平面向量的教学设计

合集下载

数学教案高中平面向量

数学教案高中平面向量

数学教案高中平面向量
教学目标:
1. 理解平面向量的定义和基本性质。

2. 掌握平面向量的加减法和数量积的运算法则。

3. 能够解决与平面向量相关的几何问题。

教学重点和难点:
重点:平面向量的定义、加减法和数量积的运算法则。

难点:用平面向量解决几何问题。

教学过程:
一、引入:
1. 引导学生回顾向量的定义和性质,并了解平面向量的概念。

2. 提出问题:如何描述一个平面向量?平面向量有哪些运算法则?
二、讲解:
1. 讲解平面向量的定义:平面向量是具有大小和方向的量,用有向线段表示。

2. 讲解平面向量的性质:平面向量的平移、相等、相反和共线性。

3. 讲解平面向量的加减法和数量积的运算法则。

三、练习:
1. 练习平面向量的加减法。

2. 练习平面向量的数量积运算。

3. 练习应用平面向量解决几何问题。

四、总结:
1. 总结平面向量的定义和性质。

2. 总结平面向量的加减法和数量积的运算法则。

3. 回顾解决几何问题时的平面向量方法。

五、作业布置:
1. 完成课堂练习题。

2. 自主搜索平面向量相关题目,进行练习。

3. 思考平面向量在几何问题中的应用。

教学反思:
通过本节课的教学,学生能够初步了解平面向量的概念和运算法则,能够进行简单的计算和解决几何问题。

在以后的教学中,还需要引导学生进一步理解和运用平面向量,培养学生的解决问题能力和数学思维能力。

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

高中数学平面向量优秀教案

高中数学平面向量优秀教案

高中数学平面向量优秀教案
教学内容:平面向量
教学目标:学生能够掌握平面向量的概念,运用向量进行计算,并解决相关问题。

教学重点:向量的基本概念、向量的加减法、向量的数量积、向量的夹角等。

教学难点:向量的叉乘、向量的投影、向量的几何应用等。

教学准备:教案、幻灯片、黑板、彩色粉笔、教学实物等。

教学步骤:
1.导入:通过引入日常生活中的例子,引出向量的概念。

通过图示向学生展示平面向量的
定义和表示方法。

2.向量的表示:通过具体的例子,向学生展示向量的表示方法,包括向量的起点、终点、
模长和方向。

3.向量的加减法:通过具体的例子,向学生介绍向量的加减法,包括平行向量和共线向量
的相加、相减及其性质。

4.向量的数量积:引入向量的数量积的概念,通过具体的例子,向学生介绍数量积的定义
和性质,并进行相关计算。

5.向量的夹角:引入向量的夹角的概念,通过具体的例子,向学生介绍向量的夹角的定义、计算及其性质。

6.课堂练习:设计一些练习题,让学生在课堂上进行练习,巩固所学知识。

7.课堂总结:对本节课的内容进行总结,概括向量的基本概念、运算规律及其应用,鼓励
学生多做题多练习,加深对向量的理解。

课后作业:布置相关练习题,让学生巩固所学知识,提高解题能力。

教学反思:在教学过程中,要注重引导学生探究,激发学生的学习兴趣,同时要及时调整
教学方法,帮助学生克服学习难点,提高学习效果。

以上是针对高中数学平面向量的一份优秀教案范本,希望对您有所帮助。

高三数学平面向量教学设计

高三数学平面向量教学设计

高三数学平面向量教学设计一、教学目标通过本节课的学习,学生应能够:1. 掌握平面向量的定义和基本性质;2. 理解平面向量的加法和减法运算法则;3. 熟练掌握平面向量的数量积定义和运算法则;4. 运用平面向量解决实际问题。

二、教学重点与难点2.1 教学重点:1. 平面向量的定义和基本性质;2. 平面向量的加法和减法运算法则;3. 平面向量的数量积的定义和运算法则。

2.2 教学难点:1. 平面向量的数量积的概念理解与应用;2. 运用平面向量解决实际问题。

三、教学准备1. 教学工具:黑板、彩色粉笔;2. 教材:高中数学教材;3. 教学辅助材料:练习题、习题讲解参考答案。

四、教学过程4.1 导入与复习(5分钟)通过简短的复习回顾上节课所学内容,激活学生对平面向量概念的知识和运算方法。

4.2 新知讲解(30分钟)Step 1: 平面向量的定义和基本性质(10分钟)1. 讲解平面向量的定义和向量的表示方法;2. 引导学生理解向量的模和方向以及零向量的概念;3. 进一步讲解平面向量的共线与共面的概念;4. 通过例题引导学生掌握向量的基本性质。

Step 2: 平面向量的加法和减法运算法则(10分钟)1. 介绍平面向量的加法和减法的运算定义;2. 引导学生运用向量三角形法则和平行四边形法则,解决相关的向量加法和减法问题;3. 通过例题讲解和练习让学生熟练掌握向量的加法和减法运算。

Step 3: 平面向量的数量积(10分钟)1. 讲解平面向量的数量积的概念和定义;2. 引导学生掌握数量积的运算法则和性质;3. 通过例题和练习巩固学生对数量积的理解和应用。

4.3 练习与巩固(40分钟)通过一系列的练习题让学生独立或小组合作完成,包括平面向量的加法、减法和数量积的计算和实际问题的应用。

教师可以布置一些难度适中和拓展性强的练习题,以提高学生的思维能力和解决问题的能力。

4.4 拓展与应用(10分钟)引导学生运用所学的平面向量知识解决实际问题,如力的合成、平面几何的证明等。

平面向量教案电子版

平面向量教案电子版

平面向量教案电子版一、教学目标1. 理解向量的概念,掌握向量的表示方法,包括几何表示和坐标表示。

2. 掌握向量的线性运算,包括加法、减法、数乘和点乘。

3. 理解向量的模长和方向,并能运用其解决实际问题。

4. 掌握向量的共线定理和向量垂直的条件。

5. 能够运用向量知识解决几何问题,提高空间想象能力。

二、教学重点与难点1. 重点:向量的概念、线性运算、模长和方向、共线定理和向量垂直的条件。

2. 难点:向量的坐标表示、向量共线定理的应用、向量垂直的证明。

三、教学方法与手段1. 采用讲授法,讲解向量的概念、性质和运算规律。

2. 利用多媒体课件,展示向量的图形,直观地演示向量的运算过程。

3. 引导学生通过小组讨论,探究向量共线定理和向量垂直的条件。

4. 利用例题,讲解向量知识在几何问题中的应用。

四、教学内容1. 向量的概念:向量的定义、向量的表示方法。

2. 向量的线性运算:向量加法、向量减法、向量数乘、向量点乘。

3. 向量的模长和方向:模长的定义和计算、方向的表示方法。

4. 向量的共线定理:共线定理的表述及其应用。

5. 向量垂直的条件:垂直的定义、垂直的性质和判定。

五、教学安排1. 第一课时:向量的概念和表示方法。

2. 第二课时:向量的线性运算。

3. 第三课时:向量的模长和方向。

4. 第四课时:向量的共线定理。

5. 第五课时:向量垂直的条件及其应用。

六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对向量概念的理解程度。

2. 通过课后作业和测试,评估学生对向量线性运算的掌握情况。

3. 通过解决问题和案例分析,检验学生运用向量知识解决实际问题的能力。

4. 结合学生的学习态度、参与度和合作能力,全面评价学生的学习效果。

七、教学反馈1. 课堂讲解:根据学生的提问和反应,及时调整讲解内容和难度。

2. 练习环节:收集学生作业,分析错误原因,针对性地进行讲解和辅导。

3. 小组讨论:鼓励学生积极参与,关注学生的思考过程和合作情况。

平面向量教案3篇

平面向量教案3篇

平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。

二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。

三、教学方法:讲述法、举例法、实验法。

四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。

向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。

在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。

然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。

2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。

平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。

(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。

(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。

(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。

(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。

(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。

3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。

向量的教案5篇

向量的教案5篇

向量的教案5篇向量的教案篇1一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。

因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。

因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣om∣·∣ob∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。

对于cosθ= ,等的变形应用,同学们甚感兴趣。

2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。

(2)平面向量数量积的应用。

2、过程与方法通过学生小组探究学习,讨论并得出结论。

3、情感态度与价值观培养学生运算推理的能力。

四、教学活动内容师生互动设计意图时间1、课题引入师:请同学请回忆我们所学过的相关同里的运算。

生:加法、减法,数乘师:这些运算所得的结果是数还是向量。

生:向量。

师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。

3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②o与任何向量的数里积为o。

高中数学《平面向量》的教案

高中数学《平面向量》的教案

高中数学《平面向量》的教案人教版高中数学《平面向量》的教案作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

那么优秀的教案是什么样的呢?下面是小编帮大家整理的人教版高中数学《平面向量》的教案,欢迎阅读与收藏。

高中数学《平面向量》的教案篇1第一教时教材:向量目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。

过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。

二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。

例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。

2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为(印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。

记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。

的方向是任意的。

注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。

例:温度有零上零下之分,“温度”是否向量?答:不是。

因为零上零下也只是大小之分。

例:与是否同一向量?答:不是同一向量。

例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。

三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。

记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的教学设计
§2.1 平面向量的基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。

本节课概念与知识点较多也比较抽象,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。

体现了在老师的引导下,学生的的主体地位和作用。

3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。

二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念
个代数量;向量有方向,大小,双重性.
2、向量的几何表示
(类比实数的数轴表示并结合实例过渡到向量的几何表示) 向量的几何表示:用有向线段表示;
3、向量的相关概念
(1)向量的字母表示:用字母a、b(黑体,印刷用)等表示,书写
用a,b等;或用有向线段的起点与终点字母:AB等;(2)向量AB的大小就是有向线段AB的长度(或称模),记作|AB|;向量方向就是其有向线段的箭头指向。

(3)零向量、单位向量概念:(从向量的大小方面过渡)
①长度为0的向量叫做零向量,记作0。

②长度等于1个单位的向量,叫做单位向量.
4、平行向量定义(从向量的方向关系进行引入):
①方向相同或相反的非零向量叫做平行向量;
若向量a,b平行,记作a∥b
②我们规定0与任一向量平行,即都有0∥a.
说明:综合①、②才是平行向量的完整定义;
探究:“若a∥b,且b∥c,则a∥c”这个说法正确吗?
(注意与直线平行传递性的区别)
5、相等向量定义:
长度相等且方向相同的向量叫做相等向量.
说明:(1)若向量a与b相等,记作a=b;
(2)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关
...........(结合向量与有向线段的构成要素进行说明,并用课件展示其生成过程)
6、相反向量:长度相等且方向相反的向量叫做相反向量
7共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移
到同一直线上(与有向线段的起点无关
..........)..
探究:(1)平行向量可以在同一直线上吗?
(注意与两平行线位置关系的区别)
(2)共线向量可以相互平行吗?
(注意与同在一直线上的线段位置关系的区别)
记做a或AB 线段和向量的理解。

B
a
b
例题导析例1:如图,设O是正六边形ABCDEF的中心,在图中所标出的向
量中:
课件给出
(1)试找出与向量FE共线的向量;
(2)确定与向量FE相等的向量;
(3)找出向量OA的相反向量.
例2判断下列结论是否正确:
(1)单位向量都相等.
(2)不相等的向量一定不平行.
(3)若非零向量//
AB CD,则 AB//CD.
(4)四边形ABCD中AB DC
,四边形ABCD是
平行四边形.
(5)平行向量的方向一定相同或相反.
练习1.已知O为正六边形ABCDEF的中心,在以A、B、
C、D、E、F、O为起点、终点构成的向量中,
(1)写出与向量AB相等的向
量;
(2)设正六边形的边长为1,则单
位向量有多少个?
例3在4×5排列方格有一个向量
AB以图中的格点为起点和终点作
向量,其中与AB相等的向量有多少个?与AB长度相等
的共线向量有多少个?
(学生口答)给出课件
巩固向量概念及其
几何表示。

让学生能够通过这
些问题,弄清向量学
习中比较容易混淆
的几个基本概念
A.若|a|>|b|,则a>b
=b,则|a|=|b|
≠b,则a与b不是共线向量
a=0,则-a=0
对于下列各种情况,各向量的终点的集合分别是什么图形?。

相关文档
最新文档