微生物分子生态学研究方法综述
微生物生态学研究中的分子生物学方法

微生物生态学研究中的分子生物学方法微生物是地球上最为丰富、多样且广泛分布的生物,有着重要的生态功能。
在微生物生态学研究中,许多问题需要考虑微生物的多样性、生态学分布及其作用和适应性。
传统的微生物学研究通常依赖于纯培养和形态学特征进行分类和鉴定,但存在着很大的缺陷,许多微生物无法进行纯培养,而且在分布及功能上存在巨大的多样性和复杂性。
因此,利用分子生物学方法,在微生物生态学研究中推进更为深入的探索和解决问题尤为重要。
分子生物学方法已经成为微生物学研究中的常规手段。
其中,分子生态学作为微生物生态学研究的一个重要分支,是利用微生物群落的DNA序列来描述微生物的多样性和结构、分布模式、演化规律以及生态功能。
分子生态学是利用分子生物学技术,以微生物群落DNA为物质基础,分析微生物群落的结构及其变化和生态功能的研究领域。
常见的分子生态学方法有PCR-DGGE、PCR-SSCP、PCR-RFLP 等。
PCR-DGGE技术是一种评价微生物群落构成的分子生物学方法,也是分子生态学研究中最常采用的一种方法。
此技术通过扩增轮廓分析电泳,能够在不进行序列测定的情况下,迅速知道样品中微生物群落的构成情况。
DGGE是一种革命性的电泳技术,可以使得同样长度、不同序列的DNA分子发生不同程度的变性而达到不同的电泳迁移率,因此,能够从PCR扩增产物中分离出不同种群、不同数量的DNA序列,可用于分析种群的构成和动态变化。
PCR-SSCP技术是用来研究微生物群落中小亚基的分子生物学方法。
它可以通过分析不同峰的数量及大小,评估群落的多样性和结构。
其原理是在一定条件下,所有长度相同的PCR产物的突变体将由于核酸热变性、缺陷组态和电泳带电性质等不同而形成不同的电泳迁移率,从而显示在聚丙烯酰胺凝胶上。
PCR-RFLP技术是将PCR扩增的外显子或内含子序列用限制酶切法切开后,根据限制酶切后DNA片段的数目、大小、分布等特征,依据电泳迁移率或其他方式进行分离鉴定。
微生物分子生态学及其应用

微生物分子生态学及其应用随着科技的不断进步和生物学研究的深入,微生物分子生态学逐渐成为了一个热门的研究领域。
微生物分子生态学是指通过分析微生物的分子组成和动态变化,揭示微生物间的相互作用及其与环境的关联,探索微生物生态系统的演变和调控机制的学科。
相较于传统的微生物学研究,微生物分子生态学能够更准确、更全面地研究微生物与环境间的关联,使得微生物的研究更具针对性。
微生物分子生态学通过分析微生物的分子生物学信息,可以深入探究微生物的生理、代谢、生态等各个方面,并进一步揭示微生物的生境分布、演化和生态功能。
这不仅有助于更深入地理解微生物的生态系统,也为微生物的应用研究提供了有力的支撑。
1. 微生物分子生态学的研究方法微生物分子生态学一般通过以下方法进行研究:(1)高通量测序技术高通量测序技术大大提高了微生物分子生态学研究的效率和准确度,尤其在微生物群落结构和功能的研究中应用广泛。
基于高通量测序技术,不仅能够分析微生物群落的构成,还可以揭示微生物间的相互作用及其与环境的关联。
(2)荧光原位杂交技术荧光原位杂交技术常用于微生物群落结构和空间分布的研究。
该技术通过使用荧光标记引物,能够将特定细菌、真菌或病毒等微生物直接标记并固定在试样中,观察其在不同空间中的分布情况,进而分析微生物间的相互作用。
(3)质谱分析技术质谱分析技术可以分析微生物的代谢产物,并结合高通量测序技术或荧光原位杂交技术等技术,深入探究微生物的代谢途径和功能。
2. 微生物分子生态学在环境保护中的应用微生物在环境保护中有着重要的作用,而微生物分子生态学则为环境保护提供了更加有效的手段。
(1)土壤污染修复土壤污染是一个长期而严重的问题,微生物可以分解或转化污染物,促进土壤的简易修复。
通过微生物分子生态学的研究,不仅可以深入了解微生物的生理代谢机制,还能针对特定污染物的生态功能和代谢途径,实现更加精准的修复。
(2)环境监测微生物群落是环境中的重要组成部分,通过对微生物群落的组成、分布和转化过程的研究,可以更加精准地评估环境状况。
氨氧化菌的分子生物学和生态学研究

氨氧化菌的分子生物学和生态学研究
氨氧化菌是一类广泛存在于自然界中的微生物,在氮循环过程中扮演着重要的
角色。
氨氧化菌可以将氨氮转化为亚硝酸盐,再由亚硝酸盐还原菌将其转化为硝酸盐,从而完成氮循环过程,是自然界唯一可以催化氨氧化反应的生物体。
氨氧化菌的分子生物学研究,从其基因组和代谢途径的研究入手,探索氨氧化
菌的异质性和多样性。
研究表明,在氨氧化菌的基因组中,氨氧化相关基因一般存在于一条长链的DNA片段中,这些基因具有不同的起始密码子,因此存在着一定
的异质性。
这些基因的编码蛋白质则构成了氨氧化酶的复合物,对氨氧化反应的催化起到了重要的作用。
同时,在不同的氮环境下,氨氧化菌可以表现出不同的菌种群落构成,在不同的地理环境中,不同的氨氧化菌的菌群落受到不同的影响。
氨氧化菌的生态学研究,主要是对其生境、营养环境、环境因素和人类活动的
影响进行深入分析的过程。
研究主要联合利用现代技术手段,如质谱、高通量测序、微型生物学技术等,探究氨氧化菌的多样性和分布规律,在全球范围内进行了广泛的研究。
例如,在饲养废水处理中,氨氧化菌可以通过氨化和硝化反应,有效地降低废水中氨和亚硝酸盐的含量。
因此,氨氧化菌的分子生物学和生态学领域的研究具有重要的科学意义和实践
价值。
通过对氨氧化菌生态学和分子生物学的系统研究,可以更好地理解自然界中氮循环的先后关系,引导环境保护和生态修复工程的开展以及解决生产生活环节中产生的氮污染问题,同时还能提高氮肥利用率和作物减肥增产效果。
微生物多样性的分子生态学研究

微生物多样性的分子生态学研究微生物多样性是指各种形态、类型、数量和功能各异的微生物在自然环境中存在的程度和组成,包括细菌、真菌、病毒等。
微生物是地球上存在时间最长,数量最多,功能最丰富的物种。
微生物多样性是自然生态系统的重要组成部分,对于维持自然生态平衡、促进农业、医药、环保等方面都具有重要的价值。
因此,微生物多样性的研究一直是生态学和环境科学中的重要研究方向。
分子生态学是生态学的一个分支学科,主要是利用分子生物学技术解决生态学问题的一种方法。
分子生态学的关键是将生物多样性和生态系统的结构、功能及其相互作用联系起来,通过研究DNA、RNA、蛋白质和代谢物等分子水平的细节,从而更加全面地了解生态系统的复杂性。
微生物多样性的研究需要从分子生态学的角度进行,利用现代分子生物学技术,对细菌、真菌、病毒等微生物进行分离、纯化、鉴定以及对其功能进行分析。
在微生物多样性的研究中,分子生态学扮演了重要的角色。
在过去,人们从微生物的外在形态、结构、生长特性等宏观特征入手,来进行微生物多样性的研究。
但是,由于微生物的数量巨大,形态、特征、环境适应能力高度多样,因此无法用传统的分类学方法来进行鉴定和分类。
而分子生态学的出现,则提供了新的思路和技术手段。
目前,分子生态学在微生物多样性研究中的应用主要有以下几个方面。
一、16S rRNA测序16S rRNA是所有细菌和古菌都具有的基因,与其它部位不同的是,16S rRNA序列具有相对保守和相对变异的两个区域。
利用PCR方法扩增16S rRNA序列,根据序列分析可以区分菌种、菌株、类系等信息。
16S rRNA测序是微生物分类学中一种现代的化学发展出来的技术,通过在不同生态系统中分离出的微生物,提取出它们的16S rRNA序列,利用生物信息学分析手段对其进行分类、鉴定和多样性研究。
通过16S rRNA测序,可以系统地研究微生物的多样性,探究微生物在不同环境中的分布和变化规律,探明微生物群落的组成和结构,揭示不同微生物之间的生态关系。
固碳微生物分子生态学研究

固碳微生物分子生态学研究一、本文概述随着全球气候变暖问题日益严重,碳减排和碳固定成为了全球关注的热点问题。
其中,生物固碳作为一种重要的碳减排手段,受到了广泛的关注和研究。
固碳微生物作为生物固碳的主要执行者,其在碳循环中的作用不可忽视。
本文旨在通过分子生物学和生态学的研究手段,深入探讨固碳微生物的分子生态学特性,揭示其在碳固定过程中的机理和调控机制,以期为提高固碳效率和促进生态平衡提供理论支持和实践指导。
本文首先将对固碳微生物的基本概念、分类及生态分布进行概述,阐述其在碳循环中的重要地位。
接着,重点介绍固碳微生物的分子生态学研究方法,包括基因组学、转录组学、蛋白质组学和代谢组学等,以及这些技术在固碳微生物研究中的应用和进展。
在此基础上,本文将深入探讨固碳微生物的固碳机制、环境适应性及其与宿主植物的互作关系,分析影响固碳效率的关键因素。
本文将总结固碳微生物分子生态学研究的挑战与展望,为未来的研究提供方向和建议。
通过本文的阐述,我们期望能够增进对固碳微生物分子生态学的认识和理解,为推动碳减排和生态平衡做出积极的贡献。
二、固碳微生物的多样性与分类固碳微生物的多样性是生物多样性的重要组成部分,它们在自然界中的分布广泛,从土壤、水体到大气,甚至是极端环境中都能找到它们的踪迹。
这些微生物利用各种各式的固碳途径,如卡尔文循环、还原性三羧酸循环等,将大气中的二氧化碳转化为有机物质,从而在全球碳循环中发挥着至关重要的作用。
根据固碳途径和生理特性的不同,固碳微生物可分为自养微生物和异养微生物两大类。
自养微生物能够利用无机物质(如水、二氧化碳和无机盐)进行光合作用或化能合成作用,合成自身所需的有机物质。
其中,光合自养微生物如蓝藻和绿藻,能够利用光能和无机物质进行光合作用,生成有机物质和氧气;化能自养微生物则如硫细菌、铁细菌等,它们通过氧化无机物质(如硫化物、亚铁离子等)获得能量,进而固定二氧化碳。
而异养微生物则不能自己合成所需的有机物质,它们必须从外界环境中获取有机物质作为碳源和能源。
微生物分子生态学的研究进展

微生物分子生态学的研究进展随着科技的不断发展,微生物分子生态学这门学科开始逐渐受到关注。
微生物是地球上存在最早的生物,其在许多方面都对人类和地球生态系统的生命健康产生着巨大的影响。
研究微生物分子生态学不仅仅可以帮助我们更好地了解微生物的生态环境和活动特征,还可以探究微生物与环境因素之间的相互关系以及它们对自然界和人类生命健康的作用,对微生物和它们与其他生物的相互作用进行全面深入的研究。
1. 微生物分子生态学的研究内容及意义微生物分子生态学研究的内容涵盖了微生物群落的构成、种类、功能、相互关系、多样性等方面。
通过对微生物宏、微观层面的研究,可以探究微生物群落的空间分布规律、资源利用策略和适应机制等,进而推动微生物生态学的发展。
微生物在生态学上的重要性是不可少的,它们在环境及人体内发挥着重要的作用。
微生物能够负责环境的分解与转化,并参与生态过程例如环境营养循环、物种间拮抗与协作以及防止病原菌侵略等。
此外,在医学上,微生物是许多疾病的致病因子,如污染水源或食物的病原体、导致感染的细菌、病毒或霉菌。
因此,通过微生物分子生态学的研究,我们可以了解微生物的分布规律与生境的关系,为我们预防和治疗疾病提供基础支持。
2. 微生物分子生态学研究的方法微生物分子生态学研究方法的发展是基于分子生物学方法,包括基于核酸和蛋白质的技术和荧光原位杂交等方法的应用。
这些技术可以为微生物分子生态学研究提供大量数据,并提取出具有生态学信息的分子信息。
通过分析微生物基因组组成、微生物群落与宿主间相互作用、微生物代谢产物的分析等,可以对微生物的生态系统进行全面分析。
这些技术可以从不同方面向我们展示微生物及其环境的如实信息,从中归纳出微生物的生态特征,并从中获得与微生物生态的密切关联信息。
3. 微生物分子生态学进展微生物分子生态学的最新进展已经涵盖了许多先进技术的应用,其中最受关注的是高通量测序技术、微生物代谢组分析技术。
高通量测序技术可以对微生物基因组进行大规模的测序,并对微生物代谢反应进行一系列分析与比较,这为我们更加深入理解微生物的生态环境和活动特征提供了新的视野。
微生物生态学中的生态位理论与方法研究

微生物生态学中的生态位理论与方法研究微生物是地球上最古老、最广泛分布、数量最多、鉴定最困难的生物类群之一,是支持生态系统运作的基础。
微生物生态学研究微生物在不同生态环境中的数量、分布、功能以及它们之间的相互作用。
生态位理论是微生物生态学中重要的理论基础,对生物的适应性、竞争关系和生态位资源利用具有重要的指导意义。
本文将介绍微生物生态学中的生态位理论以及实验方法的研究进展。
生态位理论生态位是指生物与周围环境中的因素相互作用的空间在物理(生境)和功能(作用)两个方面的总和,是描述物种在生态系统中的占据位置及其与周围物种的关系的一种生态概念。
其基本观点是:生态位可以被人们看成“生态位置”,也可以被看做“生态空间”;任何一种生物对于生存条件的要求都表现在其生态位上。
根据生态位的定义,可以得知生态位有其内部和外部两个方面。
内部生态位主要包括营养特性、生长条件要求等方面,而外部生态位则是由生境的特点如温度、湿度、PH等环境因素所决定。
生态位理论不仅适用于微生物,也可以适用于动植物等多种生物学研究中。
生态位可分为空间生态位和时间生态位。
空间生态位是指一个物种在空间上的所占据的位置,而时间生态位是指一个物种在时间上所占据的位置。
一个物种的时间生态位也可以看做是对多个空间生态位的运用。
生态位的占据程度是一个相对的概念,不同物种占据的生态位是不一样的。
对于同一生态位的不同物种,按照它们在竞争、合作方面所表现出的适应性,来分配它们的占有度,这个分配程度叫做相对占有度。
生态位因此成为微生物生态学研究的核心之一。
生态位理论的应用微生物生态学研究中常常借助生态位理论进行相应的研究。
一个物种在特定的环境条件下所占据的生态位影响着其在生态系统中的角色、数量以及影响力等等。
生态位的作用也可以归纳为以下几个层面。
1. 确定菌群定殖在特定环境条件下,生境能够容纳或支持的微生物种类种类是有限的,具体哪些微生物可以占据生态位分别取决于其相对适应性和浓度势能。
微生物分子生态学的理论和方法

微生物分子生态学的理论和方法微生物分子生态学是生态学中比较新兴的分支,它以微生物群落的遗传结构和功能为研究对象,通过分子生物学方法和大数据处理手段,探究微生物群落结构、多样性、相互作用及其对环境的响应规律。
本文将从理论和方法两个方面进行论述。
理论1.微生物群落的结构和多样性研究微生物群落的结构和多样性是微生物分子生态学中的基础研究内容。
通过高通量测序技术,可以快速鉴定出微生物群落中各种微生物的数量、种类和相对比例,从而揭示微生物群落的结构和多样性。
此外,近年来出现的功能基因组学方法,可以通过分析微生物群落DNA中的功能基因,揭示微生物群落中各个群体的代谢途径和生物功能,为微生物群落结构和多样性的研究提供了新的思路。
2.微生物群落的相互作用与微生物间的横向基因转移微生物群落中的微生物之间具有相互作用,影响着微生物群落的结构和功能。
微生物之间的相互作用可以通过预测微生物菌群的共生网络或群落功能来推断。
此外,微生物间的横向基因转移也是微生物群落中的一种重要现象,它使微生物菌群获得新的代谢途径或其他有益基因等,是微生物群落适应环境、保持动态平衡的关键因素之一。
3.微生物群落对环境的响应规律微生物群落是环境中敏感的晴雨表,它能够反映环境变化对微生物群落结构和功能的影响。
因此,研究微生物群落对环境变化的响应规律,有助于我们了解生态系统对环境变化的响应规律,同时也对环境污染及其对健康的影响等问题提供了重要的研究思路。
方法1.高通量测序技术高通量测序技术是微生物分子生态学的重要工具。
高通量测序技术可以快速鉴定微生物群落中的微生物的数量、种类和相对比例,从而揭示微生物群落结构和多样性。
目前主要的测序技术有Illumina和PacBio等。
2.功能基因组学方法功能基因组学方法是微生物群落研究的新方法,通过分析微生物群落中的各种功能基因,来研究微生物群落中各个群体的代谢途径和生物功能。
同时,功能基因组学方法也可以用于预测微生物群落的功能和生态位,为微生物群落的生态功能研究提供基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境微生物分子生态学研究方法综述摘要:对当前国内外环境微生物多样性的分子生态学研究方法进行了总结和探讨,包括微生物化学成分的分析的方法和分子生物学的方法,以目前比较成熟前沿的分子生物学的方法16S rRNA基因序列分析、变性梯度凝胶电泳(DGGE)/温度梯度凝胶电泳(TGGE)、限制性片段长度多态性(RFLP)和扩增核糖体DNA限制性分析(ARDRA)、末端限制性片段多态性(T-RFLP)、单链构象多态性(SSCP)为例。
在环境微生物多样性研究中,如果可能的话,需要将各种方法结合起来使用,方可掌握有关环境生物多样性的较为全面的信息。
更好的揭示环境变化现状和预示环境的变化趋势,为环境改善修复提供有利依据。
关键词:环境微生物;分子生物学;DGGE;ARDRA;T-RFLP1 引言环境微生物是指环境中形体微小、结构简单的生物,包括原核微生物(细菌、蓝细菌、放线菌)、真核生物(真菌、藻类、地衣和原生动物等)。
数量庞大、种类繁多的环境微生物是丰富的生物资源库[1],也是环境中最活跃的部分,全部参与环境中生物化学反应,在物质转换、能量流动、生物地球化学循环及环境污染物的降解和解毒[2]过程中具有极其重要的作用,亦是评价各种环境的重要指标之一。
比如土壤微生物的数量分布,不仅可以敏感地反映土壤环境质量的变化,而且也是土壤中生物活性的具体体现[3]。
河道、湖泊中微生物量也可以反映该水体的健康状况。
微生物群落结构和多样性是环境微生物生态学研究的热点内容。
微生物群落结构的研究主要通过描述微生物群落的稳定性、微生物群落生态学机理以及自然或人为干扰对群落产生的影响,揭示环境质量与微生物数量和活性之间的关系[4]。
微生物群落多样性,是指土壤微生物群落的种类和种间差异,微生物群落多样性包括物种多样性、遗传多样性及生理功能多样性等[5]。
物种多样性是群落中的微生物种群类型和数量,其中丰度和均度是多样性指数中的两个组成部分,也是多样性分析中最直观、最容易理解的要素。
研究微生物多样性的传统方法是将微生物从环境中分离、实验室培养和鉴定[6]。
然而,微生物种类繁多,自然界中仅有极少数微生物得到鉴定。
现代分子生物学方法为全面掌握微生物多样性提供了可能。
2 微生物化学成分的分析的方法根据细胞生物学相关原理,不同种类微生物细胞的化学组成也不一样。
根据微生物化学成组成进行微生物多样性分析是分析微生物群落的方法之一。
经过发展研究,主要有:1.1 群落水平生理学指纹方法(CLPP)微生物所含的酶与其丰度或活性密切相关的。
如果某一微生物群落中含有特定的酶可催化利用某特定的基质,则这种酶-底物可作为此群落的生物标记分子之一。
由Garland和Mills[7]于1991年提出的群落水平生理学指纹方法(CLPP),是一种通过检测微生物样品对底物利用模式来反映种群组成的酶活性的分析方法。
具体而言,CLPP就是通过检测微生物样品对多种不同的单一碳源的利用能力,来确定哪些基质可以作为能源,从而产生对基质利用的生理代谢指纹。
近年来,国内有韩蕙等人[8]利用BIOLOG YT、FF微孔板分别考察了4个真菌群落代谢活性及群落间的代谢相似性,并与聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)结构相似性分析对比试图探讨代谢相似性与结构相似性的内在联系,探讨了超低温冻存法作为样品保存手段对真菌群落特征BIOLOG分析结果的影响。
还有杨永华等[9]用CLPP方法对农药污染土壤中的微生物群落进行了研究,测定结果显示,污染土壤的Shannon指数和均度、Simpson指数、Mclntosh指数和均度都明显低于无污染的土壤。
这表明,农药污染导致了土壤中微生物代谢功能多样性的下降,同时也导致了微生物种类的减少。
1.2 生物标记物法(Biomarkers)生物标记物通常是微生物细胞的生化组成成分,其总量通常与相应生物量呈正相关。
特定的Biomarkers标志着特定的微生物,一些生物标记物的组成模式(种类、数量和相对比例)可作为指纹估价微生物群落结构。
生物标记物法(Biomarkers)包括:醌指纹法(Quinones Profiling);磷脂脂肪酸(phospholipid fatty acid, PLFA)、甲基脂肪酸酯(Fatty acid methyl ester, FAME)谱图分析法;目前应用最广的是PLFA和FAME两种。
以脂肪酸甲酯分析法为例,脂肪酸甲酯分析法就是基于生物标记分子基础之上,不依赖微生物培养技术,提供微生物种群中脂肪酸组成信息的一种分析法。
脂肪酸是细胞中相对稳定的组成成分,不同微生物的脂肪酸在组成和含量上有较大差异,它和微生物的遗传变异、耐药性等有极为密切的关系。
大多数革兰氏阳性菌(G +)中支链C15:0脂肪酸丰度很高,而在大多数革兰氏阴性菌(G -)菌中C16:0丰度较高[10]。
一些细菌如考克斯氏体属、土拉弗朗西丝菌属[11]、假单孢菌属和结核分枝杆菌属细菌[12]有其特殊的脂类,可经磷脂脂肪酸分析实现鉴定,因此脂肪酸图谱的改变就代表着微生物种群的改变。
FAME 法已经广泛应用到化学物质污染和农业生产活动引起的微生物种群组成和结构改变的研究中[13]。
近些年来,磷脂脂肪酸分析方法也逐渐被应用于土壤微生物多样性的研究中来,并作为土壤微生物种群变化的监测指标[14]。
3 以PCR 为基础的分子生物学分析方法用于微生物群落结构分析的基因组DNA 的序列包括:核糖体操纵子基因序列(rDNA)、已知功能基因的序列、重复序列和随机基因组序列等。
最常用的标记序列是核糖体操纵子基因(rDNA)。
rRNA(rDNA)在细胞中相对稳定,同时含有保守序列及高可变序列,是微生物系统分类的一个重要指标。
16SrDNA 广泛存在于所有原核生物的基因组中。
序列变化比较缓慢,与物种的形成速度相适应,而且一般不发生水平转移。
应用分子生物学方法,克服了传统微生物生态学研究技术的局限性,能获取更加丰富的微生物多样性信息,推动着当今微生物生态学研究的进一步发展。
下面介绍近年来分子生物学在微生物生态学研究中较为成熟的技术。
如图1,图1是分子生物技术在微生物多样性研究中的应用图解。
RFLP 、RAPD 、AFLP 等样品DNA 提取纯化PCR 反应DGGE 切割并纯化rDNA 片段克隆测序检测微生物遗传多样性图1 分子生物技术在微生物多样性研究中的应用图解2.1 16S rRNA 基因序列分析16S rRNA 基因序列分析主要是基于已建立的16S rRNA 基因序列数据库,用于确定细菌的系统发育来判断物种间进化关系,通过比较16SrRNA 基因的序列,可确定新的离菌株在进化上的地位,并使序列探针能够识别未知菌。
目前,16S rRNA 基因序列分析已被广泛应用于微生物多样性的研究,为微生物的系统发育和未知菌的鉴定提供了全新的方法,并取得了一些有意义的结果。
1970年Woese 利用16S rRNA寡核苷酸序列分析技术,发现了一类在系统发育上与其它细菌存有很大差异的微生物-古细菌,奠定了有关古生物、真细菌和真核生物“三域”理论的基础[15,16]。
戴欣等[17]通过构建16S rRNA基因库对中国南海南沙海区沉积物中的细菌多样性进行了分析,表明在中国南沙海区沉积物中存在丰富的微生物多样性,并潜藏着特有的微生物资源。
孙磊等[18]通过对水稻内生细菌16S rRNA基因克隆文库中阳性克隆的序列测定证实引物对799f-1492r完全适用于非培养的分子生物学方法对水稻内生细菌的研究,对水稻(Oryza sativa L.)内生细菌和根结合细菌群落多样性及群落动态变化进行了分析。
2.2 变性梯度凝胶电泳(DGGE)/温度梯度凝胶电泳(TGGE)DGGE/TGGE是两个相似的研究微生物多样性的方法。
这种技术最初是为了检测DNA序列中的点突变。
Muyzer等[19]1993年开始利用这个技术来研究微生物的遗传多样性。
主要步骤是:提取土壤样品中的DNA,利用通用引物PCR扩增16S或18S中的目的片段,在变性剂梯度或者温度梯度的聚丙烯酰胺凝胶中电泳。
为了保证DNA片段在聚丙烯酰胺凝胶中分离时至少部分DNA保持双链,在正向引物的5 端加上35~40个碱基的GC发卡,否则在梯度凝胶中DNA将完全变性成单链。
理论上,DGGE可以分开只有一个碱基差别的DNA序列。
DGGE/TGGE方法可以探测到低丰度的种群。
段学军等[20]。
利用DGGE技术评价了重金属镉污染对土壤微生物群落影响。
研究发现,不同浓度镉胁迫下稻田土壤间的菌种有明显差异。
罗海峰等[21]用此技术检测乙草胺对农田土壤细菌多样性影响,结果显示,乙草胺在一定程度上改变了土壤细菌的多样性,特别是对土壤中的Proteobacteria 的α-Proteobacteria和β-Proteobacteria的影响明显。
王晓丹等[22]以北京翠湖湿地污水塘、表流湿地和潜流湿地为研究对象,在了解水质的基础上,采用PCR-DGGE 和16S rDNA文库技术对样品细菌多样性和优势群落结构进行分析。
结果表明在水质有明显变化的同时,微生物数量、细菌多样性及优势群落都发生了明显变化。
DGGE/TGGE可信度高,重复性好,快速,同时可以分析多个样品,相对较经济。
但是DGGE/TGGE受样品DNA提取质量、PCR结果的影响较大。
另外,不同序列的DNA片段在聚丙烯酰胺凝胶中也可以有相同的移动特性,因此,一个条带不一定就代表一个种[23]。
在利用DGGE/TGGE图谱得到的部分种群指纹信息进行多样性研究时,还可以对特异性的条带割胶回收,PCR扩增并测序,或转膜与特异性引物杂交,这样就可以提供更多有关群落内部特定类群的信息。
同时,一些研究者已经开始用DGGE研究代谢基因,比如甲烷加氧酶[24]。
这将提供土壤微生物的特殊功能(例如污染物降解功能)多样性的信息。
2.3 单链构象多态性(SSCP)同DGGE/TGGE一样,SSCP技术最初是用来检测DNA已知或者特异构象,或者点突变的。
由于二级结构不同,单链DNA在聚丙烯酰胺凝胶中泳动速度不同,借此而被分开。
当DNA片段大小相同且没有变性剂存在的情况下,DNA序列决定了泳动的速度。
该方法已经应用到根际微生物种群组成、厌氧反应器中细菌群落变化等方面的研究中。
然而一些单链DNA可以形成不止一个稳定的构象,因此在凝胶中多个条带可能代表同一种序列。
Vacca等[25]利用PCR-SSCP图谱分析六个处理生活污水的实验型人工湿地进出口、植物根区及基质不同深度的微生物群落的多样性,以判断湿地中填料类型、植物种植与否对菌群的影响,结果发现不同的微生物群落的存在与基质类型有关。
谢冰等[26]利用PCR-SSCP技术对上海梦清园芦苇人工湿地进出口微生物的多样性,得出异养菌、硝化细菌和反硝化细菌各个季节的分布不一,微生物功能群的分布与湿地中不同营养水平有关。