海上风电水动力学关键技术问题
海上风电的发展现状及关键技术研究

海上风电的发展现状及关键技术研究作者:万宏罗文东谢国华来源:《科技资讯》2023年第24期摘要:风能是一种可再生的洁净能源,在新能源越发得到关注的情况下,风能利用也被各国先后提上日程。
以海上风电的发展现状为切入点,分析中外有关技术现状,在此基础上研究其关键技术,包括基础结构设计、建设区域选择、资源评估、重点参数计算以及辅助性技术等。
最后简析海上风电的技术难点,提出发展建议,为未来的风电建设提供参考。
关键词:海上风电基础结构通信活动风力资源中图分类号: TM75 文献标識码: A 文章编号: 1672-3791(2023)24-0070-03海上风力发电技术简称海上风电,是指以海上作业平台为基础、利用风力进行发电的综合性技术,其特点在于绿色无污染、可再生能力强。
与地面风力发电相比,海上风力发电不存在噪声、建设地形限制,这为其大规模运用提供了空间。
当前,各国都在广泛利用风力发电技术,我国东南沿海各地也在尝试利用风能进行发电,且收效良好[1]。
从可持续发展、科学发展的角度出发,加强洁净能源的利用已大势所趋,《中华人民共和国可再生能源法》《关于完善风力发电上网电价政策的通知》的颁行也为各地海上风电系统建设和发展提供了明确思路。
在此背景下,分析海上风电的发展现状及关键技术具有一定的积极意义。
1 海上风电的发展现状1.1 国外发展情况洁净能源的利用始于西方,包括海上风电技术。
当前,欧洲各国家和美国的海上风电技术具有一定的技术优势。
20 世纪80 年代,石油危机以及环境污染等因素对发达国家的影响日渐突出,这也使发达国家更重视新能源的研究。
到20 世纪90 年代,北欧和西欧一些工业强国开始大规模尝试海上风力发电,已知全球最早的海上风电机组由瑞典建设并投入使用,命名为Windworld,其容量为220 kW。
随后,荷兰和丹麦等国家先后组织海上风电研究,这一阶段的海上风电机组主要集中于浅水区域,不超过海岸线100 m[2]。
海上风电场及其关键技术发展现状与趋

海上风电场及其关键技术发展现状与趋摘要:随着社会不断向前发展,经济水平不断提高,用电需求的保证成为各国必须确保的基本问题。
然而,传统的火力发电所造成的煤炭资源大量开采以致储量不足和大气污染以及全球变暖等诸多问题亦接踵而至。
海上风电具有清洁、安全、可持续的特点,在世界各国能源战略的地位不断提升,为全球低碳经济发展提供了有力支撑,为人类应对气候变化提供了重要选项,具有广阔的发展前景。
基于此,本文就针对海上风电场关键技术的应用现状及发展趋势进行了分析。
关键词:海上风电场;关键技术;发展趋势中图分类号:TM75 文献标识码:A引言在可再生能源技术中,风力发电是最成熟、最具大规模开发条件和商业化发展前景的发电方式之一。
与陆上风电相比,由于海洋环境的特殊性,海上风电的开发仍然存在一些问题,如施工难度大、运营维护困难以及成本更高等。
但海上风电的优点也同样明显:海上风速通常较陆上风速更高,因而同等条件下海上风力发电机的发电量要高于陆上;海上很少有静风期,因而海上风电具有更高的利用小时数;与陆地复杂的地形相比,海上的环境简单,更均匀的风速对设备损坏更小;海上风电不需要占用土地资源,更适宜大规模开发;与陆上风电相比,海上风电一般更靠近负荷中心,可以减少输电损失,电力的消纳也有保障。
凭借这些优点,海上风力发电将成为未来风电技术研究的重心和前沿,并成为未来风电产业发展的主要方向。
1 海上风电场特点⑴风电机组数量多。
尽管从现有海上风电场的角度来看,风力涡轮机的单位容量继续增加,但大多数海上风电场的单位容量都集中在(2-6)MW范围内。
结果,大型海上风电场通常设置有十个甚至十几个单元。
⑵风电场内部电气线路长。
由于风车和跟随风车的叶片长度的限制与影响,风车之间的距离通常为500-600m。
此外,海上风电场通常离海的距离超过10km,而拟议的海上风电场甚至超过30km。
因此,大型风力发电场需要在几十公里内甚至上百公里内的电缆。
海上风力发电及其关键技术分析

海上风力发电及其关键技术分析摘要:随着我国社会的不断发展和能源的日益短缺,低碳环保的理念已经引起人们的关注,并被应用到电力企业中,企业越来越重视清洁新能源的开发利用。
本文探讨了海上风力发电及其关键技术。
关键词:海上;风力发电;关键技术引言能量转换技术是现代人类社会生产和生活中最关键的技术之一,而发电技术是影响最深远的技术之一。
因此,利用自然能源最有效的方式是先将这些能源转化为电能,向个人或企业用户提供电能,然后根据具体使用需要将其转化为动能、热能、光能等形式。
1 海上风电的概述虽然一些学者在20世纪70年代提出了使用海上风力发电的假设,但直到上世纪末才真正开始全面的科学探索和具体应用。
这是因为与陆上风力发电技术的研究相比,可以看出海上风力发电面临的繁琐的施工地质条件缺乏成熟的参考工程技术作为基础,对于海水的波浪冲击和风向变化,还不能形成一套实用的计算标准和分析标准。
此外,由于受工程环境和运维技术需要等诸多因素的影响,海上风电场建设缺乏丰富的经验作为参考依据,导致海上风电场建设的规模和回报率存在一定的安全隐患,因此,海上风力发电的商业推广才真正开始于近十年来相关技术的不断成熟。
2 海上风力发电的优势海风比陆风有很大的优势。
首先,当风吹过陆地时,风的大小和方向会发生变化,因为陆地非常粗糙,有许多障碍物。
但由于海面相对平坦,摩擦力小,海洋风速小,风向相对稳定。
其次,由于海风比陆风更稳定、更强,因此无需建造该装置。
塔太高,这降低了风力涡轮机的成本。
据统计,距海岸线10公里的海域风速通常比沿海地区高20%左右,发电量可增加70%。
因此,海上风力发电不仅成本低,而且产量高。
最后,海面上的气流是稳定的,海面是复杂的,海上发电机不需要承受太大的工作强度。
陆上使用寿命为20年,海上发电机组的使用寿命可延长至25至30年。
此外,海上风力发电不受噪音、电磁、鸟类等因素的影响。
3 海上风电与陆上风电的对比及其技术难点3.1 海上风电与陆上风电的对比(1)随着高度的变化,近海风速呈下降趋势。
海上风电场及其关键技术发展现状分析

海上风电场及其关键技术发展现状分析摘要:风力发电属于近些年来世界各国普遍较为关注的一种可再生能源开发方案,这一技术发展速度较快,已经得到了全面落实与开展,而海上风力发电由于干扰较小,并且风力发电量较大,因此广受欢迎与重视。
江苏省具有较长的海岸线,具有良好的风力发电条件。
本文主要针对海上风力发电关键技术进行分析,希望可以起到参考的作用。
关键词:海上;风力发电;关键技术随着现如今非再生能源逐渐稀少,能源问题已经成为人们关注的重点。
能源危机的出现,意味着人们必须要寻找更加合理的能源获取方式,而风力就属于一项较为关键的可再生能源。
通过海上风力发电,可以有效地完成供电,而发展这一类的新能源是我国未来走向可持续化发展的关键途径。
因此,必须要针对海上风力发电技术进行分析讨论,积极优化技术体系,提升工作质量。
一、海上风力发电建设的主要趋势(一)技术整体发展速度较快风力发电不需要消耗非再生能源,同时也不会污染环境,属于一种发展潜力巨大的清洁能源技术,不仅拥有环保效益,同时也具有一定的社会效应。
随着风力发电技术的不断优化与改进,现如今风力发电生产成本也开始逐渐降低,我国各地都开始建设风力发电场。
由于海上风力资源更加丰富,并且风速也更加稳定,因此适合在海上建设大功率风力发电机组,不仅节约用地,同时对环境造成的影响比较小,这意味着现如今我国风力发电技术不断提升与改进。
以江苏省为例,现如今我国江苏省建设了江苏如东海上风力发电场、江苏东台海上风力发电场,都属于主要的海上风力发电场所[1]。
江苏开发风力发电资源具有巨大的优势和好处,可以缓解江苏省一次能源不足、用电荒等问题,更有效的促进地方经济走向发展与改革,因此可以说这一技术属于建设生态大省的一项关键要求。
(二)单机容量提升现如今大型风力发电机组一般都会选择水平轴风力发电设备,这一设备包括风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件。
大型风力发电机组的单机容量越大,意味着发电能力越强,而对于技术的需求也就越高。
海上风电智能运维关键技术与发展建议

海上风电智能运维关键技术与发展建议摘要:海上风能总规模为陆上风能的2~3倍,且风质量更加稳定。
英国、法国、德国、荷兰等欧洲风电强国均出台10GW量级海上风电规划,美国计划2030年完成30GW海上装机容量,韩国、日本、越南等亚洲国家预计2030年完成25GW海上装机容量,海上风电已成为业界全新的“蓝海战场”。
在海上风电蓬勃发展之际,滞后的运维技术成为其进一步发展的隐忧。
传统风电运维是平面化、后置化的,只能在单一或少量参数背景下探讨风机状态,运维过程中依赖专业人员的主观判断,各流程相对孤立,难以保持信息的实时流通。
关键词:海上风电;智能运维;关键技术;发展建议引言风能是一种清洁的可再生能源,其分布面广,经济、环保价值高,是目前最有发展前景的新型能源之一,而风力发电技术在近年来也有了巨大的发展,例如由恒速恒频控制发展为变速恒频控制、由定桨距控制发展为变桨距控制、由齿轮箱驱动发展为直接驱动等,针对风力发电机组的驱动控制已经成为新能源发电研究当中的热点。
目前,风力发电机组正朝着高控制性能的方向发展,而优越的控制性能需要更加灵活、智能的控制方法,研究风力发电机组控制方法对整个风电机组安全、可靠、高效的运行尤为重要。
1、风力发电技术现状分析与常规电能一样,风能并没有变成绝对单独和重要的资源。
因为风能取之无穷,用之不懈。
它能够无穷期地为人们提供服务。
而且风能的运用很简洁容易。
因为我们都明白,当大多数资源被人类利用时,必须经过一个重复的步骤。
而且,在应用中所需的机械设备和仪器的构造往往更繁杂,精密而且贵重。
所以,风能的运用也非常简单。
它能够随时运用,而不会影响周围环境[1]。
由于风能具备足够的动力。
实际应用经历证明,如果速度超过3m/s,风力发电就可能启动。
而众所周知,风能开发流程就是依靠风力涡轮机将风能转化为机械能,进而带动发电机发电。
在发电过程中,它一般是由功率单元、调频器、调压器和一些有关调节单位所构成。
海上风电发展存在的问题及对策建议

海上风电发展存在的问题及对策建议下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!海上风电发展存在的问题及对策建议问题分析海上风电作为清洁能源的重要组成部分,近年来发展迅猛,但在发展过程中也面临着诸多问题:1. 高成本:海上风电建设成本高,包括基建费用、运维成本等,使得投资回报周期较长。
海上风电阶段经验总结

海上风电阶段经验总结近年来,随着国家对可再生能源的支持力度逐渐加大,海上风电作为一种新兴的清洁能源形式也得到了越来越广泛的应用。
海上风电的优点明显,比如风力更稳定、安装容量更大等,但同时又存在着很多挑战和难点。
在发展海上风电的过程中,我们积累了不少经验,本文就此做一些总结。
一、技术难点悬浮系统:海上风电与陆上风电相比,唯一有着很大区别的是其悬浮系统。
由于风机是安装在海上,如何保证风机稳定悬浮是一个亟待解决的问题。
海上风电的悬浮系统一般有以下几种:1. 降低压力式:通过在塔底部形成低压区,使得风机稳定悬浮。
这种方案简单,但是不太稳定;2. 浮动式:将风机固定在浮标上,这种方案稳定性不错,但是制造和维护成本比较高;3. 杆式:通过固定在某种杆子上,如斜拉杆、悬链杆等,这种方案稳定性挺好,但是适用范围比较有限。
海上风电悬浮系统方案的选择,需要根据具体的海况、安装环境和成本等综合考虑。
电力输送:由于海上风电平台距离陆地远,需要建设海底电缆输电系统,这也是一个技术难点。
在电缆敷设过程中,需要考虑海底地形、电缆保护、电缆连接等问题。
同时,海上风电平台上生产的电力还需要通过海底电缆输送到陆地上,这个过程中还需要考虑输电容量、稳定性等方面的问题。
二、管理难点设备维护:海上风电设备的维护工作是一个颇具挑战的工作。
一方面,海上环境复杂,由于海上风电设备所处的环境恶劣,从而对设备的运维和维护产生了较大困难。
另一方面,海上风电设备的维护成本普遍比陆上风电设备高,不仅维护周期短,而且维修的成本高,对管理者提出了更高的要求。
人员训练:海上风电是一个非常危险的行业,很多工作都是在危险的高空和海面上进行,因此对相关工作人员的培训十分重要。
需要培养专业的工程师和技术人员,提高技能和安全意识,以确保在海上风电建设和运营过程中的安全和可靠性。
三、未来展望海上风电是一种未来可持续发展的能源形式,但是,在其发展过程中还有很多需要进一步解决的问题。
海上风力发电及其技术发展分析

海上风力发电及其技术发展分析摘要:传统火力发电导致煤炭资源的大规模开发,造成了能源储备短缺、空气污染、气候变化等环境问题。
我国在“十四五”期间明确提出了要大力提高风电规模和有序推进海上风电建设,推行并实现“双碳”目标,关注和发展新型分布式清洁能源并使之纳入配电网,已成为我国电力行业未来发展和关注的焦点问题。
基于此,本文以海上风力发电为主要研究对象,分析了其行业发展现状,探讨了海上风力发电技术面临的问题及发展方向,以供参考。
关键词:海上风电;行业发展;发电技术;风力发电近年来,随着社会经济的不断发展以及人们环保意识的增强,传统化石能源日益枯竭,寻找新能源迫在眉睫。
而作为一种可再生且无污染的绿色能源——清洁能源受到了各国政府的高度重视。
在众多的清洁能源中,风能具有巨大的发展潜力。
由于我国海上风电储量丰富,且具备运行高效、输电距离短、便于就地消纳、节约土地资源、适合大规模发展等特点。
因此,海上风力发电必将是我国发展可再生能源的必然之选。
一、海上风力发电的优势我国拥有1.8万公里大陆海岸线和300万平方公里以上的可利用海域,是一个海上风能资源十分丰富的大国。
随着我国经济的发展和人民生活水平的提高,对能源结构提出了更高要求。
目前,中国已成为世界第二大风力发电国,根据中国气象局风能和太阳能资源评估中心近期估算,中国陆海风电潜在开发规模约为2亿千瓦。
与陆上风电相比,海上风电主要有以下优点:第一,风力更稳定,电网友好性强。
海上风速大且出力波动小,每年使用小时更长,使得机组发电量平稳,单机电能输出更大,使用寿命更长。
第二,场地成本低,适合规模化开发。
海上风电场大多建在我国东南部沿海潮间带地区或沿岸滩涂、近海海域上,此处场地广且成本低,具有容纳更大型化风机机组、适合大规模开发的优点。
第三,风速高,发电量高。
海上风速高于陆地风速的约20%,在相同发电容量下,海上风机年发电量可高于陆地70%,且海上风电单机容量、同区域扫风面积及风能利用率更大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海风水动力学关键技术问题发布时间:2013-03-07能源问题是我国面临的迫切的战略问题。
我们必须从国际竞争的紧迫性、民族生存的严峻性、国家战略的全局性、经济发展的持续性、技术层面的挑战性、学术层面的前沿性的高度来认识风电开发的重要性。
风电场建设及海洋工程装备研发涉及的学科面和技术领域非常广泛。
在相关工程装备共性水动力学关键技术研究中,文中论述所涉及的领域只是整个开发技术中的一小部分,然而是海上风能开发利用的前提,是不可忽视的关键技术之一,符合国家中长期科学和技术发展规划。
1、落实科学发展观,提升海上风电场和海洋工程装备设计研发能力,推进我国海洋资源综合开发的全面发展当前,全球所消耗的油气中约有30%以上来自海底油田,未来人们对海洋油气资源的依赖程度越来越高。
我国的能源形势总体来说十分严峻, 陆地和近海的石油资源有限,石油战略储备不足。
尽管我国南海(主要在深海)有丰富的油气和碳氢水化物资源。
石油地质储量约为230~300 亿t,但开发的难度相当大。
目前我国油气资源开发仍主要集中在500m 水深以下的近海海域,尚缺乏有效的深海油气开发能力。
因此,优化能源结构,提高能源效率,开发可再生能源,已成为我国贯彻落实科学发展观、实施能源可持续发展战略的重要内容。
风能作为一种清洁的可再生能源,具有相当广阔的应用前景。
经过几十年的研发,陆地风能开发已经具备工业价值。
近年来,海上风能开发也取得了令人瞩目的进展。
海上风电有其独特的优势。
海上风速、风向相对稳定,风切变和湍流度较小,总体风况优于陆地。
将风电场建在海上,可利用海上得天独厚的广阔空间和风力资源,实现规模化效益,降低风力发电的成本。
据估计,在年均风速9.5m/s 区域的装机容量为10 万kW 的海上风电场每年能生产3.6 亿kWh的电力。
随着科技进步,可以预期海上风电产能将进一步增加。
海上风电有其特殊的技术难点。
海上风能开发面临的环境条件十分复杂,我们必须要考虑风、浪、流等主要气象、水文要素对风电机设施的作用和载荷,对浮基风电机组还必须考虑其运动特性和定位要求。
海床地质构造对固基风电机组和海底电缆网络铺设是十分重要的,包括基床冲刷、淘空等长期效应。
冰区海域还应充分考虑海冰的因素。
海上施工周期长、工艺复杂,对作业船舶的载荷和运动特性控制要求高。
系统长期稳定运行中维护保养带来一系列的技术问题。
目前海上风电场大都位于水深20m 左右的近海海域,采用固基的着底式风电机塔。
今后将逐步向水深100m 甚至几百米的海域发展,浮基海上风电场将是一种经济性和实用性兼顾的重要发展方向。
海上风电设备研制和风电场的建设是海洋工程装备设计研发的一个重要领域,或是海洋工程装备的重要拓展领域。
从保证海上风电塔(固基或浮基)、锚碇系统有效运行的观点而言,除了其本身的特殊要求外,与传统的海洋工程装备(如各类海洋石油平台)有相当多的共性关键技术问题。
本文结合我们近年来在海洋资源开发相关的水动力学方面开展的研究工作和对国内外研究进展的认识,结合海上风电设备研制和风电场的建设,就海洋工程装备研发中水动力学关键技术及其可能的发展方向作一简要的评述,以期引起有关方面对海洋工程装备研发中的关键技术研究的重视。
2、非线性水动力学关键技术问题研究是海洋资源综合开发中重要的共性研究领域海上风电设施、海洋平台必须具备进入和驻定于特定海域、在恶劣的海洋环境下长期有效地稳定作业和运行的能力。
水动力学问题的研究是近海、深海和超深海资源开发中的一个重要的前提性的共性关键技术领域。
在海洋环境条件中,最重要的当首推海洋波浪,即水波;风、流等主要水文要素也须充分考虑。
归纳起来,大致上有下列四大类问题:2.1 非线性水波演化及其与其它环境条件的耦合影响水波动力学研究的是以水波为中心的海洋环境条件本身的机理、理论与数值分析手段和实验模拟技术。
理论上讲,水波动力学中边界条件和物理量间的关系是非线性的主要来源;尤其在自由面上,不仅自由面条件是非线性的,而且,满足条件的自由面边界形状也是事先未知的。
“一波才动万波随”,可以毫不夸张地说,论研究的难度和表现的丰富多彩,水波动力学未必亚于湍流。
在迄今为止的海洋工程实践中,应用最为普遍和直接的还是基于永形波的波浪理论。
大多数确定性的深水波理论本质上是通过对速度势或流函数(仅对二维平面波)求解建立起来的,其主要差别在于如何处理自由面条件和处理中引进的基本假设。
风、浪、流等环境条件之间的非线性耦合导致的水波弱非线性演化,包括水波调制、边带不稳定性,一直是水波动力学的传统研究领域。
近年来,CFD在自由面追踪方面出现了很多技术,如VOF法、Level Set方法、SPH方法等,为水波非线性演化的研究注入了新的活力。
2.2 海洋环境条件(风、浪、流、内波)作用下海上风电场结构物运动响应及受力分析依水深不同,海上风电机组的基础大致上可分为固基和浮基两类。
固基有重力式结构和支柱式结构两种。
浮基则由浮体及锚泊系统构成。
从力学或结构特性上看,它与相应的海洋石油平台是类似的。
准确地预报结构物在海洋环境条件(风、浪、流、内波)联合作用下的运动响应及受力分析研究则可为海上风电设施等海洋资源开发装备设计提供直接的指导,具有重要的工程实际意义。
与波浪特征长度相比,除SPAR 平台和支柱式固基外,大部分海洋平台都可归类为大尺度海洋结构物。
与小尺度管柱(缆索、立管)情况不同,大尺度海洋结构物的存在和运动对波流场的影响(即绕射和辐射)不可忽略。
然而,一般而言,除局部区域外,流体的粘性影响倒是可以略去的。
在海洋工程崛起之际,水波与大物体相互作用的势流理论和计算方法在船舶工程中已经有了成功的发展,包括频域线性理论范畴中的切片理论(或各种细长体理论)、有速或零速三维源汇分布理论等。
1990 年代,在弱非线性假定下,精确到波陡的二阶量,频域理论已经拓展来研究船舶和海洋结构物所受的二阶定常力和二阶低频慢漂力,应该说,这方面的理论问题当时已经基本上得到解决;近年来,由于浮式深海平台系统的自振频率越来越低,低频慢漂力引起系统共振的危险性也越来越大,二阶低频慢漂力的准确估计又重新受到关注。
频域分析法通常只适用于稳态问题;对瞬态或强非线性问题,必须发展直接时域分析法。
时域分析法有很大的自由度,原则上可处理全非线性和物体任意运动的问题。
按问题的性质和要求,时域法可以有不同层次的处理方法,如时域线性理论、物体大幅度运动理论和全非线性理论等等。
这些方法目前正在发展之中。
随着计算机速度提高和容量的不断扩充,用CFD技术直接求解粘性流场中水波与结构物的相互作用也日益受到重视,特别在甲板上浪、船首砰击、液舱晃荡等强非线性现象的模拟上已经取得了可喜的进展,但离工程要求的实用化和反应的快速化仍然有很大的距离。
在深海域,密度分层海洋可以在外界因素的诱导下产生内波。
工程界已经有内波造成海上直接经济损失的报道。
内波水动力学问题无论是机理上还是分析手段上,人们的认识还远不够充分,都有待于深入的研究。
当今,非线性水波动力学理论研究及其在工程中的应用已经成为国内外学术界和工程界极为重视的前沿研究领域之一。
可以预料,在未来的若干年中,以直接时域法和CFD 技术研究深海结构物在风、浪、流和内波作用下的受力和运动特性,包括极端海况下海洋结构物运动响应预报、强非线性现象、大型海洋结构物水弹性分析,将会受到国际学术界和工程界的极大重视。
2.3 海上风电场建设中水动力学关键技术问题(1) 海上施工作业的水动力学关键技术海洋石油平台海上施工建造技术对海上风电场建设可提供借鉴。
按风电机组平台形式不同,要寻求最为可靠、方便、安全和经济的施工方案。
按平台构型,海上施工除传统的吊装工艺外,大多采用半潜式安装(Semi-Submersible Installation)与漂浮式安装(Float-Over Installation)技术。
半潜式安装:基座定位安置后,用半潜驳将上层设施一次浮运就位于基座,然后半潜驳撤离安装位。
漂浮式安装:上层设施直接浮式拖运,通过压载调整浮态,使之就位于基座。
海上风电场施工周期长,定位要求高,工艺复杂,对作业船舶的载荷和运动特性控制要求高(系统长期稳定运行中维护保养有类似的技术问题)。
这中间的关键技术问题大致有:风浪中施工船舶的定位、风浪中作业时施工船舶的运动特性与控制、风浪中多体的水动力耦合和干扰、定位缆索受力的确定、特殊作业工况(如下水、扶正、吊装、浮式就位等)下的流体动力特性与工艺流程确定等。
(2) 海上风电设施部件或整体海上驳运和拖运的水动力学关键技术无论是固基还是浮基海上风电设施,都有海上运输问题。
大致有两种选择:①部件驳运或拖运至设置现场,就位组装;②设施整体(或基础结构整体)驳运或拖运至设置现场,就位组装。
海上驳运和拖运都有很多水动力学关键技术需要解决,包括拖船选型与拖运时拖船布置、多体的水动力耦合和干扰、风浪中的稳性与操纵性、风浪中拖船(队)与拖体的运动特性与控制、风浪中拖体的航行稳定性、拖缆受力的确定、承载物体受力与固定、甲板上浪及其冲击载荷等重要方面。
(3) 海上施工船舶的设计建造离岸风机的海上设置和安装远比陆地困难。
浮吊船的起吊功率和提升高度应具备提升风机主要部件(塔架、机舱、叶轮等)的能力,此外还必须保证在限定的海况下起吊和安装作业时有足够的稳性和抗风浪能力,运动性能符合作业要求。
现有的浮吊船大多不是特意为海上风电场的风机安装而设计制造的,外海作业有一定的难度。
对于大型海上风电场,为控制建设周期和成本,设计和建造专用安装船来完成建设任务是合适的,对风电场的长期运行中的维护也能提供必要的手段。
例如,某一自升式安裝船,集运输、起重、安裝功能于一体。
4 组吊舱推进器,最大航速10.5kn;6 根液压桩腿可將船体提升20 多米作为海上工作平台;甲板面可裝载100 只集裝箱和风力发电设备;主起重机额定负荷300t,副起重机50t。
(4) 新型海上风机的研发的关键技术除了传统的水平轴风机外,近期一种可能的选择是所谓的垂直轴风机。
无论是哪种构型,我们追求的应该是高效率风机的整体构型,有最佳叶片、翼型的流体动力学设计和回转过程中叶片方向的最佳控制。
(5) 超大型浮式海洋结构物作为海上风电场浮基的相关关键技术超大型浮式海洋结构以模块连接构成,总尺度以km 计(例如:3000m×1500m)。
它可以独立设置,也可以以岛屿为依托设置。
用超大型浮式海洋结构可设置变电站与控制设施、技术管理中心、维修中心、航空港、船队基地、生活支撑设施等相关设施和基地。
甚至可建设旅游设施。
其中的关键技术问题有:模块与连接装置设计、超大型浮式海洋结构风浪中的受力与运动特性(多体的水动力耦合和干扰)、超大型浮式海洋结构的水弹性问题、系泊系统构型与受力特性、海上拼装工艺与拼装过程中的受力与运动特性、防波堤设置及其本身的流体动力问题等。