薄壁空间结构

合集下载

第五章 钢筋混凝土空间薄壁结构

第五章 钢筋混凝土空间薄壁结构
安全措施:为确保施工安全,应采取一系列安全措施,如搭设安全网、安装临时栏 杆、使用安全带和安全帽等个人防护设备,以及定期进行安全检查和评估。
施工监控:采用先进的施工监控技术,对施工过程进行实时监测和记录,及时发现 和解决潜在的问题,确保施工质量和安全。
应急预案:制定完善的应急预案,包括应对突发事件、自然灾害等方面的措施,确 保在紧急情况下能够迅速采取有效措施,保障人员安全和减少损失。
绿色环保技术:采用绿色环保技 术,减少对环境的负面影响,实 现可持续发展。
未来发展方向与挑战
未来发展方向:优化设计、提高承载能力、降低成本 面临的挑战:耐久性、施工质量控制、环境适应性 发展趋势:智能化、绿色化、可持续性 展望:在建筑、桥梁等领域的应用前景广阔
对行业的贡献与影响
提高了建筑结构的稳定性和安全 性
案例分析与实践经验
案例一:某大型桥梁工程
案例三:某大跨度厂房
添加标题
添加题
案例二:某高层建筑
添加标题
添加标题
实践经验:施工要点与注意事项
案例的优缺点与改进方向
缺点:施工难度大、易开裂、 维护成本高
改进方向:优化设计、提高 材料性能、加强施工监控
优点:结构轻巧、承载力高、 抗震性能好
案例:某大型桥梁工程、高 层建筑等
钢筋混凝土空间薄壁结构的性能分 析
受力性能
稳定性:能够承受较大的侧 向压力和水平推力
受力特点:具有较高的承载 能力和刚度
抗震性能:在地震作用下具 有良好的抗震性能
耐久性:能够承受长期的外 部荷载和环境因素的作用
抗震性能
钢筋混凝土空间薄壁结构具有良好的抗震性能,能够吸收地震能量,减少 结构损伤。
降低了建筑成本和能耗,提高了 经济效益和社会效益

钢筋混凝土空间薄壁结构

钢筋混凝土空间薄壁结构

5.3.3 筒壳的结构构造 1、短壳:矢高大于波长的1/8,空间作用明显,壳体 内力以薄膜内力为主,弯矩极小,按构造配筋。 2、长壳:长壳截面高度建议取用跨长的1/10~1/15, 壳板的矢高不应小于波长的1/8,板厚取波长的 1/300~1/500且大于50mm。
5.3.4 筒壳结构的工程实例 1、同济大学礼堂
ቤተ መጻሕፍቲ ባይዱ
自然界中的空间薄壁结构
鸡蛋:直径50mm,壁厚0.2mm, 厚度为跨度的1/250
第五章 钢筋混凝土空间薄壁结构
5.1.1 薄壳结构的概念
壳体结构——上下两个几何曲面所构成的薄壁空间 结构。
壳体厚度——两个几何曲面距离称为壳体的厚度δ, 可分为等厚度壳,变厚度壳。
薄壳——壳体的厚度δ远小于壳体的最小曲率半径R 时,即称为薄壳。
3、直纹曲面 一条直线(母 线)的两端分 别沿二固定曲 线(导线)移 动所形成曲面。
双曲抛物面也是直纹曲面
5.1.3 薄壳结构的内力
为了方便计算,一般不用应力作为计算单位,而是 以中曲面单位长度上的内力作为计算单位。
内力有8对,分为两类: 1、作用于中曲面以内的薄膜 内力; 2、作用于中曲面以外的弯曲 内力。
5.2 圆顶
适用于平面为圆形的大跨 度建筑。 天文馆最常用的结构形式
5.2.1 圆顶的结构组成及 结构形式
圆顶结构由壳身、支座环、 下部支撑构件三部分组成。
5.2.1 圆顶的结构组成及 结构形式
圆顶结构由壳身、支座环、 下部支撑构件三部分组成。
5.2.1 圆顶的结构组成及结构形式 圆顶结构由壳身、支座环、下部支撑构件三部分组成。
第五章 钢筋混凝土空间薄壁结构
5.1 概述 平面结构——自身平面内受力,构件之间需额外设 置支撑以实现另一方向的安全性和稳定性。

建筑结构选型------ 薄壁空间结构

建筑结构选型------ 薄壁空间结构
圆顶的支座环相当于拱的拉杆, 主要为受拉,可采用普通或预 应力混凝土梁。当圆顶不是支 承在墙上而是柱上时,还同时 受弯、剪、扭的作用。
C.框架支承
D.落地支承
圆顶
• 结构构造
1.壳板厚度
t=R/600,且现浇时≥40mm, 装配整体式时≥30mm 。
3.支座环附近构造及配筋
支座环约束附 近的局部弯矩 支座环附近壳板应 加厚并双层配筋 增加厚度≥t
长壳与曲线截面梁的应力状 态相似,可按梁理论计算
筒壳
• 筒壳的受力特点
3.筒壳的传力模式
当横隔为实体梁时, 梁应按偏拉构件计算 并非将荷载竖 向地传给横隔
而是通过壳面内的顺 剪力将荷载传给横隔
当横隔为桁架时,应将顺剪力换 算成节点上的集中荷载再计算
筒壳
• 筒壳的结构构造
1.短壳(L1/L2≤2)
果壳
蜗牛壳
蛋壳
蚌壳
脑壳
种子
概述
• 薄壳结构的概念
4.壳体结构实例
B.生活中的壳体结构
灯泡
乒乓球
飞机

安全帽
轮船
概述
• 薄壳结构的曲面形式
1.旋转曲面
旋转曲面: 由一条平面曲线绕着该 平面内某一给定直线旋 转一周所形成的曲面。 旋转壳: 以旋转曲面为中曲面的 壳体。 母线: 即绕旋转曲转动的曲线。 旋转轴: 旋转时不动的直线。 抛物球壳 椭球壳 双曲球壳
概述
• 薄壳结构的概念
2.描述壳体结构的相关概念
I.高斯曲率 —曲面上某点两个主曲率乘积
J.壳顶 —在曲面以上 的中曲面的最 高点,如下图 的 o点 K.矢高 —壳顶到底面 的距离,如右 图的f L.矢率 —矢高与底面 短边之比,即 右图中的f/a M.扁壳与陡壳 —矢率较小者为扁壳,较 大者为陡壳,工程上常 以f/a=1/5为界限

钢筋混凝土空间薄壁结构

钢筋混凝土空间薄壁结构

钢筋混凝土空间薄壁结构关键信息项:1、结构设计要求2、施工技术标准3、质量验收标准4、维护与保养责任5、违约责任与赔偿6、争议解决方式11 协议目的本协议旨在规范钢筋混凝土空间薄壁结构的设计、施工、验收、维护及相关责任等方面的事宜,确保该结构的安全性、可靠性和耐久性。

111 适用范围本协议适用于所有采用钢筋混凝土空间薄壁结构的建筑项目。

12 结构设计要求121 设计单位应具备相应的资质和经验,根据相关规范和标准进行结构设计。

122 结构设计应考虑荷载情况,包括但不限于恒载、活载、风载、地震作用等。

123 薄壁结构的几何形状、尺寸和配筋应经过精确计算和优化,以满足结构的强度、刚度和稳定性要求。

13 施工技术标准131 施工单位应制定详细的施工方案,并经监理单位和建设单位审批。

132 施工过程中应严格按照设计要求进行钢筋的布置、绑扎和连接。

133 混凝土的配合比、搅拌、浇筑和振捣应符合相关标准,确保混凝土的质量。

134 施工中应采取有效的模板支撑体系,保证薄壁结构的形状和尺寸精度。

14 质量验收标准141 钢筋混凝土空间薄壁结构的验收应按照国家和地方相关标准进行。

142 验收内容包括结构的几何尺寸、钢筋布置、混凝土强度、外观质量等。

143 对于存在质量问题的部位,应制定整改措施并及时整改,整改后重新验收。

15 维护与保养责任151 建设单位应在结构使用过程中定期进行检查和维护,确保结构的安全使用。

152 维护工作包括但不限于结构表面的清洁、防水处理、钢筋的防锈蚀处理等。

153 发现结构存在安全隐患时,应及时采取措施进行修复或加固。

16 违约责任与赔偿161 若设计单位未按照协议要求进行设计,导致结构存在安全隐患或质量问题,应承担相应的责任并赔偿损失。

162 施工单位未按照施工技术标准进行施工,造成质量事故的,应负责返工并承担由此产生的费用和损失。

163 建设单位未按照维护要求进行维护,导致结构损坏的,应承担相应的责任和损失。

薄壁空间结构

薄壁空间结构
粒子群优化算法
模拟鸟群、鱼群等生物群体的行为模 式,通过个体间的信息共享和协作来 寻找最优解。
结构尺寸优化
截面尺寸优化
根据结构承载力和稳定性要求, 优化薄壁结构的截面尺寸,以实 现最佳的承载性能和稳定性。
杆件长度优化
根据结构刚度和稳定性要求,优 化杆件的长度,以提高结构的整 体性能。
板厚优化
根据结构承载力和稳定性要求, 优化板的厚度,以提高结构的承 载能力和稳定性。
离散元法
总结词
离散元法是一种用于分析离散物体运动的数 值方法,通过将物体离散为一系列刚性或柔 性单元,对单元进行受力分析和运动学计算 。
详细描述
在薄壁空间结构分析中,离散元法可以用于 模拟结构的动态行为和碰撞问题。该方法将 结构离散化为一系列刚性或柔性单元,通过 建立单元间的相互作用模型,对每个单元进 行受力分析和运动学计算,从而得到结构的
结构形状优化
形状优化
通过改变结构的形状来提高结构的承 载能力和稳定性,如改变梁的截面形 状、改变板的形状等。
曲率优化
通过改变结构的曲率来提高结构的承 载能力和稳定性,如改变梁的弯曲程 度、改变板的曲率等。
结构拓扑优化
材料分布优化
根据结构承载力和稳定性要求,优化 材料的分布,以提高结构的承载能力 和稳定性。
大跨度桥梁等建筑和设施。
03 薄壁空间结构的分析方法
有限元分析法
总结词
有限元分析法是一种常用的数值分析方 法,通过将连续的求解域离散为一组有 限个、且按一定方式相互连接在一起的 单元组合体,对每个单元进行数学描述 ,然后对整个系统进行求解。
VS
详细描述
有限元分析法在薄壁空间结构分析中广泛 应用,它能够处理复杂的几何形状和边界 条件,提供高精度的计算结果。通过将结 构离散化为有限个单元,对每个单元进行 受力分析,然后利用数学方法将各单元的 受力情况综合起来,得到整个结构的受力 状态。

薄壁空间结构

薄壁空间结构
19
19
n 圆顶是正高斯曲率的旋转曲面壳。 n 一、圆顶的结构组成及结构形式 n 1、壳身部分
20
20
按壳板的构造不同,圆顶薄壳可分为平 滑圆顶、肋形圆顶和多面圆顶三种。
三种圆顶壳板构造 (a)平滑圆顶 (b)肋形圆顶 源自c)多面圆顶2121
n 2、支座环
支座环是球壳的底座,它是圆顶薄壳结构保持几何不变 性的保证,对圆顶起到箍的作用。它可能要承担很大的 支座推力,由此环内会产生很大的环向拉力T,因此支 座环必须为闭合环形,且尺寸很大,其宽度在0.5— 2m,建筑上常将其与挑檐、周圈廊或屋盖等结合起来加 以处理,也可以单独自成环梁,隐藏于壳底边缘。
23
23
圆顶薄壳支承在斜拱
这种支承方式,往往会收到意想不到建筑效果。在平面上, 斜柱、斜拱可布置为多边形,给人以“天圆地方”的造型美。 在立面上,斜柱、斜拱可以外露,既可表现结构的力量之 美,又能与其它建筑构件互相配合,形成很好的装饰效果, 给人清新,明朗之感。
n薄壳的薄膜内力
3
3
n 由于壳体强度高,刚度大,用料省,自重轻;覆盖大面积, 无需中柱;而且其造型多变,曲线优美,表现力强,因而深 受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅, 食堂,剧院,天文馆,厂房,飞机库等。
n 不过,薄壳结构也又其自身的不足之处,由于体形多为曲 线,复杂多变,采用现浇结构时,模板制作难度大,会费模 费工,施工难度较大;一般壳体既作承重结构又作屋面,由 于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、 扁壳)易产生回声现象,对音响效果要求高的大会堂、体育 馆、影剧院等建筑不适宜。
n 以上所列种种壳体结构一般是由上下两个几何曲面构成
的空间薄壁结构。两个曲面之间的距离即为壳体的厚度

第五章 薄壁空间结构(二)

第五章  薄壁空间结构(二)
为控制板厚,雁形板 翼板宽度b一般宜控制在4m 以下, 当L≤12m时,可取b=2m, t=50mm, 当12m<L ≤ 21m时,可取 b=2~3m,t=50~80mm, 当 20<L≤27m时,可取b=3m, t=80mm, 当27<L≤36m时,可取 b=4m, t=80~100mm。
五、雁形板的工程实例
顺剪力,为偏心受拉构件。受力与计算同 筒壳结构。
四、双曲扁壳的优缺点:

1.优点: A.矢高小-结构空间小 B.保持双曲-这是壳体发展的必然趋向 C.施工方便-与球壳相比 D.平面适应性有所改变-能用于矩形平面 E.造型美观-外形美观,内部素雅大方、名朗 宽敞 F.能达到无拉力状态-充分利用砖或混凝土抗 压强度,合理用材,材尽其用。 2.缺点:模板仍然不能使用直料。
第六节
折板
定义:由许多薄平板,以 一定角度相互整体联接而 成的空间结构体系。 一、折板的组成及其作用 1.组成:折板结构与 筒壳相似。一般由折 板、边梁、和横隔三 部分组成。对于多波 预制折板,也可以靠 转折处的边棱代替边梁。
小试验
用书做两个支座,找一张纸放在书上,用
手压 把纸折成许多小片,同样放在书上
1) 中央区:主要承受双向轴压力,按构造配筋 ,洞口
开在此区 主要承受正弯矩,壳体下表面受拉,布置 2) 边缘区:钢筋;壳体越高越薄,弯矩越小,弯矩作 用区越小 主要承受顺剪力, 3) 四角区:主应力为拉力——配45度斜筋 主应力为压力——局部增大混凝土厚度
2.横隔:边缘构件主要承受壳板边缘传来的
轴向应力呈三角形分布,屋脊处为零,支 座处最大,水平分力使得下弦杆受拉。
三、受力特点
1、扭壳的壳板 •只有顺剪力 平行于直纹方向

壳体

壳体

8.2 壳体和折板结构体系——薄壁空间结构体系壳体:由单曲面或双曲面板组成,以曲面的空间刚度折板:由平面板组成,以折板组成的空间刚度 概述:壳体结构的发展简况 自然界:果壳、贝壳、鸡蛋、头颅等曲线优美、形态善变、厚度之薄—令人惊叹遵循:用最少之料构成最坚之型的规律可见:壳体是最自然、最合理、最有效、最进步的结构型式人类:锅、匙、碗、杯、瓶、罐、坛、乒乓球、灯泡、钢盔、汽车壳、飞机壳等。

壳体结构的覆盖面积大,无需中柱,室内空间开阔宽敞,用于市场、礼堂、体育馆、飞机库……用于屋盖结构:1954、1955 北京展览馆上海展览馆1959 广东,大会堂 扁球壳 1960 新疆,金工车间 椭圆旋转球壳 1958 北京火车站 1964 北京网球馆保证结构刚度单波多跨筒壳双曲扁壳……缺点:● 现浇砼费模板、制作复杂——壳体本身材料与人工费比很小柔模喷涂成壳:帆布、 钢丝网等预制壳块、高空装配地面现浇、整体吊装● 有些壳体(球壳、扁壳等)易产生回声现象 还存在计算复杂,尚需研究开孔影响、稳定、 振动、徐变等问题一、 壳体结构的力学特征鸡蛋壳 δ/R=1/50 δ壳体厚度 一般壳体要求 δ/R<=1/20R —曲率半径 1● 影 响 发 展 但施工材料与人工费都很高,占总造价50%~70%左右称之为曲面应力或切向力,又称为薄膜应力。

沿厚度分布均匀,经济。

这层膜很薄,却能直接抗衡外荷,并直接传力给支座,● 承受少许横向弯矩——只有在非对称均布荷载作用时(扭矩)(曲线外形使壳体风载很小,一般可不计;一般壳体不允许吊挂不对称荷载)为此,要增配钢筋,有时甚至要增加厚度,不理想。

M 甚小)抗衡并传递外荷,这也是壳之所以薄的原因。

● 中面或中心面——因为,壳薄,所以,可认为沿厚度方向均匀分布,一般把厚度中心的面称为中面或中心面,壳体的线形以次为准。

实现薄膜应力的条件:a . 中面的曲率是连续变化的;b . 壳体厚度是逐渐变化的;c . 荷载是连续分布的;d . 壳体的支座只在中面的切线方向阻止位移并产生反力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄壁空间结构在本小节中我们要给大家介绍各种薄壁空间结构体系的组成、优缺点及适用范围;各种薄壁空间结构体系的合理布置原则及及受力特点。

一、薄壳结构的概念壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。

这两个曲面之间的距离称为壳体的厚度t。

当厚度t远小于壳体的最小曲率半径时,称为薄壳。

一般在建筑工程中所遇到的壳体,常属于薄壳结构的范畴。

在面结构中,平板结构主要受弯曲内力,包括双向弯矩和扭矩,如图1-65a。

薄壁空间结构如图1-95b所示的壳体,它的厚度t远小于壳体的其它尺寸(如跨度),属于空间受力状态,主要承受曲面内的轴力(双向法向力)和顺剪力作用,弯矩和扭矩都很小。

图1-65 面结构(a)平板结构(b)曲面结构(壳)薄壁空间结构,由于它主要承受曲面内的轴力作用,所以材料强度得到充分利用;同时由于它的空间工作,所以具有很高的强度及很大的刚度。

薄壳空间结构内力比较均匀,是一种强度高、刚度大、材料省、既经济又合理的结构型式。

薄壁空间结构常用于中、大跨度结构,如展览大厅,飞机库、工业厂房、仓库等。

在一般的民用建筑中也常采用薄壳结构。

薄壁空间结构在应用中也存在一些问题,由于它体形复杂,一般采用现浇结构,所以费模板、费工时,往往因此而影响它的推广。

同时在设计方面,薄壁空间结构的计算过于复杂。

二、薄壳空间结构的曲面形式薄壳结构中曲面的形式,按其形成的几何特点可以分成以下三类:1.旋转曲面由一平面曲线(或直线)作母线绕其平面内的一根轴线旋转而成的曲面,称为旋转曲面。

在薄壁空间结构中,常用的旋转曲面有球形曲面、旋转抛物(椭圆)面、圆锥曲面、旋转双曲面等,分别见图1-66。

图1-66 旋转曲面2.直纹曲面(图1-67)一根直母线,其两端各沿两固定曲导线(或为一固定曲导线,一固定直导线)平行移动而成的曲面,称为直纹曲面。

一般有:(1)柱曲面(一根直母线沿两根曲率方向和大小相同的竖向曲导线移动而成)或柱状曲面(一根直母线沿两根曲率方向相同但大小不同的竖向曲导线始终平行于导平面移动而成)它们又都称单曲柱面,分别见图1-67。

(2)锥面(一根直母线一端沿一竖向曲导线,另端通过一定点移动而成)或锥状面(同上,但另端为一直线,母线移动时始终平行于导平面), 后者又称劈锥曲面,分别见图1-67。

(3)扭面(一根直母线在两根相互倾斜又不相交的直导线上平行移动而成), 见图1-67。

直纹曲面建造时模板易于制作,常被采用。

图1-67 直纹曲面3.平移曲面(图1-68)由一根竖向曲母线沿另一竖向曲导线平移而成。

其中,母线与导线均为抛物线且曲率方向相同者称椭圆抛物面,因为这种曲面与水平面的截交曲线为一椭圆;母线与导线均为抛物线。

图1-68 平移曲面4. 切割或组合曲面由上述三类曲面切割组合形成的曲面建筑师能根据平面及空间的需要,通过对曲面的切割或组合,形成千姿百态的建筑造型。

曲面切割的形式如图1-99a是著名建筑师萨瑞南的设计的美国麻省理工学院大会堂的建筑造型。

再如图1-99b,是著名建筑结构大师托罗哈1933年建造的西班牙Algeciras市场的建筑造型。

又如,双曲抛物面可近似看作用一系列直线相连的两个圆盘以相反方向旋转而成,扭面实际上是双曲抛物面中沿直纹方向切割出的一部分(图1-69c)。

图1-69 曲面切割示意图曲面的组合多种多样。

图1-70a是两个柱形曲面正交的造型;图1-70b是八个双曲抛物面组合后的造型;图1-70c是六个扭壳组合后的造型。

图1-70 曲面组合示意图三、薄壳结构的内力对于一般的壳体结构,中曲面单位长度上的内力一共有8对,它们是轴向力N x、N y;顺剪力S xy=S yx;横剪力V x、V y;弯矩M x、M y以及扭矩M xy=M yx,见图1-71。

图1-71 壳体结构的内力a)壳体结构的内力b)薄膜内力上述内力可以分为两类,作用于中曲面内的薄膜内力和作用于中曲面外的弯曲内力。

理想的薄膜在荷载作用下只能产生轴向力N x、N y和顺剪力S xy=S yx,见图1-71b。

因此,这三对内力通称为薄膜内力。

弯曲内力是由于中曲面的曲率和扭率的改变而产生的,它包括有横剪力V x、V y;弯矩M x、M y以及扭矩M xy=M yx。

理论分析表明:当曲面结构的壁厚t于其最小主曲率半径R的二十分之一并能满足下列条件时,薄膜内力是壳体结构中的主要内力:(1)壳体具有均匀连续变化的曲面;(2)壳体上的荷载是均匀连续分布的;(3)壳体的各边界能够沿着曲面的法线方向自由移动,支座只产生阻止曲面切线方向位移的反力。

在本小节中我们要给大家介绍筒壳结构体系的组成、优缺点及适用范围;筒壳结构体系的合理布置原则及及受力特点。

历史上出现的第一种壳体是筒壳。

其外形似圆筒,故名圆筒壳,又似圆柱体,故又名柱面壳。

筒壳外形简单,是单曲面壳体。

其纵向为直线,有其横向刚度小的缺点,但却由于它的几何形状简单,模板制作方便,易于施工,省工省料,这是其最大优点。

也是筒壳在历史上最早出现,并在近代仍大量应用的根本原因。

(一)筒壳的结构组成筒壳由壳身、侧边构件及横隔三部分所组成(图1-72)。

侧边构件可理解为壳体“边框”,两个横隔之间的距离称为筒壳的跨度,以表示;两个侧边构件之间的距离称为筒壳的波长,以表示。

沿跨度方向称为筒壳的纵向,沿波长方向则称为筒壳的横向。

图1-72筒壳结构的组成筒壳壳身横截面的边线可为圆弧形、椭圆形,或其他形状的曲线,一般采用圆弧形较多,它方便施工。

壳身包括侧边构件在内的高度称为筒壳的截面高度,以h表示。

不包括侧边构件在内的高度称为筒壳的矢高,以f表示。

侧边构件(边梁)与壳身共同工作,整体受力。

它一方面作为壳体的受拉区集中布置纵向受拉钢筋,另一方面可提供较大的刚度,减少壳身的竖向位移及水平位移,并对壳身的内力分布产生影响。

常见的侧边构件截面型式如图1-73所示,其中以图1-73a的方案最为经济。

图1-73常见的侧边构件横隔是筒壳的横向支承,缺少它,壳身的形体就要破坏。

横隔的功能是承受壳身传来的顺剪力并将内力传到下部结构上去。

常见的筒壳横隔型式如图1-74上所示。

图1-74 常见的筒壳横隔型式(二)筒壳的分类及受力特点筒壳的空间工作是由壳板、侧边构件和横隔三者共同完成的。

筒壳在横向的作用与拱相似,在壳身内产生环向的压力,而在纵向则同时发挥着梁的作用,把上部竖向荷载通过纵向梁的作用传给横隔。

因此,筒壳结构是横向拱的作用与纵向梁的作用的综合。

在实际设计中,由于建筑布置的不同,使跨长与波长有着大小不同的比例,跨长与波长的比值不同时,筒壳的受力状态也不一样。

当跨长与波长的比值增加到一定程度时,筒壳就会像弧形截面梁一样受力;当跨长与波长的比值减小时,筒壳的空间工作性能(拱的作用)就愈来愈明显,这主要反映了横隔对空间工作的影响。

因此,工程中按跨度与波长的比值将筒壳分为三类:1. 长筒壳当跨长与波长的比值≥3时,称为长筒壳。

对于较长的壳体,因横隔的间距很大,纵向支承的柔性很大,壳体的变形与梁一致。

这时长筒壳结构中的应力状态和曲线截面梁的应力状态相似,如图1-75所示,可以按照材料力学中梁的理论来计算。

图1-75长筒壳的受力特点2.短筒壳当跨长与波长的比值≤1/2时,称为短筒壳。

对于短筒壳,其结构布置常如图1-76所示,因为横隔的间距很小,所以纵向支承的刚度很大。

这时壳体的弯曲内力很小,可以忽略不计,壳体内力主要是薄膜内力,故可按照薄膜理论来计算。

图1-76 短筒壳结构3.中长筒壳当跨长与波长的比值1/2<<3时,称为中长筒壳。

对于中长筒壳,壳体的薄膜内力及弯曲内力都应该考虑,用薄壳有弯矩理论来分析它的全部内力。

为简化计算,也可忽略其中较次要的纵向弯矩及扭矩,用所谓半弯矩理论来计算筒壳内的主要内力。

(三)筒壳的结构布置1.结构构造(1)短壳短壳的壳板矢高一般不应小于波长的1/8。

短壳的空间作用明显,壳体内力以薄膜内力为主,弯矩极小,故壳板厚度与配筋均可按构造确定。

(2)长壳长壳的截面高度建议采用跨长的1/10~1/15,其壳板的矢高不应小于波长的1/8。

壳板厚度可取波长的1/300~1/500,但不能小于50mm。

长壳的配筋应按计算确定,按梁理论计算所得的纵向受力钢筋应布置在侧边构件内(图1-77)。

图1-77 长筒壳配筋示意图(3)天窗的布置筒壳的天窗孔及其他孔洞建议沿纵向布置于壳体的上部。

在横向,洞口尺寸建议不大于(1/4~11/3)。

在纵向,洞口尺寸可不受限制,但在孔洞四周应设边梁收口并沿孔洞纵向每隔2~3m设置横撑加强。

当壳体具有较大的不对称荷载时,除设置横撑外,尚需设置斜撑,形成平面桁架系统。

2. 筒壳的结构布置方式(1)折缝单曲板的刚度虽比平板好。

但不如双曲板。

如何加强单曲板(筒壳)的侧向刚度是个重要问题。

正如前述的横隔和加劲肋都为解决该缺点而设。

此外,还可形成折缝。

平板的出平面刚度很小,若是折一下,在直线折缝处,却能获得很大的刚度,可以作为平板的刚劲支座。

同样,筒壳也可以通过组合(如并列、交贯等)形成曲线或直线折缝(见图1-78a),称为加劲折。

图1-78 筒壳的折缝与形变这不但与加劲肋的作用完全一样,并且加劲作用更强。

因为加劲肋的肋高有限,而折缝两侧的曲面板宽度却大得多。

加劲效果大小与折缝的角度成比例。

另外,筒壳折缝使结构更富于表现力。

(2)形变圆柱形筒壳的外形单调、缺乏活力。

若在一个筒壳中,其波宽与矢高沿纵向变化,或两端支座一高一低变化其形象,则筒壳的造型立时顿变,显出无穷的活力。

这一变化已经超出了筒壳,进入锥壳的范围(见图1-78b),且能组成圆周形平面。

(3)纵向悬挑纵向悬挑筒壳可用于建筑屋顶的挑檐、雨篷、也可用作车站站台与大看台的悬挑屋顶。

图1-79 筒壳的纵向悬挑(4)横向悬挑横向悬挑可用于雨蓬、站台、大看台、也可用于大厅和外墙采光多或开门特大(如飞机库、车库)的建筑物(见图1-80)。

悬挑横隔密排者为短筒壳,疏排者为长筒壳。

图1-80 筒壳的横向悬挑(5)并列组合等宽筒壳并列可组成矩形平面屋顶(图1-81a、b),也可组成水塔的圆柱形水箱(图1-81c)。

锥形变宽筒壳并列可组成扇形、环形平面屋顶,也可组成水塔的锥形水箱(图1-81d、e), 并列筒壳相接处形成刚劲有力的折缝。

图1-81 筒壳的并列组合(6)交贯组合两个筒壳十字正交最典型的例子是美国圣路易市航空港(图1-82);另一个是环形筒壳与周圈放射向锥形筒壳交贯成一个环形平面的航空港设计方案(图1-82)充分利用了由交贯筒壳形成的加劲折缝。

图1-82 筒壳的交贯组合在本小节中我们要给大家介绍圆顶薄壳结构体系的组成、优缺点及适用范围;圆顶薄壳结构体系的合理布置原则及及受力特点。

圆顶结构是极其古老且近代仍然大量应用一种结构型式。

相关文档
最新文档