基于Hadoop平台的搭建及应用研究
基于Hadoop的海量电信数据云计算平台研究

H do 是由A ah 基金会组织开发的分布式计算开 aop pce
源框架, 利用低廉设备搭建大计算池, 以提高分析海量数据 的速度和效率, 是低成本的云计算解决方案。 其模仿和实现
了Gol云计算的主要技术。 H F ( ao ir u d og e 包括 D SH do d t t p si e b
H do o m n 支撑 H do aopCm o : aop的公共部分 . 是最底层 的模块 , 为其他子项 目 提供各种工具。 H F :是一 个 主从 ( aes v)结构 .由一 个 DS m srl e t/a Nm Nd ( a eoe 名称节点 ) 和若干个 D t oe 数据节点 ) aNd( a 构 成 ,a eoe Nm N d 管理文件系统的元数据,a Nd 存储实际 Dt oe a 数据。 M p eue 处理海量数据的并行编程模型和计算框 aRdc : 架, 采用“ 分而治之” 思想 , 包括分解任务的 m p函数和汇 a 总结果的 r ue e c 函数 , aR dc 任务由一个 Jbr kr d M p eue oTa e c 和若干个 Ts r kr a Ta e 控制完成. b r kr k c J Ta e 负责调度和管 o c
平台在设计上采用分布式、 分层结构. 可以划分为数据层、
模型层、 应用层 3 层结构, 如图 2 所示。 () 1数据层
理 Ts r krTs r kr a Ta e,a Ta e 负责执行任务。 k c k c
P : L i 语言 , iS —e gQl k 是在 M p eue aRdc 上构建的一种高 级查询语言, 以简化 M p eue aR dc 任务的开发。 Hv : i 数据仓库工具, S L查询功能。 e 提供 Q H ae基于列存储模型的分布式数据库。 bs:
基于Hadoop的大数据处理平台搭建与部署

基于Hadoop的大数据处理平台搭建与部署一、引言随着互联网和信息技术的快速发展,大数据已经成为当今社会中不可或缺的重要资源。
大数据处理平台的搭建与部署对于企业和组织来说至关重要,而Hadoop作为目前最流行的大数据处理框架之一,其搭建与部署显得尤为重要。
本文将介绍基于Hadoop的大数据处理平台搭建与部署的相关内容。
二、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,能够高效地处理大规模数据。
它由Apache基金会开发,提供了一个可靠、可扩展的分布式系统基础架构,使用户能够在集群中使用简单的编程模型进行计算。
三、大数据处理平台搭建准备工作在搭建基于Hadoop的大数据处理平台之前,需要进行一些准备工作: 1. 硬件准备:选择合适的服务器硬件,包括计算节点、存储节点等。
2. 操作系统选择:通常选择Linux系统作为Hadoop集群的操作系统。
3. Java环境配置:Hadoop是基于Java开发的,需要安装和配置Java环境。
4. 网络配置:确保集群内各节点之间可以相互通信。
四、Hadoop集群搭建步骤1. 下载Hadoop从Apache官网下载最新版本的Hadoop压缩包,并解压到指定目录。
2. 配置Hadoop环境变量设置Hadoop的环境变量,包括JAVA_HOME、HADOOP_HOME等。
3. 配置Hadoop集群编辑Hadoop配置文件,包括core-site.xml、hdfs-site.xml、mapred-site.xml等,配置各个节点的角色和参数。
4. 启动Hadoop集群通过启动脚本启动Hadoop集群,可以使用start-all.sh脚本启动所有节点。
五、大数据处理平台部署1. 数据采集与清洗在搭建好Hadoop集群后,首先需要进行数据采集与清洗工作。
通过Flume等工具实现数据从不同来源的采集,并进行清洗和预处理。
2. 数据存储与管理Hadoop提供了分布式文件系统HDFS用于存储海量数据,同时可以使用HBase等数据库管理工具对数据进行管理。
基于Hadoop的高校大数据平台的设计与实现

45基于Hadoop 的高校大数据平台的设计与实现彭 航本文在对Hadoop 平台的结构及功能分析基础上,结合信息化环境下高校系统建设的现状,对基于Hadoop 的高校大数据平台的设计与实现进行研究,以供参考。
在信息化发展影响下,高校信息系统建设与运用也取得了较为显著的发展,并且在长期的运营与管理中积累了相对较多的数据,对高校信息化建设与发展有着十分积极的作用和意义。
指导注意的是,结合当前高校信息系统建设与发展现状,由于其信息系统的分阶段建设,导致在对系统运营及数据管理中是由多个不同部门分别执行,各数据之间的相互联系与有效交互明显不足。
另一方面,在大数据环境下,通过大数据平台的开发设计以实现各信息系统之间的有效对接与信息交互,形成较为统一的数据运营与管理模式,成为各领域信息建设与运营管理研究和关注重点。
1 Hadoop 平台及其结构、功能分析Hadoop 作为一个分布式系统的基础架构,在实际设计与开发运用中,是通过Hadoop 集群中的一个主控节点对整个集群的运行进行控制与管理实现,以满足该集群中多个节点的数据与计算任务协调需求。
其中,分布式文件系统HDFS 以及MapReduce 并行化计算框架是Hadoop 集群系统的核心,HDFS 是Hadoop 平台中分布式计算下数据存储管理开展基础,具有较为突出的可靠性以及扩展性和高容错性特征;而MapReduce 并行计算框架能够将分析任务分成大量并行Map 和Reduce 任务以进行Hadoop 平台运行及功能支撑;此外,HBase 是以HDFS 为基础的分布式数据库,能够实现海量数据存储,而Hive 作为数据仓库处理工具,在Hadoop 平台运行中主要用于HDFS 或者是HBase 中存储的结构化或者是半结构化的数据管理。
随着对Hadoop 研究的不断发展,当前Hadoop 平台已经成为一个包含很多子系统大数据的处理生态系统。
如下图1所示,即为Hadoop 平台的结构组成示意图。
基于Hadoop的大数据分析系统的设计与实现

基于Hadoop的大数据分析系统的设计与实现随着信息化时代的到来,数据量呈爆炸式增长,如何利用这些海量数据来为企业、政府等机构提供更好的服务成为一个热门话题。
而大数据分析技术的产生和发展,为这个问题提供了一个有效的解决方案。
作为其中的代表性技术之一,Hadoop已经成为一款备受欢迎的大数据分析系统。
本文将从设计和实现两个层面来总结分析基于Hadoop的大数据分析系统。
1. 设计1.1 数据的分片Hadoop的一个核心思想就是将数据分成很多块进行处理。
这种方式可以有效增加并行度,减少单个节点处理的压力,提高系统的效率。
分片的大小一般由MapReduce框架中的“块大小(block size)”参数来定义,一般建议设置为128MB到256MB之间。
1.2 数据的存储Hadoop的数据存储一般采用HDFS(分布式文件系统)进行管理,其基本特点是数据分布式存储,副本备份,处理集群与数据存储集群分离,容错性强。
HDFS的数据块默认大小为64MB,每个文件至少存储3个副本(可设置),且这些副本分布在不同的节点上,以保证数据的冗余备份和高可用。
1.3 数据的处理Hadoop采用MapReduce编程模型对数据进行处理。
MapReduce本身是一种分布式计算模型,可以为不同类型的数据提供不同的计算方式。
MapReduce过程包括两个阶段:Map和Reduce。
Map负责将数据进行划分、处理和输出,Reduce则负责合并Map输出结果并输出最终结果。
事实上,Map和Reduce运行的都是相同的代码,但在MapReduce框架中,它们的作用却不同。
1.4 数据的分发Hadoop的一大特点是能够很好地利用分布式式处理来提高数据分析的效率。
在Hadoop的分布式式处理中,数据的分发通常采用Hadoop的YARN(Yet Another Resource Negotiator)来负责完成。
YARN是Hadoop的一个资源调度系统,它提供了一个简单的接口,使得用户可以对运行在集群上的应用程序进行监控和管理。
基于Hadoop的大数据平台架构设计

基于Hadoop的大数据平台架构设计随着互联网的普及和各种数字化设备的普及,现代社会已经进入了信息时代。
数据普及了每个角落,数据正在成为信息化时代的核心资源。
数据的速度、容量和多样性已经远远超出了人类处理的极限,人们需要采用更加高效和智能的方式来处理庞大的数据,这时候大数据技术就应运而生了。
而Hadoop的出现,正是为了解决大数据存储和处理的问题,它是目前使用最广泛的大数据平台之一。
本文将介绍如何基于Hadoop构建一个高效的大数据平台,以满足组织和企业的不同需求。
一、Hadoop架构Hadoop由HDFS(分布式文件系统)和MapReduce(分布式计算)构成,其架构如下图所示。
图一:Hadoop架构HDFS是Hadoop的存储组件,它将文件拆分成块(block),并将它们存储在集群的不同节点上。
MapReduce是Hadoop的计算组件,其中Map任务和Reduce任务是将大数据拆分成小块并进行分布式计算的核心算法。
二、大数据平台构建流程1.架构设计在构建大数据平台时,首先应该根据数据的特征、业务需求以及架构要求来设计架构。
根据Hadoop的架构特点,大数据平台的架构可以概括为以下几个层次:(1)数据层:数据是大数据平台的核心,数据层是大数据平台的基础,它包括数据采集、存储、清洗、预处理等环节;在Hadoop中,该层的实现可以通过HDFS、Sqoop、Flume等工具来完成。
(2)计算层:计算层是处理大数据的核心,它可以根据业务需求来编写MapReduce、Hive、Pig等计算框架,以实现对数据的处理。
(3)服务层:服务层是将计算结果整合为可视化、操作性强的服务。
比如通过HBase实现实时查询、通过Impala进行SQL分析等。
(4)接口层:接口层是大数据平台和外部系统进行交互的入口。
通过接口层,外部系统可以调用大数据平台提供的服务,通过数据的交换来实现信息的共享。
(5)安全层:安全层是保障大数据平台安全和合法性的重要保障,它可以通过Kerberos、Apache Ranger、Apache Sentry等工具来实现。
基于Hadoop的大数据处理平台设计与实现

基于Hadoop的大数据处理平台设计与实现一、引言随着互联网的快速发展和智能设备的普及,大数据已经成为当今社会中不可忽视的重要资源。
大数据处理平台作为支撑大数据应用的基础设施,扮演着至关重要的角色。
本文将围绕基于Hadoop的大数据处理平台的设计与实现展开讨论,探讨其架构、关键技术和实际应用。
二、Hadoop简介Hadoop是一个开源的分布式计算平台,由Apache基金会开发和维护。
它主要包括Hadoop Distributed File System(HDFS)和MapReduce两个核心模块。
HDFS用于存储大规模数据集,而MapReduce 则用于并行处理这些数据。
Hadoop具有高可靠性、高扩展性和高效率等特点,被广泛应用于大数据领域。
三、大数据处理平台架构设计1. 架构概述基于Hadoop的大数据处理平台通常采用分布式架构,包括数据采集、数据存储、数据处理和数据展示等模块。
其中,数据采集模块负责从各种数据源中收集数据,数据存储模块负责将数据存储到分布式文件系统中,数据处理模块负责对数据进行分析和计算,数据展示模块则负责将处理结果可视化展示给用户。
2. 架构组件数据采集组件:包括日志收集器、消息队列等工具,用于实时或批量地采集各类数据。
数据存储组件:主要使用HDFS作为底层存储,保证数据的可靠性和高可用性。
数据处理组件:使用MapReduce、Spark等计算框架进行数据处理和分析。
数据展示组件:通过BI工具或Web界面展示处理结果,帮助用户理解和分析数据。
四、关键技术探讨1. 数据存储技术在基于Hadoop的大数据处理平台中,HDFS是最常用的分布式文件系统之一。
它通过将大文件切分成多个块,并在集群中多个节点上进行存储,实现了高容错性和高可靠性。
2. 数据处理技术MapReduce是Hadoop中最经典的并行计算框架之一,通过将任务分解成Map和Reduce两个阶段,并在多个节点上并行执行,实现了高效的大规模数据处理能力。
Hadoop平台搭建与应用(第2版)(微课版)项目1 认识大数据

Hadoop平台搭建与应用教案靠、高性能、分布式和面向列的动态模式数据库。
⑤ ZooKeeper(分布式协作服务):其用于解决分布式环境下的数据管理问题,主要是统一命名、同步状态、管理集群、同步配置等。
⑥ Sqoop(数据同步工具):Sqoop是SQL-to-Hadoop的缩写,主要用于在传统数据库和Hadoop之间传输数据。
⑦ Pig(基于Hadoop的数据流系统):Pig的设计动机是提供一种基于MapReduce 的Ad-Hoc(计算在query时发生)数据分析工具。
⑧ Flume(日志收集工具):Flume是Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。
⑨ Oozie(作业流调度系统):Oozie是一个基于工作流引擎的服务器,可以运行Hadoop的MapReduce和Pig任务。
⑩ Spark(大数据处理通用引擎):Spark提供了分布式的内存抽象,其最大的特点就是快,是Hadoop MapReduce处理速度的100倍。
YARN(另一种资源协调者):YARN是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。
Kafka(高吞吐量的分布式发布订阅消息系统):Kafka可以处理消费者规模的网站中的所有动作流数据。
任务1.1 认知大数据,完成系统环境搭建(1)安装CentOS系统(确保CentOS系统版本在7及以上,以便配合后续Docker 安装)。
①在VMware中设置CentOS 7镜像,进入后选择第一项安装CentOS 7,如图1-8所示。
②在新打开页面中设置时间(DATE&TIME),分配磁盘(INSTALLATION DESTINATION)和网络设置(NETWORK&HOST NAME)等,如图1-9所示。
③单击“INSTALLATION DESTINATION”链接,在打开的界面中选择“I will configure partitioning”选项,然后单击“Done”按钮,跳转到分配磁盘页面即可进行磁盘分配,如图1-10所示。
虚拟化与云计算课程实验报告——Hadoop平台搭建

虚拟化与云计算课程实验报告——Hadoop平台搭建虚拟化与云计算实验报告⽬录⼀、实验⽬标 (1)⼆、实验内容 (1)三、实验步骤 (1)四、实验遇到的问题及其解决⽅法 (24)五、实验结论 (25)⼀、实验⽬的1.实验题⽬:配置和使⽤SAN存储掌握在Linux上配置iSCSI target服务的⽅法。
2.实验题⽬:Hadoop&MapReduce安装、部署、使⽤Hadoop-HDFS配置运⾏MapReduce程序,使⽤MapReduce编程⼆、实验内容1.实验题⽬:配置和使⽤SAN存储配置在Linux上iSCSI实现两台机器间的共享存储。
2.实验题⽬:Hadoop&MapReduce1.掌握在集群上(使⽤虚拟机模拟)安装部署Hadoop-HDFS的⽅法。
2.掌握在HDFS运⾏MapReduce任务的⽅法。
3.理解MapReduce编程模型的原理,初步使⽤MapReduce模型编程。
三、实验步骤及实验结果1.实验题⽬:配置和使⽤SAN存储在实验1中我作为主机提供共享存储空间,实验地点是在机房,但是由于我当时没有截图所以回寝室在⾃⼰的电脑上重做,以下为主机步骤:1.1 确定以root⾝份执⾏以下步骤sudo su –1.2 安装iSCSI Target软件1.3 修改/etc/default/iscsitargetISCSITARGET_ENABLE=true1.4 创建共享存储共享存储可以是logical volumes, image files, hard drives , hard drive partitions or RAID devices 例如使⽤image file的⽅法,创建⼀个10G⼤⼩的LUN:dd if=/dev/zero of=/storage/lun1.img bs=1024k count=102401.5修改/etc/iet/ietd.conf添加:Target /doc/034859ed551810a6f5248648.html .example:storage.lun1 IncomingUser [username] [password]OutgoingUserLun 0 Path=/storage/lun1.img,Type=fileioAlias LUN1#MaxConnections 61.6 修改/etc/iet/initiators.allow如果只允许特定IP的initiator访问LUN,则如下设置/doc/034859ed551810a6f5248648.html .example:storage.lun1 192.168.0.100如果任意initiator均可以访问,则:ALL ALL1.6 启动/重启动iSCSI target/etc/init.d/iscsitarget start/etc/init.d/iscsitarget restart2.实验题⽬:Hadoop&MapReduce1.安装JDK——在实验中安装为OpenJDK 6 Runtime2.安装openssh-server,命令为:sudo apt-get install openssh-server,并检查ssh server是否已经启动:ps -e | grep ssh,如果只有ssh-agent 那ssh-server还没有启动,需要/etc/init.d/ssh start,如果看到sshd 那说明ssh-server已经启动了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UJl AN C OM PUTER
D O I : 1 0 . 1 6 7 0 7  ̄ . c n k i . f j p c . 2 0 1 7 . 0 3 . 0 7 1
基于 H a d o o p平 台的搭建及应用研究
李 晓佳 ,董延华
( 吉林 师范大学计算机学院 吉林 四平 1 3 6 0 0 0 )
h o s t n a m e ma s t e r
#修 改 生 效命 令
架, 采用并行 的方式 , 以一种可靠 、 高效、 可伸缩 的方式进行数
据处理 。利用 H a d o o p分布式技术解决多个终端 间的数据存储 与传输 问题 , 对有效处 理空间开销、 节 约计 算时间、 适用于低廉
#查看修改结果
H a d o o p的 实 现 依 靠 分 布 式 文件 系 统 HD F S和 Ha d o o p — Ma p R e d u c e两个组件。 HD F S有着较高 的容错性特 点,可 以将 平台设计在廉价的 硬件集群 上, 并且 可 以保证提供高吞吐量 的数据访 问。它采用 主从 结构设计 ,集 群中主要 由名字结 点 N a m e n o d e和数据结点
Na me n o d e Da t a n o d e
Da t a n o d e
集群 中各 结点需要通过密码进行登陆 , 这 给访 问数据和传
递信 息 带来 了不 便 。 因此, 需要配置 S S H 无 密码 验 证 的设 置 , 释 放各 结 点对 文 件 的控 制 权 限 。 ( 1 ) 在终端生成密钥。
1 92 . 1 6 8 . 0. 1 0 2
子 网掩码
2 5 5 . 2 5 5 . 2 5 5 . 0 2 5 5. 2 5 5. 2 5 5. 0
2 5 5 . 2 5 5 . 2 5 5 . 0
( 3 ) 重 启 网络 服 务 , / s b i r d s e r v i c e n e t w o r k s t a r t 。 2 _ 3 S S H 无 密 码 验 证 配 置
是实验顺利进行的重要保障。
Ma p R e d u c e 是 H a d o o p平 台的最核心组件 ,将数 据集 的大 规模操作划分为 多个数 据块 , 通过主 结点分发给 网络上 的每个 结点 , 每个数据 块 即为一个待 处理信 息, 并 自动调度 计算结 点
来 处 理相 应 的 数据 信 息 。 2 、 H a d o o p集 群 的搭 建
的硬 件 平 台等 优 化 方 面 具 有 十 分 重 要 的 意 义 。 1 、 Ha d o o p平 台 结构
h o s t n a m e
S l a v e结 点 的设 置 参 照 以上 设 置 即 可 。 ( 2 ) 网络 环 境 具体 文本 内容 配 置 如 下 :
g e d i t/ e t e / h o s t s 1 9 2 . 1 6 8 . 0 . 1 0 0 1 9 2 . 1 6 8 . 0 . 1 0 1 1 9 2 . 1 6 8 . 0 . 1 0 2 ma s t e r s l a v e l s l a v e 2
1 所示。
表 1 结点参数设置
保存退 出。
操作系统 结点用途
Ce n t OS 6 Ce n t OS 6
Ce n t OS 6
主机名
Ma s t e r S l a v e 1
S l a v e 2
I P 地址
1 92 . 1 68 . 0. 1 0 0 1 92 . 1 6 8 . 0. 1 0 1
【 摘 要】 本文针对 Ha d o o p平 台的结构和特 点 , 介 绍 了 Ha d o o p集群 的搭 建过 程 , 采用 V mwa r e 虚拟化 方法通过合 理 配置建立虚拟硬件 资源支持上 的 L i n u x虚拟 结点集群 , 通过 结点网络 的配置实现 各结点间的无密码通信 , 并在该平 台
( 1 ) 在 文本编辑器 中修改/ e t c / u d e v / r u l e s . d / 7 0 一 p e r s i s t e n t — n e t . r u l e s 文件 ,将 P C I d e v i c e中的 n a me 更改为 e t h O ,并将 原有的 ( 2 )修 改网卡配置 文件 , e t c / s y s c o n f i g / n e t w o r k — s e r i p t s / i f c f g —
上 实现 数 据 的采 集应 用 , 从 而验 证 了 Ha d o o p平 台 的可 行 性 。
【 关键词 】 H a d o o p集群 ; 虚拟化 ; 无 密码通ቤተ መጻሕፍቲ ባይዱ
引 言 H O S T N AM E = m a s t e r #主机 名
H a d o o p是一个 能够对 大量数据进 行分布式处 理的软件框
D a t a n o d e 来构成 。
按 照 以上 方 法 设 置 后 , 确 保 在 局 域 网 范 围 内使 用 主 机 名 能 够互 p i n g成功 即可 。
2 . 2配置过程 中的常见问题 正常的情况下 L i n u x 在识别 网卡时第一张会是 e t h 0 ,第二 张才是 e t h l 。但使用虚拟机克隆技术后 网卡 的信 息就会改变 , 新克 隆出来 的虚拟 主机 网卡名字可能变为 e t h l , 解 决这个 问题
e t h 0 , 配置 I P A D D R参数, 并 将 HWAD D R修改成原 m a c 地 址 并
t h O相 关 行 注释 。 由于 H a d o o p采取主从结 点的架 构, 集群 的搭建过程 中, 配 e
置一 台主 结点 Ma s t e r , 两 台从 结点 S l a v e , 具体的 部署情况如表