雷达目标识别技术
雷达的目标识别技术

雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。
一.引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。
地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。
1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。
信号带宽与时间分辨率成反比。
例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。
其基本原理如图1所示。
2.极化成象技术电磁波是由电场和磁场组成的。
若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。
线性极化电磁波的反射与目标的形状密切相关。
当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。
根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。
通过计算目标散射矩阵便可以识别目标的形状。
该方法对复杂形状的目标识别很困难。
3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。
通过解调反射电磁波的频率调制,复现目标振动频谱。
根据目标振动频谱进行目标识别。
传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。
点状目标的回波宽度等于入射波宽度。
一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。
通过目标回波宽度的变化可估计目标的大小。
目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。
雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术引言雷达技术作为一种广泛应用于军事、航空、航海和交通领域的测量技术,一直以来都备受关注和研究。
在雷达应用领域中,目标识别与跟踪技术是十分重要的一个研究方向,主要用于确定被测目标的特征或性质,随后跟踪该目标的运动变化。
本文将深入探讨雷达测量中的目标识别与跟踪技术。
一、雷达目标识别技术1. 散射截面及目标特征分析雷达识别某一特定目标的首要问题是确定目标的散射截面。
散射截面的值决定了目标对雷达波的反射程度,与目标的形状、大小和边缘特性等有关。
目标特征分析可以帮助确定不同目标之间的差异,并提供用于识别目标的信息。
2. 多普勒特征分析多普勒效应是指由于目标的运动而引起的接收信号频率发生变化的现象。
通过分析接收信号的多普勒频移,可以获得目标的运动状态、速度和方向,从而进一步识别目标。
3. 反射波束特征分析雷达工作时产生的波束会与目标发生相互作用,反射出的信号会带有目标的形状和结构信息。
通过分析返回信号的波束特征,可以推测出目标的形状、方位和内部结构等,为目标识别提供重要线索。
二、雷达目标跟踪技术1. 滤波器与滤波技术针对目标跟踪问题,滤波器是一种常用的处理手段。
常见的滤波器有卡尔曼滤波器、粒子滤波器和无迹卡尔曼滤波器等。
这些滤波器通过对雷达信号进行滤波处理,估计目标的状态并持续跟踪目标运动。
2. 目标运动模型目标运动模型是描述目标运动规律的数学模型。
常见的目标运动模型有匀速模型、自由加速度模型和粒子模型等。
通过建立适当的目标运动模型,可以更好地预测目标的运动行为,提高目标跟踪的准确性和鲁棒性。
3. 数据关联算法数据关联算法是在已知目标状态的情况下,根据测量数据关联目标和测量结果,并进行目标跟踪的一种方法。
常见的数据关联算法有最近邻算法、卡尔曼滤波算法和粒子滤波算法等。
这些算法能够有效处理多目标跟踪问题,提高跟踪性能。
三、雷达目标识别与跟踪在实际应用中的挑战与展望1. 复杂环境下的干扰雷达目标识别与跟踪在实际应用中面临着复杂的环境干扰,比如地形变化、气象条件和其他电磁源等。
电子信息工程中的雷达信号处理与目标识别技术研究

电子信息工程中的雷达信号处理与目标识别技术研究雷达信号处理与目标识别技术是电子信息工程中的重要研究方向。
随着科技的不断发展,雷达技术在军事、航空航天、气象、交通等领域得到广泛应用。
本文将从雷达信号处理的基本原理、目标识别技术的研究进展以及未来发展方向等方面进行探讨。
一、雷达信号处理的基本原理雷达信号处理是指对接收到的雷达回波信号进行处理和分析,以提取目标信息。
雷达系统通过发射脉冲信号并接收回波信号,通过信号处理技术可以获得目标的位置、速度、方位等信息。
雷达信号处理的基本原理包括脉冲压缩、目标检测与跟踪、目标参数估计等。
脉冲压缩是雷达信号处理的关键环节之一。
由于雷达系统发射的脉冲信号具有宽度较大,会导致目标回波信号在时间上发生模糊。
脉冲压缩技术通过降低脉冲信号的宽度,提高雷达系统的分辨能力和测距精度。
目标检测与跟踪是雷达信号处理的另一个重要环节。
目标检测是指在雷达回波信号中识别出目标存在的位置和特征,而目标跟踪则是在多个雷达回波信号中追踪目标的运动轨迹。
目标检测与跟踪技术可以帮助雷达系统实时监测目标的位置和运动状态,为后续的目标识别提供基础。
目标参数估计是雷达信号处理的最终目标。
通过对雷达回波信号进行分析和处理,可以估计目标的位置、速度、方位等参数。
目标参数估计技术是雷达信号处理的核心内容,其准确性和精度直接影响着目标识别的效果。
二、目标识别技术的研究进展目标识别技术是雷达信号处理的重要应用方向之一。
目标识别是指根据目标的特征和属性,将其与其他物体进行区分和识别。
目标识别技术可以帮助雷达系统快速准确地识别目标,提高作战效能和监测能力。
目标识别技术的研究进展主要包括传统方法和深度学习方法两个方面。
传统的目标识别方法主要基于特征提取和分类器设计。
特征提取是指从雷达回波信号中提取与目标相关的特征,常用的特征包括散射特性、形状特征、运动特征等。
分类器设计是指根据提取到的特征,通过训练分类器对目标进行识别。
雷达信号处理中的目标识别与特征提取方法

雷达信号处理中的目标识别与特征提取方法雷达信号处理是一种关键的技术,在许多领域中都有广泛的应用。
目标识别与特征提取是雷达信号处理的重要任务之一。
通过分析雷达接收到的信号,我们可以识别出不同的目标,并提取出与目标相关的特征信息。
本文将介绍雷达信号处理中常用的目标识别与特征提取方法。
一、目标识别方法目标识别是指将雷达接收到的信号与已知目标模型进行比对,从而确定目标的类别。
常用的目标识别方法包括以下几种:1. 信号处理与匹配滤波:匹配滤波是一种经典的目标识别方法。
它利用目标的特征信息构建一个滤波器,将雷达接收到的信号与滤波器进行卷积运算,得到目标的匹配度。
通过设置合适的阈值,即可识别目标。
2. 统计判决方法:统计判决方法利用目标的统计特征进行目标识别。
常用的统计判决方法包括贝叶斯判决、最小距离判决等。
这些方法通过建立目标的统计模型,并根据观测到的信号特征进行判决,从而实现目标的识别。
3. 特征匹配方法:特征匹配方法利用目标的特征信息进行目标识别。
常用的特征匹配方法包括相关匹配、相位匹配等。
这些方法通过计算目标特征之间的相似度,从而确定目标的类别。
特征匹配方法具有较高的准确性和鲁棒性,广泛应用于雷达目标识别中。
二、特征提取方法特征提取是指从雷达接收到的信号中提取出与目标相关的特征信息。
目标的特征信息可以包括目标的形状、尺寸、运动状态等。
常用的特征提取方法包括以下几种:1. 波形特征提取:波形特征提取是从雷达接收到的信号波形中提取出目标的特征信息。
常用的波形特征包括峰值、频率、幅度等。
通过分析这些波形特征,可以识别出目标的一些基本特征。
2. 多普勒频谱特征提取:多普勒频谱特征提取是从雷达接收到的信号的多普勒频谱中提取出目标的特征信息。
通过分析多普勒频谱的幅度、频率等特征,可以识别出目标的运动状态。
3. 极化特征提取:极化特征提取是从雷达接收到的信号的极化信息中提取出目标的特征信息。
雷达信号的极化信息包括目标的极化散射矩阵等。
雷达目标识别技术

雷达目标识别技术1.引言雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。
目前,经过国内外同行的不懈努力,应该说雷达目标识别技术已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,雷达目标识别技术已成功应用于星载或机载合成孔径雷达地面侦察、毫米波雷达精确制导等方面。
但是,雷达目标识别技术还远未形成完整的理论体系,现有的雷达目标识别系统在功能上都存在一定程度的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。
本文讨论了目前理论研究和应用比较成功的几类雷达目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了问题的可能解决思路。
2. 雷达目标识别技术的回顾雷达目标识别的研究始于20世纪50年代,早期雷达目标特征信号的研究工作主要是研究目标的有效散射截面积。
但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。
几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。
雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。
目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。
原则上,任何一个雷达目标识别系统均可模化为图1所示的基本结构。
雷达遥感图像处理方法与目标识别的基本原理与应用

雷达遥感图像处理方法与目标识别的基本原理与应用概述雷达遥感是一种利用雷达技术获取地球表面信息的遥感技术。
雷达遥感图像处理方法与目标识别是该领域中的关键技术,本文将介绍其基本原理与应用。
一、雷达遥感图像处理方法1. 预处理雷达遥感图像预处理是为了提高后续处理的可靠性和有效性。
包括噪声抑制、几何校正和辐射校正等。
噪声抑制通过滤波、去斑等算法降低雷达图像中的噪声干扰;几何校正将雷达图像与地面实际位置对应起来;辐射校正则是为了消除图像中的辐射差异。
2. 特征提取特征提取是雷达遥感图像处理中的关键一步,目的是将图像中的目标与背景区分开来。
常用的特征包括纹理特征、形状特征和频谱特征等。
纹理特征描述图像中的像素分布和灰度级变化;形状特征描述目标的形态和几何结构;频谱特征描述目标反射和散射特性。
3. 分割与分类分割将雷达图像分为不同的区域,使不同目标或背景出现在不同区域中。
常用的分割算法包括基于阈值、基于边缘、基于区域和基于特征等。
分类将图像中的区域分为不同的类别,以达到目标识别或目标检测的目的。
常用的分类算法包括最近邻分类器、支持向量机、决策树等。
二、目标识别的基本原理目标识别是雷达遥感图像处理的重点任务之一,其基本原理如下:1. 目标特征提取通过特征提取算法提取目标在雷达图像中的特征,包括目标的形状、纹理、尺寸和位置等信息。
这些特征可以用于后续的目标分类和识别。
2. 目标分类通过将目标与已知类别进行比较,将其归入某个类别中。
常用的分类算法包括最近邻分类器、支持向量机和人工神经网络等。
3. 目标检测与定位目标检测是指在雷达图像中找到目标的位置和尺寸。
常用的目标检测算法包括基于阈值、基于边缘和基于模板匹配等。
目标定位是指确定目标在地球表面的精确位置,一般通过地理坐标转换技术实现。
三、雷达遥感图像处理方法与目标识别的应用雷达遥感图像处理方法与目标识别技术在军事、农业、气象和城市规划等领域有广泛应用。
1. 军事雷达遥感图像处理与目标识别在军事领域中具有重要意义。
雷达信号处理中的目标识别与跟踪研究

雷达信号处理中的目标识别与跟踪研究雷达(Radar)是一种利用电磁波进行探测和测距的技术。
它通过发射脉冲电磁波并接收其反射信号,利用信号的时间延迟和频率特征来探测和跟踪周围的目标物体。
在雷达信号处理中,目标识别与跟踪是两个重要的研究方向,它们对于实现雷达的自主目标探测和跟踪具有重要作用。
目标识别是在雷达信号中确定目标的位置、速度和其他特征属性的过程。
它的主要任务是将雷达接收到的信号与预先建立的目标模型进行匹配,通过特征提取和目标比对算法来判断目标是否存在。
目标识别可以分为传统方法和深度学习方法两种。
传统的目标识别方法主要依靠数学模型和信号处理算法。
常见的方法包括卡尔曼滤波器、最小二乘估计以及基于特征提取的算法等。
这些方法通过对信号的频谱、时频分析和特征提取等技术手段,对目标进行匹配和判断。
虽然传统方法在一定程度上可以实现目标识别,但是在处理复杂场景和目标变化较大的情况下效果有限。
近年来,深度学习方法在目标识别领域取得了显著的成果。
深度学习利用神经网络模型对大量数据进行训练,实现对数据的高级特征提取和模式识别。
在雷达信号处理中,深度学习可以利用卷积神经网络(CNN)和循环神经网络(RNN)等网络结构,对雷达信号进行直接处理和分类。
这种端到端的学习方式能够更好地解决目标识别中的非线性、多样性和时变性等问题。
目标跟踪是在目标识别基础上,在雷达扫描过程中连续追踪目标运动状态的过程。
目标跟踪的主要任务是通过对雷达接收到的连续信号进行滤波和关联,预测目标的位置和运动轨迹,实现实时监测和跟踪。
目标跟踪可以分为基于滤波的方法和基于关联的方法两种。
基于滤波的目标跟踪方法主要应用卡尔曼滤波器和扩展卡尔曼滤波器等算法。
这些方法通过建立目标的状态空间模型,对目标位置和速度进行状态估计和预测。
通过更新观测信息,不断优化目标的运动轨迹。
这种方法简单且实时性较好,适用于快速目标跟踪。
基于关联的目标跟踪方法主要利用关联算法对连续的雷达信号进行处理。
基于多普勒雷达的目标识别与跟踪技术研究

基于多普勒雷达的目标识别与跟踪技术研究引言:多普勒雷达是一种能够实时监测和跟踪目标运动状态的重要工具。
在现代军事、民用航空和交通管理等领域,多普勒雷达的应用日益广泛。
通过利用多普勒效应,多普勒雷达可以通过测量目标返回的雷达信号频率变化,精确地计算目标的运动状态和速度,从而实现目标的识别和跟踪。
本文将重点研究基于多普勒雷达的目标识别与跟踪技术,探讨其原理、方法和应用。
一、多普勒雷达原理多普勒效应是物理学中的一个基本原理,它描述了当一个物体相对于观察者运动时,物体的频率会发生变化。
多普勒雷达利用这一原理来识别目标的运动状态。
多普勒雷达在发射脉冲信号后,通过接收目标返回的回波信号,测量信号频率的变化。
根据多普勒效应,当目标向雷达靠近时,回波信号频率会增大;当目标远离雷达时,回波信号频率会减小。
通过计算回波信号频率的变化,可以确定目标的运动速度和方向。
二、多普勒雷达目标识别技术1. 频谱分析法频谱分析法是一种基于频谱特征的目标识别技术。
通过分析回波信号的频谱特征,可以确定目标的速度。
当目标的速度超过雷达系统的测量范围时,回波信号的频谱将出现模糊,难以识别。
因此,频谱分析法在目标速度较小的情况下应用较为广泛。
2. 脉冲压缩技术脉冲压缩技术是一种通过增加脉冲信号的带宽来提高雷达分辨率的方法。
通过将发射的脉冲信号与接收到的回波信号进行相关运算,可以实现对目标的高分辨率识别。
脉冲压缩技术可以有效地识别高速运动目标。
3. 频域分析法频域分析法是一种基于频域特征的目标识别技术。
通过将回波信号转换到频域,可以获得目标的频谱特征。
不同目标由于尺寸、材料和运动状态的不同,其频域特征也会有所差异。
通过对比目标的频域特征和参考库中的特征,可以实现目标的识别和分类。
三、多普勒雷达目标跟踪技术1. 单目标跟踪技术单目标跟踪技术是一种基于目标运动特征的跟踪方法。
通过计算目标的速度和方向,可以预测目标的运动轨迹,并实时更新目标的位置信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达目标识别技术述评孙文峰(空军雷达学院重点实验室,湖北武汉430010)摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。
关键词:雷达目标识别;低分辨雷达Review on Radar Target RecognitionSUN Wen-feng(Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service.Key words: radar target recognition; low resolution radar1.引言雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。
1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。
目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。
目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。
但是,RTR还远未形成完整的理论体系,现有的RTR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。
本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。
2.雷达目标识别技术的回顾与展望雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。
其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。
一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。
就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。
在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。
原则上,任何一个RTR系统均可模化为图1所示的基本结构[3]。
它由目标识别预处理、特征信号提取、特征空间变换、模式分类器、样本学习等模块组成。
图中虚线部分的断开和启动,决定RTR系统是否具备自学习功能。
图1 雷达目标识别系统方框图2.1 雷达目标识别技术简介下面就从RTR系统的几个主要环节出发,对常用的RTR技术进行简要回顾。
(1)雷达目标特征信号雷达目标特征信号(RTS—Radar Target Signature)是雷达发射的电磁波与目标相互作用所产生的各种信息,它载于目标散射回波之上,是雷达识别目标的主要信息来源。
雷达目标特征信号包括雷达散射截面积(RCS—Radar Cross Section)及其统计参数、角闪烁误差(AGE—Angular Glint Error)及其统计参数、极化散射矩阵、散射中心分布、极点等。
但是,不是任何雷达都能获得所有目标特征信号的。
早期的雷达由于分辨力不够,只能将探测对象看作点目标,得到目标的距离、方位、速度等简单信息,难以满足目标识别的要求。
随着高分辨力雷达的问世,才有条件将探测对象当作扩展目标来研究,获得更多的雷达目标特征信号,使复杂电磁环境中的雷达目标识别成为可能。
雷达目标特征信号的研究手段有仿真实验、暗室测量和外场试验三种,它们各有其优缺点,应根据具体情况进行取舍。
仿真实验主要是将目标分解或利用某种近似理论,用计算机对目标的雷达回波进行模拟。
其优点是花费少,能产生任意姿态角的目标回波数据,但数据可信度不高;暗室测量主要是在微波(毫米波)暗室中对目标的缩比模型进行测量,花费较大,且由于有近场推远场等近似手段,数据可信度居中。
一般目标的方位角可以360度准确控制,但俯仰角受暗室空间的限制,转动范围不大;外场试验就是在简单的电磁环境中对目标实物进行测量,其数据可信度最高,但花费最大,且目标的姿态难以准确控制。
(2)雷达目标识别预处理雷达目标识别预处理的主要任务是尽量减小各种不确定因素对目标识别性能的影响,包括抑制噪声、杂波及其它有源和无源干扰,虚警鉴别与多目标分辨,成像识别时的目标(载体)运动补偿、斑点效应的抑制和目标分割,等等。
有人认为预处理还包括目标类型的粗分类[2]。
总之,预处理是雷达目标识别过程中的一个重要环节,其具体过程随雷达体制和应用背景而异。
(3)雷达目标特征抽取雷达目标特征抽取的任务就是从目标的雷达回波中抽取与目标属性直接相关的一个或多个特征,作为目标识别的信息来源。
雷达目标特征抽取的客观依据是目标与环境的雷达特性。
目标的雷达特性除了雷达目标特征信号以外,还包括雷达常规测量得到的目标的位置、运动参数等。
环境的雷达特性一般是指地(海)面背景杂波的电磁散射特性,这里不予讨论。
雷达目标特征抽取所用的方法与目标和雷达体制二者密切相关,特征抽取时必须分析所有感兴趣目标的雷达特性,比较它们之间的异同,提取区分某种目标与其它目标的最显著特征,用于目标识别。
图2为某金属球在不同波长雷达波照射下的RCS曲线,其横坐标r为目标有效散射尺寸与雷达发射信号波长λ的比值。
根据这一曲线可以将目标的雷达特性粗略划分为瑞利区、谐振区和光学区。
在瑞利区,目标的尺寸远小于雷达的工作波长λ,目标的RCS与r近似成线性关系,目标的散射特性可以用一个点目标模型来模拟;在谐振区,目标的有效尺寸与雷达的工作波长λ处于同一个数量级,此时目标产生谐振,其RCS随λ的变化起伏较大;在光学区,目标的有效尺寸远大于λ,其RCS随λ的减小而趋于恒定值。
一般来说,频率高端有利于激励出目标的精细结构信息,频率低端则图2 金属球的RCS与雷达工作波长的关系能携带目标的总体粗结构信息。
就RTR 本身而言,要求雷达发射信号最好能跨越目标的三个区,此时目标回波携带的信息量最为丰富,对目标识别最有利,这就是超宽带雷达用于目标识别的优势。
我军现役雷达装备,除少数米波雷达的波长与军事目标的尺寸可以比拟外,大多数雷达都工作在目标的光学区。
因此,下面重点就光学区雷达目标识别常用的特征抽取方法加以说明。
光学区雷达目标识别的重要理论基础是多散射中心理论,即光学区目标的雷达回波可以近似等效为目标物体上少数几个强散射中心回波的矢量和。
散射中心是客观存在的,它主要指目标的边缘(棱线)、曲率不连续点、尖端、镜面、腔体、行波及蠕动波等强散射点,它反映了目标的精密结构特征。
光学区的雷达目标识别方法可分为宽带高分辨和窄带低分辨两类。
宽带高分辨雷达目标识别方法主要有成像识别(即估计散射中心在目标物体上的分布)和散射中心历程识别(即散射中心随目标姿态的变化过程)两种。
宽带高分辨成像识别的大体情况和窄带低分辨目标识别的具体思路将在本文后面进行介绍。
RTR中的特征抽取至今仍未形成完整的理论体系,个别特征对于目标识别的作用难以量化。
因此,现阶段的RTR研究都是在现有目标识别理论的指导下,不断尝试各种特征抽取手段,最后根据所掌握数据的分类效果对目标特征抽取方法进行取舍。
但是,经过大量的研究可以肯定的一点是,用于目标识别的特征数目并非越多越好。
因为从同一目标回波中抽取的特征难免存在一定的相关性,而这种相关性往往是不易觉察的。
冗余特征不仅会使运算量增大,而且还可能引入不必要的噪声。
避免冗余特征的唯一途径是从目标电磁散射的机理出发,抽取与目标属性直接相关的特征,使每个特征都能得到合理的解释,但实际上很难做到这一点。
此外,在光学区,由于目标特征对姿态角比较敏感,为了使特征抽取能够得到目标所有姿态下的完整信息,训练数据应来自目标所有的姿态,理论上相邻姿态角之间的间隔应越小越好。
(4)特征空间变换特征空间变换是RTR中的另一个重要环节,其目的是应用各种优化的变换技术改善特征空间中原始特征的分布结构,压缩特征维数,去除冗余特征。
常用的特征空间变换技术有四种,即卡南-洛伊夫(K-L)变换、沃尔什(Walsh)变换、梅林(Mellin)变换和基于离散度(Fisher)准则的维数压缩方法。
前三种特征空间变换方法的主要思想是通过正交变换消除特征之间的相关性,达到去除冗余特征、减小计算量的目的。
其中梅林变换还具有尺度不变性的特点,在RTR识别中有助于部分消除特征矢量对目标姿态的敏感性。
基于离散度准则的维数压缩方法则是通过正交投影提高同类目标特征之间的聚合性和异类目标特征之间的可分离性,同时达到大幅度压缩特征矢量维数的目的。
(5)目标模式分类目标各种姿态的训练数据,经过特征抽取和特征空间变换后就形成了目标识别时资用的若干个模板。
实测数据经过同样的处理过程也会成为一个与模板矢量维数相同的矢量,将该矢量与所有目标类型的所有模板进行比较,最终确定目标属性,就是模式分类算法需要解决的问题。
常用的模式分类算法有统计模式识别算法、人工神经元网络(ANN)模式分类算法、基于专家系统的人工智能识别算法、模糊模式分类算法及其它复合分类算法。
其中统计模式识别算法最为稳定可靠;模糊模式识别算法智能化程度高,容错性较强,但隶属度函数的得到和修正往往需要人的经验,不便于RTR系统的自学习;基于专家系统的人工智能识别算法容错性不强;人工神经元网络模式分类算法有较强的容错性,较高的智能化水平,高度的并行处理和较强的自学习能力,可能是RTR系统设计模式分类器的最佳选择;模糊推理与神经网络复合等类似的复杂分类器还有待进一步研究。