知数的最高次数为2,特别地,当二次项的系数用字母表示时,二次项系数不为零不能漏掉(虽简单,但极易被学生忽略).易错点2:一元二次方程的一般形式.在确定一元二次方程的二次项、一次项及常数项时,一定要将一元二次方程化为一般形式(注意同类项的合并与等号右边不为零的情况).易错点3:关于解一元二次方程时的易错点.⑴是在解形如“2x x =”这样的方程时,千万不能在方程左右两边都除以x ,从而造成方程丢根(告知学生原因,即当x=0时,两边是不能同时除以0的,无意义);⑵用配方法时,当二次项的系数不为1时,应将二次项系数化为1,再将方程左边配成完全平方式;⑶利用公式法求一元二次方程的解时,要先判断24b ac -必须非负才能求解;举例如下:⑷利用因式分解法求一元二次方程的解时,方程右边一定要变为0.易错点4:在用一元二次方程解决有关实际问题时,注意运用转化思想,如图形问题中,如何通过平移,旋转等变换把不规则的图形转化为规则的图形.另外,对于增长率问题,要把握基础数与总数的关系.特别地,一元二次方程的两个解,一定要会判断检验其是否符合实际意义(两个解并非必须有一个是增根,二者都合适的情况也是存在的).【典型例题】考点1:一元二次方程的概念及一般形式相关知识:只含有一个未知数的整式方程,并且都可以化为ax 2+bx +c =0(a 、b 、c 为常数,•a ≠0)的形式,这样的方程叫做一元二次方程.一元二次方程的一般形式:ax 2+bx +c =0(a ≠0).复习策略:准确理解一元二次方程的定义,一元二次方程首先是整式方程,然后是经过化简后能得到一元二次方程的一般形式的方程才是一元二次方程.例1. ⑴下列方程是关于x 的一元二次方程的是 ( )A. 23(1)2(1)x x +=+ B. 21120x x +-=C. 20ax bx c ++=D. 2221x x x +=-⑵方程215x x -=的一次项的系数是 .【评注】概念性的问题关键是抓住概念的本质.一元二次方程必须符合三个条件:①是整式方程;②化简后只含一个未知数;③未知数的最高次数为2.考点2:一元二次方程的解相关知识:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解,或叫做一元二次方程的根.复习策略:要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程,看看方程左右两边是否相等即可.相等,则是方程的解;反之,则不是.例2. 如果关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,求m 的值.【评注】已知方程的解确定方程中的待定系数的值,是逆向思维的运用,有时将方程的解代入方程中,可能还会出现含两个待定系数的方程,这时要注意整体思想方法的运用.考点3:了解方程并判定方程根的情况相关知识:一元二次方程根的判别:⑴当24b ac ->0时,方程有两个不相等的实数根;⑵当24b ac -=0时,方程有两个相等的实数根;⑶当24b ac -<0时,方程没有实数根.反之也成立.复习策略:要掌握一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围;③求解与根有关的综合题.例3. ⑴(2007巴中市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根⑵(2007安徽泸州)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )A. m <lB. m >-1C. m >lD. m <-1考点4:解一元二次方程相关知识:我们知道,一元二次方程的解法有四种:直接开平方法、因式分解法、配方法和公式法.而解一元二次方程的关键是判断方程的特点,选择最佳解题方法,其基本思想是“ 降次”,把二次转化为一次.这四种方法各有千秋,在解一元二次方程时可根据方程的特点,选用最佳解法.复习策略:灵活选用一元二次方程的解法,可从以下几点考虑:⑴对于形如x 2=a (a ≥0)或(mx -n )2=a (m ≠0, a ≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.⑵如果一元二次方程缺少常数项,或方程的右边为0,左边很容易分解因式,可考虑用因式分解法. ⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法.⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.例4. 解下列方程: ⑴(x +1)2=12⑵(2x +1)(3x -1)=1 ⑶2x (x +2)+1=0⑷16-x 2-4x =0 ⑸3(x -2)2=x (x -2)由以上解析可以这样来总结:解一元二次方程,首先要把原方程变形为一般形式,然后计算b 2-4ac ,最后考虑用何种方法求解.如果b 2-4ac 是完全平方数,则用因式分解法,如果b 2-4ac 不是完全平方数且大于零,则用公式法,配方法实际是公式法的推导过程,因此,除题目要求,一般不用配方法. 例5. 解方程:⑴(2007北京)解方程:2410x x +-=.⑵(2007浙江嘉兴)解方程:x 2+3=3(x +1).考点5:根据根与系数的关系,求与方程的根有关的代数式的值相关知识: 一元二次方程根与系数的关系:若一元二次方程20ax bx c ++=(a 、b 、c 为已知数,a≠0,240b ac -≥)的两个实数根为12,x x ,则a c x x ,ab x x 2121=-=+.即:一元二次方程两个根的和等于方程的一次项系数除以二次项系数的商的相反数;两个根的积等于常数项除以二次项系数的商.复习策略:根与系数的关系存在的前提是:①a ≠0,即方程一定是一元二次方程;②b 2-4ac ≥0,即方程一定有实数根.根据新课标的要求,在课改实验区的中考试题中,运用一元二次方程根与系数的关系的考题主要是求与方程的根有关的代数式的值的题型.例6. ⑴(2007山东淄博)若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足2121x x x x =+.则k 的值为( )(A )-1或34 (B )-1 (C )34 (D )不存在⑵(2007四川德阳)阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,a c x x 21=.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ 【评注】不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含12x x +,21x x ⋅的形式,然后把12x x +,21x x ⋅的值代入,即可求出所求代数式的值.常见的代数式变形有:①222121212()2x x x x x x +=+- ②12121211x x x x x x ++= ③212122221212()211()x x x x x x x x +-+= ④ 22112121212()2x x x x x x x x x x +-+=⑤12x x -= 考点6: 一元二次方程的应用相关知识:应用一元二次方程解决实际问题的步骤:在日常生活实践中,许多问题都可以通过建立一元二次方程这个模型来进行求解,然后回到实际问题中去进行解释和检验.首先要把实际问题加以分析,抽象成数学问题,然后用数学知识去解决它.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设.所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数.⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系.⑶列:就是指根据等量关系列出方程.⑷解:就是求出所列方程的解.⑸验:分为两步.一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况. ⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则.以上几个步骤中,审题是基础,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步.复习策略:1. 一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位. ⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来.2. 常见的应用题:⑴几何图形的面积问题:这类问题的面积公式是等量关系,如果图形不规则,应分割或组合成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程.⑵平均增长(降低)率问题:此类问题是在某个数据的基础上连续增长(降低)两次得到新的数据,解这类问题需牢记公式2(1)a x b +=或2(1)a x b -=,其中a 表示增长(降低)前的数据,x 表示增长或降低率,b 表示后来得到的数据,“+”表示增长,“-”表示降低.[方法·规律]:⑴解此类问题所列的方程,一般用直接开平方法求解.⑵增长率不能为负数,降低率不能大于1.⑶营销问题:解决此类问题首先要清楚几个名称的意义,如成本价、售价、标价、打折、利润、利润率等以及它们之间的等量关系.[梳理·总结]:此类问题常见的等量关系是:“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量, 100⨯售价-进价利润率=%进价”例7.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率. 1.41)例8. 一块矩形耕地大小尺寸如图1,如果修筑同样宽的两条“之”字形的道路,如图1所示,余下的部分作为耕地.要使耕地的面积为540m 2,道路的宽应是多少?分析:在面积问题中有一些计算题,如采用平移的方法适当改变图形的形状,可以给解决问题带来意想不到的美妙效果.此题如不采用“平移法”,很难人手.若把“之”字道路平移一下位置,变为图2,则此题即可迎刃而解.图1 图2考点7:一元二次方程中考阅读理解题例析与一元二次方程相关的阅读理解问题,是近几年的一种新题型,由于这类问题有助于培养学生的阅读理解能力、创新意识,而备受大家的关注,现略举几例与同学们共赏析.例9. (2006年福建晋江市)阅读下面的例题:解方程:x 2—|x|—2=0解:(1)当x ≥0时,原方程化为x 2—x —2=0,解得:x 1=2,x 2=—1(不合题意,舍去).(2)当x <0时,原方程化为x 2+x —2=0,解得:x 1=1(不合题意,舍去),x 2=—2∴原方程的根是x 1=2,x 2=—2.请参照例题解方程x 2—|x —3|—3=0,则此方程的根是 .例10. (2006年广东茂名市)先阅读,再填空解题:(1)方程x 2-x -12=0 的根是:x 1=-3,x 2=4,则x 1+x 2=1,x 1·x 2=-12;(2)方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;(3)方程x 2-3x +1=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、21x x ⋅与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.分析:本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系.【中考再现】【模拟试题】(答题时间:40分钟)一、选择题1、(2007巴中市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2、(2007安徽泸州)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )A. m<lB. m>-1C. m>lD. m<-13、(2007四川内江)用配方法解方程2420x x -+=,下列配方正确的是( ) A. 2(2)2x -= B. 2(2)2x += C. 2(2)2x -=- D. 2(2)6x -=4、(2007四川成都)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A. x 2+4=0B. 4x 2-4x +1=0C. x 2+x +3=0D. x 2+2x -1=05、(2007湖南岳阳)某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A. 200(1+a%)2=148B. 200(1-a%)2=148C. 200(1-2a%)=148D. 200(1-a 2%)=1486、(2007安徽芜湖)已知关于x 的一元二次方程22x m x -=有两个不相等的实数根,则m 的取值范围是( )A. m >-1B. m <-2C. m ≥0D. m <07、(2007湖北武汉)如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )A. 2B. -2C. 4D. -4二、填空题1、(2007重庆)已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x2、(2007四川眉山)关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.3、(2007浙江温州)方程220x x -=的解是 .4、(2007湖南怀化)已知方程230x x k -+=有两个相等的实数根,则k =5、(2007四川成都)已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式235(2)362x x x x x -÷+---的值为____.6、(2007江苏淮安)写出一个两实数根符号相反的一元二次方程:__________________。

相关文档
最新文档