分子生物学基本技术一
常用的分子生物学基本技术简介

核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
无论从基因库中筛选的癌基因或经PCR 法扩增的基因,最终均需进行核酸序列分析,可藉以了解基因的精细结构,获得其限制性内切酶图谱,分析基因的突变及对功能的影响,帮助人工俣成基因、设计引物,以及研究肿瘤的分子发病机制等。
测序是在高分辨率变性聚丙烯酰胺凝胶电泳技术的基础上建立起来的。
目前最常用的方法有Maxam-Gilbert的化学降解少和Sanger的双脱氧法等,近年来已有DNA序列自动测定仪问世。
化学降解法是在DNA的片段的5`端标记核素,然后用专一性化学试剂将DNA特异地降解,在电泳和自显影后,可得到从标记端延伸的片段供测读序列和进行比较。
一般能读出200-250个核苷酸序列。
双脱氧法是采用核苷酸链终止剂,如:2`,3`-双脱氧核苷三磷酸ddNTP(如ddTTP、ddTTP、ddGTP和ddCTP中的一种)掺入到DNA链中以终止链的延长,与掺入4种正常的dNTP的混合物分成四组进行反应,这样可得到一组结尾长衙不一、不同专一性核苷酸链终止剂结尾的DNA片段,经凝胶电泳分离和放射自显影,可读出合成的DNA核苷酸序列,根据碱基互补原则,可推算出模板DNA分子的序列。
化学降解法只需一化学试剂,重复性好,容易掌握;而双脱氧法需单链模板、特异的寡核苷酸引物及高质量的DNA聚合酶,便随着M13噬菌体载体的发明和运用,合成的引物容易获得,测序技术不断改进,故此法已被广泛应用。
基脱氧法的自动激光荧光测序仪,使测工作更快速和简便,而且保证高度重复性。
至于RNA测序现大多采用将mRNA逆转录成cDNA后同测序,然后反推RNA序列基因转染技术将特定的遗传信息传递到真核细胞中,这种能力不但革新了生物学和医学中许多基本问题的研究,也推动了诊断和治疗方面的分子技术发展,并使基因治疗成为可能。
目前基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物等研究。
常用分子生物学技术的原理及其应用

分子生物学技术是生物学领域中的重要工具,广泛应用于基础研究、医学诊断、药物研发等领域。
以下是常用的分子生物学技术及其原理和应用:1. PCR技术:PCR(聚合酶链式反应)是一种体外扩增DNA的方法,基本原理是通过DNA聚合酶酶在体外模拟DNA的复制过程,从而快速扩增目标DNA片段。
PCR技术在基因克隆、基因检测、DNA指纹分析等领域有着广泛的应用。
2. 基因克隆技术:基因克隆是将感兴趣的DNA片段插入到载体DNA 中,构建重组DNA分子的过程。
通过基因克隆技术可以获得大量目的基因的DNA序列,用于研究基因功能、表达调控等方面。
3. 蛋白质表达与纯化技术:蛋白质表达技术是将外源基因导入宿主细胞中,使其表达目的蛋白质的过程。
通过蛋白质表达与纯化技术,可以获得大量纯净的蛋白质样品,用于研究蛋白质结构、功能等。
4. 基因编辑技术:基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等,可以实现对基因组特定区域的精准编辑。
基因编辑技术在疾病治疗、植物育种等领域有着巨大的潜力。
5. RNA干扰技术:RNA干扰是一种通过RNA介导的基因沉默机制,可使目标基因的mRNA水平下降,从而抑制基因表达。
RNA干扰技术在基因功能研究、疾病治疗等方面具有重要应用价值。
6. 蛋白质亲和纯化技术:蛋白质亲和纯化技术利用蛋白质与其结合物质之间的特异性相互作用,实现对目标蛋白质的选择性富集和纯化。
该技术在药物筛选、蛋白质相互作用研究等领域有着广泛应用。
7. 基因芯片技术:基因芯片是一种高通量的生物芯片技术,可同时检测上千个基因的表达水平。
基因芯片技术广泛应用于基因表达谱分析、疾病诊断、药物研发等领域。
8. 蛋白质组学技术:蛋白质组学技术主要包括蛋白质质谱分析、蛋白质组芯片等,用于研究蛋白质在生物体内的表达水平、翻译后修饰等。
蛋白质组学技术在疾病诊断、药物靶点鉴定等方面有着重要应用。
以上是常用的分子生物学技术及其原理和应用。
分子生物学常用技术

HRP-链霉亲和素(100ul,37oC,20min) 基质液(100ul,37oC, 10min)
2mol/LH2SO450ul终止反应
490nm测定光密度值(以未加PCR产物 的空白为阴性对照,CUT OFF值为0.1)
三. 结果
人血清高密度脂蛋白亚类免疫印迹检测法
吴新伟,傅明德等(中国动脉硬化杂志 1999;7(3):253)
纯化PCR产物与T-vector连接 重组质粒转化JM109大肠杆菌 增殖克隆株 提取质粒
PCR产物30ul
100oC变性5分钟,冰浴5分钟
单链PCR产物30ul加入100ul杂交液 单链PCR产物与预杂交微孔板上 特异DNA片段杂交42oC,1小时
洗涤 1min×5次
(酶切特异片段)
变性成单链 包被微孔板 洗涤 1min×4次 预杂交42oC,1小时
切点数目,但是不能排列出这些片段在DNA分子中的相对 位置。采用酶两两组合进行彻底降解,比较双酶和单一酶解 产物,可以确定酶切点的相对位置。
AJPI DNA的分子量为9.0兆道尔顿(≈13.6kb),有一
个XhoⅠ和一个PstⅠ切口,两个EcoRⅠ切口。它们的单酶 和双酶解结果示于下表。
AJPI DNA的三种酶单解和双解产物分析
三. DNA序列测定的策略
1. 鸟枪法
2. 套式缺失法
3. 引物延伸法
四. 自动测序
五. 应用举例
聚合酶链反应-微孔板杂交法检测结核杆菌的临床应用及其评价
杨正林,傅明德等(华西医大学报 2001;32(1):136-139)
一. 原理
利用PCR扩增、分子克隆、核酸杂交以及生物素-
亲合素酶联检测技术,灵敏、特异地检测结核杆菌。
分子生物学基本技术

分子生物学基本技术包括核酸的纯化,体外合成、分子杂交、基因克隆、基因表达研究技术等第一节DNA的体外合成一、DNA的化学合成(无要求)一亚磷酸三酯法DNA的化学合成广泛用于合成寡核苷酸探针和引物,有时也用于人工合成基因和反义寡核苷酸。
目前寡核苷酸均是用DNA合成仪合成的,大多数DNA合成仪是以固相亚磷酸三酯法为基础设计制造的合成的原理:核酸固相合成的基本原理是将所要合成的核酸链的末端核苷酸先固定在一种不溶性高分子固相载体上,然后再从此末端开始将其他核苷酸按顺序逐一接长。
每接长一个核苷酸残基则经历一轮相同的操作,由于接长的核酸链始终被固定在固相载体上,所以过量的未反应物或反应副产物可通过过滤或洗涤的方法除去。
合成至所需长度后的核酸链可从固相载体上切割下来并脱去各种保护基,再经纯化即可得到最终产物。
(末端核苷酸的3’-OH与固相载体成共价键,5’-OH被二甲氧基三苯甲基(DMT)保护,下一个核苷酸的5’-OH亦被DMT保护3’-OH上的磷酸基上氨基亚磷酸化合物活化碱基上的氨基用苯甲酸保护。
每延伸一个核苷酸需四步化学反应(1)脱DMT游离出5’-OH。
⑵缩合(偶联反应):新生成的5’-OH与下一个核苷活化的3’单体缩合成亚磷酸三酯使链增长(3)盖帽(封端反应):有少量(小于0.5%)未缩合的5’-OH要在甲基咪唑或二甲氨基吡啶催化下用乙酸苷乙酰化封闭,以防进一步缩合造成错误延伸。
(4)氧化:新增核苷酸链中的磷为三价亚磷,需用碘氧化成五价磷(磷酸三酯)。
上述步骤循环一次,核苷酸链向5’方向延伸一个核苷酸二、聚合酶链式反应技术聚合酶链式反应(polymerasechainreaction,PCR)是一种体外特定核酸序列扩增技术。
一)PCR的基本原理双链DNA热变性成两条单链,降温使反应体系中的两个引物分别与两条DNA单链两侧的序列特异性复性,在合适的条件下,耐热DNA聚合酶以单链DNA为模板,利用反应体系中的4种dNTP合成其互补链(延伸),在适宜的条件下,这种变性一复性一延伸的循环重复1次DNA的量可以增加1倍,30次循环后,DNA的量增加230倍。
分子生物学基本技术

分子生物学基本技术一、引言分子生物学是研究生物体的分子结构、功能和相互关系的学科。
分子生物学基本技术是指在分子水平上进行研究的实验技术和方法。
本文将介绍几种常用的分子生物学基本技术。
二、聚合酶链反应(PCR)聚合酶链反应是一种用于扩增DNA片段的技术。
它可以从少量DNA样本中扩增出大量的目标DNA片段。
PCR的原理是通过不断重复DNA的变性、引物结合和DNA合成的过程,使目标DNA序列扩增到可检测的水平。
PCR广泛应用于基因克隆、基因检测、遗传学研究等领域。
三、DNA电泳DNA电泳是一种通过电场作用使DNA分子在凝胶中迁移的技术。
DNA的迁移速度与其分子大小成反比,因此可以根据DNA片段的大小进行分离和检测。
在DNA电泳中,DNA样品首先经过限制性内切酶切割,然后在凝胶电泳中进行分离。
最后,通过染色剂染色,可观察到DNA片段的分离结果。
四、基因克隆基因克隆是指将感兴趣的DNA片段插入到载体DNA中,形成重组DNA分子的过程。
常用的克隆载体包括质粒、噬菌体等。
基因克隆技术可以用于基因的定位、表达和功能研究。
克隆的基本步骤包括DNA片段的切割、载体与DNA片段的连接、转化等。
五、蛋白质表达与纯化蛋白质表达与纯化是研究蛋白质结构和功能的重要手段。
常用的表达系统包括原核表达系统(如大肠杆菌)和真核表达系统(如哺乳动物细胞)。
表达蛋白质的基本步骤包括构建表达载体、转化表达宿主细胞、诱导表达、蛋白质纯化等。
六、核酸杂交核酸杂交是一种通过DNA或RNA的互补碱基配对形成双链结构的技术。
核酸杂交可用于检测目标DNA或RNA的存在、定位和表达水平。
常用的核酸杂交技术包括Southern blotting、Northern blotting和in situ杂交等。
七、蛋白质相互作用研究蛋白质相互作用是细胞内发生的重要生物学过程。
研究蛋白质相互作用可以揭示蛋白质的功能和信号转导机制。
常用的蛋白质相互作用研究技术包括酵母双杂交、共免疫沉淀、荧光共振能量转移等。
分子生物学中的基本实验技术

分子生物学中的基本实验技术分子生物学是生物学中的一个重要分支,它研究的是生物体中的分子结构和功能。
分子生物学的研究对于生物科学的深入发展具有非常重要的意义,因此有许多实验技术被应用于分子生物学的研究中。
今天我将为大家介绍分子生物学中的基本实验技术。
1. PCR技术PCR技术是分子生物学中最常见的实验技术之一,全名为聚合酶链式反应。
这个技术的主要作用是在一定时间内通过不断复制DNA分子,使其数量快速增加。
PCR技术的原理是利用DNA聚合酶逆转录DNA为RNA,然后复制RNA为DNA,从而使得DNA的数量快速增加。
这个技术对分子生物学的研究非常重要,因为可以快速扩增特定目标DNA序列,用于检测基因改变、氨基酸替换等。
2. 克隆技术克隆技术是一种基于DNA分子复制的实验技术,它通过将特定的DNA序列定位在DNA分子的特定位置,使其可以被快速复制。
这个技术对于分子生物学的研究也非常重要,因为可以通过克隆技术复制从许多不同物种中获得的DNA分子,从而使其进行深入研究。
现在,克隆技术已经成为了分子生物学中最常用的实验技术之一。
3. 基因测序技术基因测序技术是一种对DNA分子进行测序的技术,它对于分子生物学的研究也非常重要。
通过基因测序技术,可以快速测定DNA分子的序列,从而更好地了解其功能和结构。
基因测序技术也是现代医学研究中最常用的技术之一。
4. 基因编辑技术基因编辑技术是一种用于改变生物体内基因结构的实验技术。
现在,有一些高效的基因编辑技术被发明,其中最为热门的是CRISPR/Cas9技术。
通过这个技术,可以快速实现基因替换、氨基酸替换等,这对于生物医学研究来说非常重要。
5. 免疫印迹技术免疫印迹技术是一种检测特定蛋白质的实验技术,对于分子生物学的研究也非常重要。
通过免疫印迹技术,可以检测特定蛋白质的存在和表达水平,从而更好地了解它们在生物体内的作用。
总之,分子生物学中的实验技术非常多,但是以上几种技术是最为基础和常见的实验技术。
分子生物学常用技术

分子生物学常用技术一.琼脂糖凝胶电泳琼脂糖是一种线性多糖聚合物,从红色海藻产物琼脂中提取的。
当琼脂糖溶液加热到沸点后冷却凝固便会形成良好的电泳介质,其密度是由琼脂糖的浓度决定的。
经过化学修饰的低熔点(LMP)的琼脂糖,在结构上比较脆弱,因此在较低的温度下便会熔化,可用于DNA片段的制备电泳。
凝胶的分辨能力同凝胶的类型和浓度有关(见表)。
琼脂糖凝胶分辨DNA片段的范围为0.2~50kb之间;而要分辨较小分子量的DNA片段,则要用聚丙烯酞胺凝胶,其分辨范围为1个碱基对到1000个碱基对之间。
凝胶浓度的高低影响凝胶介质孔隙的大小。
浓度越高,孔隙越小,其分辨能力也就越强,反之,浓度降低,孔隙就增大,其分辨能力也就随之减弱,例如,20%的聚丙烯酰胺凝胶的分辨力可达1~6 bpDNA小片段,而要分离1000bp的DNA片段,则要用3%的聚丙烯酚胺的凝胶。
再如,2%的琼脂糖凝胶可分辨小到300bp的双链DNA分子,而对于较大片段的DNA,则要用低浓度(0.3%~1.0%)的琼脂糖凝胶。
琼脂糖及聚丙烯酰胺凝胶分辨DNA片段的能力凝胶类型及浓度分离DNA片段的大小范围(bp)0.3%琼脂糖 50 000 ~1 0000.7%琼脂糖 20 000 ~1 0001.4%琼脂糖 6000 ~ 3004.0%聚丙烯酰胺 1 000 ~ 10010.0%聚丙烯酰胺 500 ~ 2520.0%聚丙烯酰胺 50 ~ 1凝胶电泳既是一种分析的手段,也可以用来制备和纯化特定的DNA片段。
有两种不同类型的琼脂糖凝胶,一种是常熔点的,另一种是低熔点的,而后者的价格却相当昂贵。
它们都是琼脂的衍生物,具有很高的聚合强度和很低的电内渗,因此都是良好的电泳支持介质。
LMP琼脂糖是一种熔点为62~65℃的琼脂衍生物,它一旦熔解,便可在37℃下持续保持液体状态达数小时之久,而在25℃下也可持续保持液体状态的10分钟, LMP琼脂糖可以不经电洗脱或破碎凝胶,即可用来回收DNA分子。
分子生物学实验基本技术

分子生物学实验进程
实验一 真核细胞染色体DNA的分离制备 DNA样品的纯化、定量和电泳检测 实验二 大肠杆菌感受态细胞的制备与重组质粒转化 实验三 碱变性法小量制备质粒 DNA的限制性酶切 实验四 琼脂糖凝胶中DNA片段的分离和回收 质粒DNA的连接和转化 实验五 真核细胞RNA的制备和逆转录PCR 实验六 Western印迹(上) 实验七 Western印迹(下) 实验八 外源基因在大肠杆菌中的诱导表达和检测 实验九 多聚酶链式反应(PCR)反应 实验十 Northern印迹 实验十一 Southern印迹 考试
1966
1972 1973 1973 1977 1977 1982 1986 2001
Finished unraveling the code; Nirenberg & Khorana
Recombinant DNA made in vitro; P. Berg DNA cloned on a plasmid; H. Boyer & S. Cohen Discovery of reverse transcriptase; H. Temin Rapid DNA sequencing; F. Sanger & W. Gilbert Discovery of split genes; Sharp, Roberts et al. Discovery of ribozymes; T. Cech & S. Altman Creation of PCR; K. Mullis et al. Human Genome Project; Venter, Collins and many others
段连接起来构成一个新的DNA分子的过程。
分子克隆(molecular cloning):重组体分子的无性 繁殖过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质粒提取的思路
质粒的特性:共价、闭合、环状的小分子量DNA 要去除的物质:
蛋白 基因组DNA 脂类及小分子杂质 RNA
分离质粒DNA方法
从大肠杆菌中分离质粒DNA方法众多,目前常用的 碱变性法; 煮沸法; SDS法; 羟基磷灰石层析法等 各方法分离是依据宿主菌株类型、质粒分子大小、
9. 12000g ,4 ℃离心5分钟。
10.弃上清,加入1ml 70%乙醇漂洗沉淀,盖严管盖颠 倒数次,12000g 于4 ℃离心2分钟。
11.弃上清,抽干乙醇,室温干燥(5-15分钟)。
12.加入50μl TE(含20μg/ml RNA 酶,不含DNA酶) 溶解DNA。
四.结果分析
1.质粒DNA OD260,OD280的值,由此 计算质粒DNA得率和DNA纯度。
EDTA
AmP 50mg/ml
溶菌酶 10mg/ml (用10mM Tris·HCl pH8.0新鲜配制)
试剂
溶液Ⅰ: 50mM 葡萄糖 25mM Tris·HCl(pH8.0) 10mM EDTA
溶液Ⅱ:(新鲜配制) 0.2N NaOH 1% SDS
溶液Ⅲ: 5M KAC 10ml 冰醋酸 11.5ml 水 28.5ml
酚,氯仿,乙醇 RNase 琼脂糖 TE: 10mM Tris-HCl(pH8.0) 1mM EDTA
实验仪器
(一) 仪器 1. 恒温摇床 2. 超净工作台 3. 高压灭菌锅 4. 高速台式离心机 5. 微量取液器
Insert
EcoR1 1.9kb
Xho1
三.实验方法
1.挑取琼脂培养板上的单菌落至5ml LB培养液中(含 AmP 50μg/ml), 37℃强烈摇荡过度。
2.记录电泳结果并说明结果内容。
问题与讨论:
1.简要叙述溶液Ⅰ、溶液Ⅱ和溶液Ⅲ的作 用,以及实验中 分别加入上述溶液后,反应 体系出现的现象及其成因。
2.简要叙述酚氯仿抽提DNA体系后出现 的现象及其成因。
3. 沉淀DNA时为什么要用无水乙醇及在高 盐、低温条件下进行?
谢谢
2.取1.5ml培养液至Eppendorf管中,12000g离心30秒, 弃上清,用1ml STE悬浮菌体,再离心回收菌体,并重复 一次,弃上清,取沉淀。
3.将细菌沉淀悬浮于100μl预冷溶液Ⅰ中,振荡混匀,冰 上放置5分钟。
4.加入200μl溶液Ⅱ,盖严管盖轻柔颠倒5次以混匀内容 物,冰上放置5分钟。
碱基组成及结构等特点加以选择的,其中碱变性法 既经济且收得率较高,提取的质粒DNA可用于酶切, 连接与转化。
碱变性法基本原理
在pH 12.0-12.6碱性环境中,线性的大分子量细菌 染色体DNA变性,而共价闭环质粒DNA仍为自然状 态。
将PH调至中性并有高盐浓度存在的条件下,染色体 DNA之间交联形成不溶性网状结构,大部分DNA和 蛋白质在去污剂SDS的作用下形成沉淀,而质粒 DNA仍为可溶状态,通过离心可除去大部分细胞碎 片、染色体DNA、RNA及蛋白质,质粒DNA尚在上 清中,再用酚氯仿抽提进一步纯化质粒DNA。
☆原理示意图 返回目录 返回原理
——三个基本步骤:
细菌的生长和质粒的扩增 菌体的收集裂解及质粒DNA的分离 质粒DNA的纯化
实验试剂
LB培养基:
胰化蛋白胨 10g
酵母提取物 5g 定容
1000ml pH
7.5
NaCl
10g
STE:
0.1M
NaCl
10mMΒιβλιοθήκη Tris HCl(pH8.0)
1mM
2.严紧型质粒
严紧型质粒复制需要一个质粒编码的蛋白,质粒的 拷贝数不能通过用氯霉素等蛋白合成抑制剂来增加。
质粒的应用
大多数基因工程使用松弛型质粒。 严紧型质粒用来表达一些可使宿主细胞受毒
害致死的基因。
质粒的特点使质粒成为携带外源基因进入细 菌中扩增或表达的重要媒介物,这种基因运 载工具在基因工程中具有极广泛的应用价值。
5.加入150μl溶液Ⅲ,温和振荡数次,冰上放置5分钟。 6.12000g 4 ℃离心5分钟,取上清移到1个新的
Eppendorf管中。
(7.加入等体积酚/氯仿(1:1),振荡混匀,12000g 4 ℃离心2分钟。取上清移至另1个Eppendorf管中。)
8.加入2倍体积无水乙醇,振荡混匀,于室温静置2分钟。
结构的三大要素: • 多克隆位点 • 选择标记(耐药性,LacZ) • 独立的复制单位 种类: • 质粒 • 噬菌体 • 酵母人工染色体(YAC) • 反转录病毒载体 • 表达载体等
质粒类型
质粒按复制方式分为两种类型: 松弛型质粒 和 严紧型质粒
1.松弛型质粒
松弛型质粒的复制不需要质粒编码的功能蛋白, 完全依赖于宿主提供的半衰期较长的酶。即使蛋白 质合成受抑制,质粒的复制依然进行。