极端环境微生物的适应机制及利用

极端环境微生物的适应机制及利用
极端环境微生物的适应机制及利用

极端环境微生物的适应机制及利用

摘要:极端环境微生物是指生活于极端环境中的微生物,它们定义了生命的边界。对极端环境微生物适应机制的研究以及新的极端酶的发现,使得解决工业生产的苛刻条件与蛋白酶易变性的矛盾成为可能。本文分别对嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜盐菌、嗜压菌6 种极端微生物的适应机制和应用进行了总结。

关键词:极端微生物,适应机制,应用

随着人类对生存家园地球乃至整个宇宙的探索开发,人们对原本被视为生命禁区内的生命(极端环境微生物)产生了极大的好奇心。极端环境微生物( extremophiles)是指在一般生

物无法生存的高温、低温、高酸、高碱、高盐、高压、高辐射、太空等异常环境中生存的微生物群体的统称[1],例如嗜热菌( Thermophiles )、嗜冷菌( Psychrophiles ) 、嗜碱菌( Alkali- philes)、嗜酸菌( Acidophiles) 、嗜盐菌( Halophiles)、嗜压菌( Piezophiles) 等。由极端环境微生物适应极端环境所形成的特殊生理特性以及代谢产物,在基础研究、环境保护、食品化工及医学等多个领域中都有巨大应用潜力。本文分别对嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜盐菌、嗜压菌6 种极端微生物的适应机制和应用进行了简要概述。

1.嗜热微生物

一般把最适生长温度高于45℃的微生物称为嗜热微生物。另外,还可根据它们的最适生长温度将其划分为嗜热微生物(45℃-60℃)、极端嗜热微生物(60℃-80℃)和超嗜热微生物(>80℃)。目前发现的嗜热菌大都来自热泉、海底热液口、堆肥、火山等极端环境中,它们中大多数属于古细菌。目前发现的生命最高生存温度为121-122℃[2]。

1.1适应机理

嗜热微生物是如何适应高温而得以存活的呢?其适应机理主要包括以下几个方面:①蛋白质的热稳定性性提高。超嗜热微生物的蛋白质的氨基酸组成与常温微生物并没有不同之处,超嗜热微生物蛋白质倾向于抵抗蛋白质的去折叠(unfolding) : 嗜热蛋白质具有拥有高度疏水的核心结构的趋势;蛋白质表面具有较多的电荷分布;蛋白质表面具有更多的离子键相互作用。但是,不同的嗜热蛋白质有不同的热稳定机制没有统一的模式。有时候,一些表面微小变化有可能增强常温蛋白的热稳定性[3]。②DNA热稳定性提高但GC含量并不高。一些甲烷菌中含有较高的环化2,3二磷酸甘油酸cDPG,可以防止DNA的化学损伤,如脱嘌呤化(depurination),但是这种物质在嗜热菌中不是广泛存在;所有超嗜热微生物编码反向旋转酶(reverse gyrase, 一种拓扑异构酶),可将正向超螺旋引入DNA中,增加DNA的热稳定性;其它小分子蛋白如广古菌中组蛋白、泉古菌硫化叶菌Sac7d,Alba等,对稳定DNA或RNA也起重要作用[4]。③) 细胞被膜具有典型的革兰氏阴阳肽聚糖型细胞壁的高温菌,无法生长于 80℃以上,但嗜热菌如高温神袍菌( The rmotoga),除有肽聚糖外还有由六角形排列的外膜蛋白组成的类似鞘的外层结。又如能在110℃生长的 Methanothe rmus 、fervicus 具有由蛋白表面层(PS) 或糖蛋白表面层(GPS) 组成,其中GPS有惊人的抵抗力,如 Thermoo proteus 的GPS 在碱性2%SDS ,煮沸下都不被破坏,可一直保持细胞的原始形态。

1.2应用

利用嗜热菌体产生的酶,如从嗜热古细菌 Thermus aquoticus 中分离出来用于PCR技术的 Taq DNA聚合酶,这一酶的应用大大促进了分子生物学的发展。一些嗜热微生物还具有开发其他工业用酶的潜质,与通过基因工程的办法来获得耐高温的酶相比,节约了成本。另外,嗜热微生物还可用做菌体发酵,由于高温反应的优点,加热条件下的操作也较容易,如用极端嗜热菌生产乙醇。

2.嗜冷微生物

一般认为嗜冷微生物( psychrophile)是指最适生长温度低于15 ℃, 而在温度高于20-25 ℃不能生长的微生物。耐冷微生物( psychrotroph,或psychrotolarant )是指能够在低温甚至 0℃下生长,但其最适生长温度高于20 ℃。嗜冷微生物和耐冷微生物主要包括细菌、古菌、酵母菌、真菌、原生动物和microalgae。它们的生存环境包括海洋、冰川、土壤、人为环境等。

2.1适应机制

普遍认为,微生物(也包括其它生物)通过膜的流动性增加,减少低温对生物的伤害,

适应寒冷环境。低温诱导的膜流动性变化的可能方式:①不饱和脂肪酸含量增加; ②缩短酰基链的长度,增加脂肪酸支链的比例和减少环状脂肪酸的比例等,只有在生长的细胞中才能对链的长度进行调整,可能不是一个普遍采用的方法;;③冷休克蛋白的产生使得冷休克基因能正常表达;④类胡罗卜素 (carotenoid) 组成的变化。⑤嗜冷微生物还产生了一些嗜冷酶,嗜冷酶与常温酶相比,氨基酸组成上发生一些变化,使其在低温下仍能保持较高的催化活性[5-6]。

2.2应用

已有多种低温酶得到了纯化或克隆表达,它们主要用于以下几个方面:①在寒冷环境下污染物生物降解能力的提高可通过低温微生物特有的冷适应酶实现,这一方法不但可使大规模的牲畜粪便厌氧耐冷分批消化成为可行,同时也使低温下鱼类加工厂中大量油渣以及寒冷地区污染物的生物降解都成为可能[7]②冷活性酶可在食品低温加工过程中起重要作用例如Brechley发现冷活性, β-半乳糖苷酸可用于降解奶制品中乳糖含量,使许多对乳糖敏感的人能饮用。③低温微生物具备抗冻融能力,若能弄清其生理及分子机制,提取出有用的相关基因及产物,将会在基础研究和开发利用如动植物抗冻医用疫苗、食品保鲜及低温发酵等方面带来好处。

3.嗜酸微生物

嗜酸微生物指能在pH 1.0 ~ 5.0 的环境中生长,但在pH5.5 以上则不能生长的一类微生物。又可分为极端嗜酸微生物(最适生长pH<3)和中度嗜酸微生物(最适生长 pH 3-5)。它们的生存环境主要包括热泉、海底热液口、矿堆、人或动物胃等。

3.1适应机制

嗜酸微生物能在酸性环境中能够生存主要是它们可以维持胞内pH保持中性。保持中性的解释有三种,即“泵说”、“屏蔽说”、“道南平衡说”。“屏蔽说”认为,细胞质膜是两种环境的渗透屏蔽物,使外部 H+和 OH-都不能进入细胞内,进而维持胞内 pH 近中性;“泵说”认为,嗜酸微生物中存在 H+/ K+( Na+) 反向转运功能的特殊蛋白,以维持细胞内环境接近中性,并保护易受酸破坏的组分;“平衡说”认为,细胞质膜存在高分子电解质,并形成所谓的 Donnan 电位( 这种电位与正常的膜电位的电场方向相反,存在于细胞膜中) 以阻碍过量的 H+进入膜内,从而维持膜内的中性状态研究发现,即使终止呼吸和能量代谢,细胞内仍保持着中性。因此,“泵说”和“平衡说”对细胞内呈中性的解释仍存在着缺陷,而屏蔽说解释其适应机理较为适宜。

3.2应用

适酸菌(尤其是无机自养型细菌)在低品位矿生物沥滤回收贵重金属,原煤脱硫及环保等方面有巨大应用价值。如嗜热嗜酸菌(如硫化菌) 既能脱除煤中无机硫也能脱除有机硫. 嗜酸硫杆菌还可以用来处理含硫废气、改良土壤[8]。

4.嗜碱微生物

一般把最适生长 pH 在9.0以上的微生物称嗜碱微生物(Alkaliphiles),其所耐pH

高达10 ~ 12。耐碱微生物是指能够在pH9.0以上的环境条件下生长或生存、但最佳生长条件是中性或偏酸性环境。

4.1适应机制

嗜碱微生碱的适应机制主要包括:①钠离子-质泵反向运输是嗜碱菌细胞质碱化的基本原因,为了使其发挥作用,需要胞内有足够的钠离子,钠离子的跨膜循环是必要的;②相关嗜碱菌钠离子/ 氢离子反向运输的基因已经从嗜碱菌 BaciiiusC- i25 中得到了克隆;③细胞外膜是胞内中性环境和胞外碱性环境的分隔;④嗜碱微生物碱性酶在高pH 下稳定,嗜碱菌的细胞壁含有酸性多聚物,带负电荷,降低了细胞表面的pH,细胞膜利用 Na+/H+反向载体系统运输Na+,而K+/H+反向载体和ATP酶驱运了H+排出质膜,也可以维持胞内pH的稳定性;⑤嗜碱微生物可产生大量的碱性菌,为嗜碱微生物的生存提供了条件⑥嗜碱微生物细胞壁中含有酸性多聚体物质:半乳糖醛酸,葡(萄)糖酸,谷氨酸,天冬氨酸和磷酸等,它们使细胞表面带负电荷,吸收钠离子和质子,抵抗OH-[9]。

4.2应用

1958, Horikoshi 首次报道Bacillus circulans可裂解米曲霉Aspergillus oryzae

细胞;1971, Horikoshi首次报道利用嗜碱微生物生产碱性蛋白酶和碱性淀粉酶;之后多种嗜碱微生物从环境中分离出来;碱性蛋白酶、碱性淀粉酶、碱性纤维素酶和碱性木聚糖酶已在工业上大规模应用。

5.嗜盐微生物

可分为嗜盐型(extremelalophoto) 和耐盐型(me-halotolerant) 前者一类在一定浓度盐中可正常生长,且高浓度盐是生长必需条件的微生物;后者是一类能耐受一定浓度盐溶液,但在无盐条件下也可正常生长的微生物。高盐环境包括海洋高盐环境、内陆湖泊、南极湖泊、动物皮毛表面、腌制食品等。

5.1适应机制

嗜盐微生物在适应机理上有多种。主要包括①依赖光驱动的离子泵吸收大量的钾离子,这类微生物适应性较差。②细胞内的蛋白质为酸性,多数以K+离子作为辅助因子,并以K+

以保持稳定,这类微生物为数较少。③多数微生物体内产生简单、不带电荷或两性的有机溶质,从细胞内排除离子。④细胞壁上的糖蛋白含有较高比例的酸性氨基酸,它们需要大量Na+来保持稳定。

5.2应用

利用嗜盐菌菌体发酵,可生产离聚化合物. 如聚羟基丁酸( PHB) 可用于可降解生物材料的开发,又可生产食用蛋白、添加剂、表面活性剂等。另外,嗜盐古菌和紫膜蛋白能通过构型的改变储存信息,可作为生物计算机芯片的新材料。嗜盐菌还可用于高盐污水的处理[10]。

6.嗜压微生物

Horikoshii等将嗜压微生物定义为在大于40 Mpa下呈现最适生长的微生物;耐压微生物是指在小于40 Mpa 大气压下呈现最佳生长、在正常大气压 (0.1 MPa) 下能够很好生长的微生物。耐压微生物又称中等嗜压微生物。Bartlett[11]定义嗜压微生物为呈现最适繁殖速率的压力大于0.1 MPa的微生物,而将超嗜压微生物定义为大于60MPa下,呈现最快生长的微生物。嗜压微生物研究最少, 嗜压机理目前仍不十分清楚;对压力变化的调节,对所有生物都很重要。理论上,研究嗜压微生物研究可能对了解生命的起源有帮助;可能在高压生物反应器中发生作用;对了解其它生物对压力的调节可能启示作用。

7.展望

极端微生物的研究虽然起步晚,但是发展很快,极端微生物特殊的多样化适应机制及其代谢产物将使某些新的生物技术手段成为可能,在食品工业环境保护医药工业能源利用遗传研究生产特殊酶制剂等多种生产和科研领域中发挥着重要的作用,具有广阔的研究与应用前景搜集极端环境微生物资源,深入研究它们的特征以及生理机制,发现与应用新极端酶,人们有望解决工业生产的苛刻条件和酶蛋白有限稳定性之间的矛盾,建立高效率低成本生物加工技术此外,采用基因工程技术,对极端微生物性状功能进行有益改良,进而为人类服务,是一条崭新的道路。但是,极端环境微生物采集和培养需要特殊的设备和条件,造成极端微生物研究相对缓慢,尤其是极端微生物代谢产生特有的生物活性物质的稳定机制等尚不是很清楚,工业化生产尚不成熟,因此对极端微生物进行的深入研究具有重要的意义。

参考文献:

[1]黎唯,李一清,李铭刚,等.极端环境微生物源活性物质的研究进展[J].国外医药(抗生素分册),2007,28( 1):1-5.

[2]Michacl W, AdainsW. FEMS Microbiol New , 1994( 15) : 261~ 277.

[3]Menendez -Ar ias L, Argos P. The structure of protein in hot adopted microbiology. T Mol

Biol, 1989,201( 2): 317- 406.

[4]Bruthier de la , Tour C , et al. Revense gyasefrom the hyper thermophilic bacteriuns

Thermotog mar itima: Properties and gene structure{ J}J Baterium 1998 , 180: 274-281.

[5]何康生,眭光华.极端微生物的研究及其应用[J].广东化工,2009,36(7) : 109-111.

[6]王红妹.极端微生物的多样性及其应用[J].枣庄学院学报,2006,23(2) : 88 -92.

[7]陈巧媛,王璐,郁霄.大自然的奇迹之极端微生物[J].科技信息,2008(19) : 29.

[8]郑士民, 庄国强,吴支红. 适酸微生物在工业环保中的应用. 微生物学报, 1993 ,

33( 3): 192 ~ 198.

[9]陶卫平. 嗜盐菌的嗜盐机制. 生物学通报, 1996, 31( 1): 23 ~ 24.

[10]刘延双,李书平,王振.嗜盐菌复合微生物处理高盐有机废水[J].山东轻工学院学

报:自然科学版,2011,25( 4) : 62 -65.

[11]Bartlett, D.H. (2008) Introduction to deep-sea microbiology. In High-Pressure

Microbiology (Michiels, C. et al., eds), pp. 195–201, AmericanSociety for Microbiology.

极端环境下微生物

列举五种极端环境下微生物及其应用 所谓极端环境是指高低温环境,高盐环境,高酸,高碱环境,高酸热环境,高压环境,还有其他特定环境如油田、矿山、火山地、沙漠的干旱地带、地下的厌气环境、原子炉等高放射能环境、高卤环境以及低营养环境等。能够在这些具有强烈限制性因子的环境下顽强生存的微生物,一般统称为极端环境微生物。 【1.极端嗜盐菌】人们发现在高浓度盐环境中,存在许多抗高渗压的微生物。我国从新疆和内蒙古的盐碱湖中分离出了一些极端耐盐菌。它们竟能在含0—15%Nacl的环境中生长。有些菌株可以在含5%—25%Nacl范围中生长。极端嗜盐微生物中唯一的真细菌是光合微生物的外硫红螺菌属;唯一的真核嗜盐微生物是杜氏藻类。微生物学家琼纳斯克在含盐量高达36%盐液中发现一种微生物,命名为Halophiles。还有地中海嗜盐杆菌等 应用:第一,医药工业:西班牙学者报道地中海嗜盐杆菌在高浓度NaCl介质中生长,聚B-羟基丁酸积累达细胞干重的45%,具有一定的应用前景。PHB能用于医学领域可降解生物材料的开发,如人造骨骼支架、药物微球体、外科手术以及裹伤用品等。此外,目前发现有些嗜盐菌素对去盐作用不敏感,所以可能有比较广泛的应用领域,筛选抑菌谱广、性质稳定的嗜盐菌素,在理论和实践中具有重要意义。第二,环境生物治理:嗜盐碱放线菌Nocardioidessp. M6能快速降解污染物2,4,6-三氯酚可应用于环境治理,利用其嗜盐特性除去工业废水中的磷酸盐,还可用于开发盐碱地等。由于bR蛋白具有质子泵作用,在未来的太阳能利用技术设备中,还可用作海水淡化和研制天然的太阳能电池。 【2.极端嗜碱菌】多生活在盐碱湖和盐池中,生活环境PH值可达11.5以上,最适PH值8

极端微生物的特性及应用

极端微生物的特性及应用 摘要:依赖极端环境才能正常生长的繁殖的微生物,称为嗜极菌或极端微生物,极端微生物的类型有嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物、嗜盐微生物、嗜压微生物。其细胞中的DNA、RNA、蛋白质、脂类和多糖成分,以及其代谢途径、基因表达、抗逆性机制等都与一般生物不同,近年来倍受各国学者们的重视。 关键词:嗜热微生物;嗜冷微生物;嗜酸微生物;嗜碱微生物;嗜盐微生物;嗜压微生物 1.引言 嗜极菌是指生活在各种极端恶劣环境下的微生物。极端环境的如高温、低温、高压、高酸、高碱、高盐、高渗、干旱以及含高浓度的有机溶剂、重金属或其他有毒物质的环境或高辐射环境等。凡依赖这些环境才能正常生长的繁殖的微生物,称为嗜极菌或极端微生物,极端微生物的类型有嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物、嗜盐微生物、嗜压微生物。其细胞中的DNA、RNA、蛋白质、脂类和多糖成分,以及其代谢途径、基因表达、抗逆性机制等都与一般生物不同[1],因此不仅在生物学基础理论研究中具有重要意义,而且在生产实践(冶金、采矿、石油开采、特种酶制剂和代谢产物的生产等)中具有巨大的应用潜力。因此,近年来倍受各国学者们的重视。本文就极端微生物的功能特性、生理机制、工业应用及研究进展等各方面进行阐述。 2.极端酶 来自嗜极菌的酶称为极端酶,嗜极菌之所以能生长于超常生态环境条件下,与极端酶具有的非凡功能是分不开的。极端酶来自嗜极菌,但并非嗜极菌体内所有的酶都是极端酶。例如,嗜酸菌或嗜碱菌的细胞仍保持接近中性的内环境,其胞内酶仍属中性酶。但其胞外酶,如淀粉酶和蛋白酶等则不同,仅在极酸或极碱条件下起作用)[2]。由于适合极端酶生长的条件一般具有腐蚀性,并产生有毒物质,不能用常规发酵系统来生产,因而极端酶的分离纯化目前还限于小规模,低产量水平。

极端环境微生物——台喜生

极端环境微生物研究进展 极端环境(extreme environment)泛指存在某些特殊物理和化学状态的自然环境,包括高温、低温、强酸、强碱、高盐、高压、高辐射和极端缺氧环境等,适合在极端环境中生活的微生物称为极端微生物(extremophiles)(Margesin and Schinner,2001; Rothschild and Mancinelli,2001; 陈骏等,2006;张敏和东秀珠,2006)。具有独特的基因类型、特殊生态群落、特殊生理机理和特殊代谢产物。 一、海洋极端环境微生物 1.海洋极端环境微生下微生物类型主要为细菌和古生菌,热泉微生物群落主要为异氧发酵菌、硫酸盐还原菌、产甲烷菌等;冷泉微生物群落主要为ANME-2族的厌氧甲烷氧化古生菌、硫酸盐还原细菌和ANME-1族厌氧甲烷氧化古菌,这些极端微生物利用CH4和H2S等气体进行能量固定,有较高的生物丰度和较低的分异度,具有垂向和水平分带性,并能营生一套独特的宏体生物(王家生等,2007)。 2.油气资源的形成和演化与时间、温度和有机质组成密切相关(Seewald,2003),油气的产生、运移、圈闭和后期改造过程也大多是在一些特殊环境中进行的,极端微生物活动可能参与了整个过程。 3.探索海洋极端环境下微生物活动,不仅在理论上可将其作为特定地质微生物标志(geomicrobiological signature),揭示现代和地史时期海洋环境变化和地质环境变迁(党宏 月等,2006)、探索生物圈与地圈之间协同演化、阐明生物多样性形成机制和认识生命极限等(汪品先,2003;中国大洋钻探学术委员会,2003),而且在实践中指导海洋深水油气田的开发和地史早期潜在烃源岩的寻找。 4.自第一个海底冷泉1984年首次报道后(Paull et al.,1984),迄今全球已至少发现共 24处海底冷泉。冷泉流体一般含有大量甲烷气体,在海底表面通常表现为泥火山,喷口附 近发育独特的营甲烷化能自养生物群落,下伏的沉积物中通常伴有天然气水合物,在更深部位则通常为油气藏。海底冷泉微生物以化能自养细菌和古生菌为主,它们能与冷泉中化学气体(甲烷、硫化氢等)发生化学反应,把碳氧化物还原成有机碳获得能源,它们通常贴附在沉积物表面形成细菌席,或与其他生物内共生。根据类脂生物标志化合物、16S rDNA分子 序列和DNA分子探针荧光原位杂交(FISH)分析,冷泉微生物主要是ANME-2族的厌氧甲烷氧化古细菌和硫酸盐还原细菌(脱硫八叠球菌属Desul fosarcina和脱硫球菌属Desul fococcus细菌)的共栖互养体(Syntrophism),其次为ANME-1族厌氧甲烷氧化古菌(Hinrich et al.,1999; Orphan et al.,2001,2002; Boetius and Suess,2004; Zhang and Lanoil,2004; 党宏月等,

极端温度微生物生存机理及应用研究进展

极端温度微生物生存机理及应用研究进展 李淼 (中山大学生命科学学院广东) 摘要:极端温度微生物是生物对极冷与极热环境适应的特殊种类,研究微生物对于极端温度环境的生存机理对探索生命的起源、微生物的育种及开发利用等具有重要意义。本文大致介绍了嗜热微生物、嗜冷菌和耐冷菌的生物类群,阐述了微生物在面临极端环境温度的适应机理多样性,总结其在环境应用的研究进展。最后旨在综合对比这两类极端微生物的生存机理和实际生产生活应用。 关键词:微生物;极端环境;生存机理;环境应用 极端微生物(extreme microorganism)是指一般生物无法生存的极端环境中(高温、寒冷、高盐、高压、高辐射等)能够正常生存的微生物群体的统称。一般把在高温环境中生长的微生物叫嗜热菌(thermophiles),包括一些细菌及古细菌。他们广泛分布在草堆、厩肥、温泉、火山地及海底火山附近等处。普通耐热菌的最高生长温度在45℃-55℃之间,低于30℃也能生长,而超嗜热菌最高生长温度可达80℃-110℃,最低生长温度也在55℃左右。同时,在地球这个大生态系统中也存在着广泛的低温环境。如占地球表面14%的两极地区及海洋深处(90%的海水其平均温度为5℃或更低)等[1],在这些特殊环境中生活着一类微生物即低温微生物(halophilic microorganism)。 极端高温与极端低温环境都会对生物膜结构以及蛋白质结构造成巨大的影响。了解高温微生物与低温微生物的生存机理,有助于人们开展深一层次的蛋白与膜分子结构研究。本文在目前已有的研究基础上,就高温微生物与低温微生物的生存机理以及在环境应用的最新进展做一简要对比综述,为进 一步研究提供参考。 1 高温微生物概述 通常把最适生长温度高于45℃的微生物称 为嗜热菌。嗜热菌并非单一的菌属或菌群, 其中有些嗜热细菌,其同届菌中皆为嗜热 菌,如红色嗜热杆菌(Rhodothermus)、嗜 热好氧杆菌(Thermoaerobium)、嗜热厌氧 杆菌(Thermoanaerobaeterium)、球杆菌(Sphaembaeter)等,也有高温菌及中温菌 并存的菌属,如芽孢杆菌、奇异球菌(Deincooccus)、假黄色单胞菌(Pseudoxanthomonas)等。嗜热菌按其生 长的耐热程度不同可分为5类(表1)[2]。目 前,对嗜热菌的耐热性主要从细胞壁的结 构、类脂的敏感性、DNA结构的稳定性以及 蛋白质的热稳定性等方面进行研究。 表1 嗜热菌的分类/℃ Tab.1 The classification of thermophiles /℃ 分类最适生长温度最高生长温度最低生长温度

极端环境微生物的适应机制及利用

极端环境微生物的适应机制及利用 摘要:极端环境微生物是指生活于极端环境中的微生物,它们定义了生命的边界。对极端环境微生物适应机制的研究以及新的极端酶的发现,使得解决工业生产的苛刻条件与蛋白酶易变性的矛盾成为可能。本文分别对嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜盐菌、嗜压菌 6 种极端微生物的适应机制和应用进行了总结。 关键词:极端微生物,适应机制,应用随着人类对生存家园地球乃至整个宇宙的探索开发,人们对原本被视为生命禁区内的生命 (极端环境微生物)产生了极大的好奇心。极端环境微生物( extremophiles) 是指在一般生 物无法生存的高温、低温、高酸、高碱、高盐、高压、高辐射、太空等异常环境中生存的微生物群体的统称[1],例如嗜热菌( Thermophiles ) 、嗜冷菌( Psychrophiles ) 、嗜碱菌( Alkali- philes)、嗜酸菌( Acidophiles) 、嗜盐菌( Halophiles) 、嗜压菌( Piezophiles) 等。由极端环境微生物适应极端环境所形成的特殊生理特性以及代谢产物,在基础研究、环境保护、食品化工及医学等多个领域中都有巨大应用潜力。本文分别对嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜盐菌、嗜压菌 6 种极端微生物的适应机制和应用进行了简要概述。 1. 嗜热微生物 一般把最适生长温度高于45 ℃的微生物称为嗜热微生物。另外,还可根据它们的最适生长温度将其划分为嗜热微生物( 45℃ -60℃)、极端嗜热微生物( 60℃ -80℃)和超嗜热微生物( >80℃)。目前发现的嗜热菌大都来自热泉、海底热液口、堆肥、火山等极端环境中,它们中大多数属于古细菌。目前发现的生命最高生存温度为121-122 ℃ [2]。

微生物资源的开发与利用

微生物资源的开发与利用

微生物资源的开发与利用 摘要:微生物资源的开发利用前景将会在解决人类社会面临的人口剧增、资源匮乏、环境恶化问题和实现可持续发展等方面发挥不可替代的作用。本文综述了微生物资源以及其开发利用过程这两个方面。 关键词:微生物资源,放线菌,开发,利用 1.引言 当今,人类的工业是建立在化石能源基础之上的,而其特点必然要导致大量不可再生资源的消耗,大量温室气体的排放以及伴随着生态环境的破坏。导致人类社会面临着人口剧增、资源匮乏、能源危机、环境恶化等一系列问题,而人类又要求不停的发展,解决这些问题的关键在于寻求一条可持续发展的道路。 生物技术正在推动着以化石能源为基础的经济向以知识经济、循环经济为主的经济结构转型,是实现人类可持续发展的关键技术。因此大力发展生物技术对经济的发展以及人类社会的发展有着巨大而深远的影响,而作为生物技术的核心技术,微生物工程技术的发展将要涉及到微生物资源的开发与利用问题[1]。 微生物资源利用的核心是在于利用其产生的生物活性物质,目前,微生物活性物质绝大部分来源于普通环境中的微生物,因此从普通环境微生物中寻找新的活性物质难度越来越大。新的基因有很大的可能产生新的生物活性物质,因此通过寻找新的基因来寻找新的生物活性物质。基于该思路,稀有放线菌、海洋微生物、极端 环境微生物等过去很少触及的微生物资源已越来越受重视[2]。 2.微生物资源 2.1微生物资源的特点 环境中存在着大量的微生物, 据估计, 每克土壤样品中可含有高达1000种

不同的微生物[3], 这些微生物产生多种多样的活性物质(包括酶与次生代谢产物两部分) , 对人类有实用意义的抗生素—青霉素、链霉素、抓霉素、金霉素、土霉素、红霉素、新霉家、万古霉素、庆大霉素等都是从微生物中发现并开发出来的; 基因工程中各种工具酶几乎都来自多种不同的微生物[4] 微生物是一类物种丰富的生物资源和基因资源,迄今为止我们所分离到的微生物主要有:真菌70000多种、细菌5000多种、放线菌3000多种。而这些人类所知道的微生物估计仅占自然界存在的微生物不到10%,而被利用的还不到1%。 微生物具有很快的生长繁殖速度,有的细菌的时代时间仅仅20分钟,而且微生物可以再人工控制的条件下大规模培养,并且几乎不受地域、气候等条件的影响。 相比于动、植物品种遗传基因结构,微生物的基因组小得多,基因拷贝数比较少,比较容易进行基因操作,微生物改良易于操作,改造性能、提高产率相对容易。 微生物资源丰富,微生物资源的开发与利用不会导致微生物物种的减少和环境的破坏。部分动植物资源的不合理开发利用导致物种的减少甚至灭绝,造成严重的环境的恶化和污染问题,而微生物资源的开发利用不会存在此类问题。但我们必须注意到并引起重视的现实问题是由于环境的改变和恶化,如原始森林开发成旅游区等现象,造成的天然微生物的破坏,使得许多在该类环境中赖以生存的微生物在人类还没有认识它之前就悄悄灭绝了[1]。 微生物资源是新抗菌剂的主要来源之一,然而即使采用先进的方法, 绝大部分微生物也仍然不可培养、只能用分子指纹图谱来描述[5]。 2.2稀有放线菌 目前大部分生物活性物质来自链霉菌,所以从链霉菌中发现性的活性物质的几率已经大大降低。自20世纪50年代以来, 已从部分稀有放线菌代谢产物中得到许多已经临床应用的重要活性物质, 如红霉素B、利福霉素、庆大霉素、其它放线菌素类、安莎类、肽类、酶抑制剂等活性物质。 尽管新的种、属不断被发现, 但据估计, 目前分离到的放线菌种类, 仅为实

浅谈微生物在环境污染治理中的作用

浅谈微生物在环境污染治理中的应用 我国是世界上环境污染最为严重的国家之一,大气、河流、湖泊、海洋和土壤等均受到不同程度的污染。当前我国社会经济仍然保持着高度发展的态势,环境保护的压力将进一步加重,由人类活动所造成的环境污染和环境质量的恶化已成为制约我国社会和经济可持续发展的障碍。如何在经济高速发展的同时控制环境污染,改善环境质量,以实现社会经济可持续发展之目标是我国目前及待解决的重要问题。 微生物技术在处理环境污染物方面具有速度快、消耗低、效率高、成本低、反应条件温和以受无二次污染等显著优点,加之其技术开发所预示的广阔的市场前景,受到了各国政府、科技工作者和企业家的高度重视,从根本上体现了可持续发展的战略思想。 应用微生物的高效降解、转化能力治理环境污染,在污水治理、固体废弃物处理、重金属降解、化合物分解、石油修复等方面均取得了良好的效果。其治理过程分为:①高效生物降解能力和极端环境微生物的筛选、鉴定;②污染物生物降解基因的分离、鉴定和特殊工程菌的构建;③生物恢复的实际应用和工程化。 一、污水治理 环境中的污染物,在自然界中经过迁移、转化,绝大多数将归入水体,引起水体不断受到污染的胁迫。尤其是高浓度生活污水和工业废水的大量倾入,使水体富营养化现象日趋严重。通常情况下,只要这种污染不超过阀值,污染的水体在物理、化学和生物的综合作用下,是可以得到净化的,这种净化主要源于水体中的微生物能直接或间接地把污染物作为营养源,在满足微生物生长需要的同时,又使污染物得以降解,达到净化水质的目的。 二、固体废弃物治理 固体废弃物污染严重影响我国的环境质量。我国同体废弃物年产量数目极大。造成的经济损失每年达千亿元以上。目前我国处理城市垃圾的方法主要是填埋、堆放和焚烧。填埋、堆放既占用土地资源,又会使有害物质渗漏、扩散,造成二次污染。固体废弃物焚烧产生的二嚼英等有害物质会严重危害人类的健康与生产。利用微生物分解固体废弃物中的有机物,从而实现其无害化和资源化,是经济而有效的处理同体废弃物方法。微生物技术治理同体废弃物的优势是:可以有选择地浓缩或去除污染物:节省运营和投资成本:废物总体积显著降低:可以将废弃物转化为再利用资源。其缺点在于反应速度慢,某些同体废弃物难以降解。尽管如此,人们相信生物降解中存在的问题会随着对微生物研究的深入很快得到解决.

极端环境微生物的研究进展

[摘要]极端微生物通常分为六个类群:嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物、嗜盐微生物、嗜压微生物。极端环境中的微生物为了适应生存,逐步形成了独特的结构和生理机能,以适应环境。因此,研究适应机理并利用其特殊生理机能具有重要的理论和实际意义,极端微生物能产生多种极端酶和其他生物活性物质,极端微生物资源的开发利用有着广阔的前景。 极端环境(extreme environment) 泛指存在某些特殊物理和化学状态的自然环境,包括高温、低温、强酸、强碱、高盐、高压、高辐射和极端缺氧环境等,适合在极端环境中生活的微生物称为极端微生物(extremophiles)( Margesin and Schinner,2001【1】; Rothschild and Mancinelli,2001【2】;骏等,2006【3】;敏和东秀珠,2006【4】).海洋极端环境一般是指与正常海洋环境绝然不同的物理化学环境,主要包括海底热泉、海底冷泉和泥火山环境,其次还包括高盐度(卤水)、强酸化、缺氧和滞流等海洋环境。海洋极端微生物通常为化能自养生物(chemoautotroph),在分类体系上属于细菌和古细菌类,生活在无光、无氧或少氧环境,能利用一些海底热催化反应过程中产生的还原性小分子(H2、H2S和CH4 等)合成能量进行有机碳固定和新代,具有独特的基因类型、特殊生态群落、特殊生理机理和特殊代产物,有些属于共生生物(endosymbiont)。 一、极端微生物的种类及其生理特点 1.1 极端嗜热菌(Thermophiles) 一般最适生长温度在90℃以上的微生物,被称做极端嗜热菌【5,6】。已发现的极端嗜热菌有20多个属,大多是古细菌,生活在深海火山喷口附近或其周围区域【7】。如斯坦福大学科学家发现的古细菌,最适生长温度为100℃,8O℃以下即失活;德国的斯梯特(K Stette)研究组在意大利海底发现的一族古细菌,能生活在110℃以上高温中,最适生长温度为98℃,降至84℃即停止生长;美国的巴罗斯(J.Baroos)发现一些从火山喷口中分离出的细菌可以生活在250℃的环境中,嗜热菌的营养围很广。多为异养菌,其中许多能将硫氧化以取得能量。 1.2 极端嗜酸菌(Acidophiles) 一般指生活环境pH值在1以下的微生物,往往生长在火山区或含硫量极为丰富的地区。多为古细菌,其体环境保持pH值7左右。能氧化硫,硫酸作为代产物排出体外。嗜酸菌往往也是嗜高温菌。 1.3 极端嗜盐菌(Extremehalophiles)

极端环境微生物16S rRNA测序

ORIGINAL ARTICLE Contemporary environmental variation determines microbial diversity patterns in acid mine drainage Jia-Liang Kuang1,Li-Nan Huang1,Lin-Xing Chen,Zheng-Shuang Hua,Sheng-Jin Li, Min Hu,Jin-Tian Li and Wen-Sheng Shu 1State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources,School of Life Sciences,Sun Yat-sen University,Guangzhou,People’s Republic of China A wide array of microorganisms survive and thrive in extreme environments.However,we know little about the patterns of,and controls over,their large-scale ecological distribution.To this end,we have applied a bar-coded16S rRNA pyrosequencing technology to explore the phylogenetic differentiation among59microbial communities from physically and geochemically diverse acid mine drainage(AMD)sites across Southeast China,revealing for the first time environmental variation as the major factor explaining community differences in these harsh environments. Our data showed that overall microbial diversity estimates,including phylogenetic diversity, phylotype richness and pairwise UniFrac distance,were largely correlated with pH conditions. Furthermore,multivariate regression tree analysis also identified solution pH as a strong predictor of relative lineage abundance.Betaproteobacteria,mostly affiliated with the‘Ferrovum’genus,were explicitly predominant in assemblages under moderate pH conditions,whereas Alphaproteobac- teria,Euryarchaeota,Gammaproteobacteria and Nitrospira exhibited a strong adaptation to more acidic environments.Strikingly,such pH-dependent patterns could also be observed in a subsequent comprehensive analysis of the environmental distribution of acidophilic microorgan- isms based on16S rRNA gene sequences previously retrieved from globally distributed AMD and associated environments,regardless of the long-distance isolation and the distinct substrate types. Collectively,our results suggest that microbial diversity patterns are better predicted by contemporary environmental variation rather than geographical distance in extreme AMD systems. The ISME Journal advance online publication,22November2012;doi:10.1038/ismej.2012.139 Subject Category:microbial population and community ecology Keywords:acid mine drainage;biogeography;contemporary environmental variation;geographical distance;microbial diversity;pyrosequencing Introduction Microbial biogeography is increasingly becoming an exciting topic in microbial ecology and a growing number of researches are addressing the spatial scaling and distribution pattern of microorganisms in the environment(Martiny et al.,2006;Green et al., 2008).Despite their tremendous potential for global dispersal,there is accumulating evidence that free-living microorganisms exhibit nonrandom distribu-tion patterns across diverse habitats at various spatial scales.Niche-based processes have been implied as the primary drivers for the widely observed environ-ment-dependent diversity patterns and environmen-tal variables such as salinity(Lozupone and Knight,2007;Auguet et al.,2010),pH(Fierer and Jackson, 2006;Lauber et al.,2009;Rousk et al.,2010;Griffiths et al.,2011)and C:N ratio(Bates et al.,2011) identified as the major determinants of microbial community composition.However,there is also evidence that spatial distance,which may be seen as a proxy variable that represents differential com-munity dynamics related to the past historical events and disturbances(Ramette and Tiedje,2007),have a role in structuring natural microbial assemblages(Cho and Tiedje,2000;McAllister et al.,2011;Martiny et al.,2011).These studies of biogeography have provided initial insights into the processes that generate diversity patterns and improved our under-standing of why organisms live where they do and how they will respond to environmental change. However,systematically exploring the microbial geographical patterns by considering both contem-porary environmental variations and spatial distance simultaneously is limited(Ramette and Tiedje,2007; Ge et al.,2008),and the relative importance of these factors in shaping microbial communities in natural environments remains largely unsolved. Correspondence:W-S Shu,School of Life Sciences,Sun Yat-sen University,No.135,Xin-Gang-Xi Road,Guangzhou510275, People’s Republic of China. E-mail:shuws@https://www.360docs.net/doc/7215864061.html, 1The first two authors contributed equally to this work. Received3July2012;revised1October2012;accepted1October 2012The ISME Journal(2012),1–13 &2012International Society for Microbial Ecology All rights reserved1751-7362/12 https://www.360docs.net/doc/7215864061.html,/ismej

极端微生物的研究概况 (1)

摘要极端微生物对生命科学研究和生物技术的开发利用有重要意义。本文介绍了极端微生物的概念、种类、分布、环境适应机制及其应用概况。 关键词极端微生物极端环境适应机制应用 On the Research Situation of Extremophiles//Chen Jinbo Abstract Extremophile has important significance for life scie-nces research and the development and utilization of bio-tech-nology.In this paper,the conception,species,distribution,adapta-tion mechanism and application of extremophiles were introdu-ced briefly. Key words extremophiles;extreme environment;adaptive mec-hanism;application Author's address School of Life Sciences,Beijing Normal University,100875,Beijing,China 地球上存在高温、寒冷、强酸、强碱、高盐等不适合普通生物生存的环境,人们将这种环境称为极端环境,把能够在极端环境中正常生存的微生物称为极端微生物。极端微生物主要包括嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物和嗜盐微生物,其独特的环境适应机制,对生命科学研究有重要的推动作用,同时在生物技术应用等多领域有着巨大的发展潜力。本文主要对极端微生物的分类、环境适应机理和开发应用加以介绍。 1嗜热微生物 1.1嗜热微生物的种类 嗜热微生物是一类生活在热泉、堆肥、火山、高温废水等高温环境中,最适生长温度在45℃以上的一类微生物,包括部分细菌和古细菌。根据最适生长温度不同,可分为超嗜热微生物(最适生长温度>80℃)、极端嗜热微生物(最适生长温度70℃-80℃)和耐热微生物(最适生长温度45℃-60℃)。自1965年第一株极端嗜热细菌在美国黄石国家公园的热泉中被分离出来后,迄今已发现20多个属的嗜热微生物,其中大部分为古细菌。 1.2嗜热机制 三维网状细胞壁结构具有保护作用;长链饱和脂肪酸、有分支链的脂肪酸和甘油醚化合物含量比增加,增强了膜的稳定性;胞内蛋白质和酶类热稳定性高,同时含有大量多聚胺增加了耐热性;tRNA热稳定性高,部分嗜热菌携带与抗热性相关的遗传特性。 1.3嗜热微生物的应用 高温条件下,嗜热酶稳定性好、活性高、易保存,在各个领域表现出巨大的应用价值。蛋白酶糖基水解酶可用于生产去垢剂、饲料;几丁质酶可用于胶质加工;纤维素酶、脂肪酶、蛋白酶、淀粉酶等酶制剂广泛用于发酵工业和环保领域。最为著名的是在水栖嗜热菌中发现的Taq DNA聚合酶,其应用推动了分子生物学等生命科学研究的快速发展。此外,以嗜热硫化裂片菌、嗜热硫杆菌等嗜热菌为基础的石油煤炭生物脱硫以及利用嗜热菌获得抗生素在能源行业和医药工业中有着广阔的经济前景。 2嗜冷微生物 2.1嗜冷微生物的种类 嗜冷微生物是生活在两极地区、冰川、冻土、深海等低温环境中的一类微生物。根据最适生长温度不同,嗜冷微生物可分为嗜冷菌(最高生长温度<20℃,最适生长温度<15℃,0℃下可生长繁殖)和耐冷菌(最高生长温度>20℃,最适生长温度>15℃,0-5℃可生长繁殖)两类。 2.2嗜冷机制 增加不饱和脂肪酸含量,调节膜的流动性,保证低温下营养运输;低温蛋白质合成能力;含有高活性低温酶,维持嗜冷微生物正常的代谢活动;可以合成冷休克蛋白,增强细胞抵御冷激胁迫的能力。 2.3嗜冷微生物的应用 利用冷适应酶的高活性可以降解低温环境中的污染物,用于环境保护。同时,低温蛋白酶、脂酶、淀粉酶等冷适应酶可以作为洗涤添加剂。在食品工业中,低温β-半乳糖苷酶、低温果胶酶可应用于食品保鲜;低温淀粉酶、蛋白酶可以减少生面发酵时间,提高面包质量;低温脂酶可用于乳制品和黄油的增香;低温凝乳酶可以用在奶酪制作。纺织工业中,低温纤维素酶可应用于生物抛光和石洗工艺。另外,嗜冷微生物的冷适应性对疫苗等现代医药的研究与开发也有重要的推动作用。 3嗜酸微生物 3.1嗜酸微生物的种类 嗜酸微生物是指生活在酸性土壤、酸热泉、火山湖、酸矿水等自然形成或人工形成的低pH环境中的一类微生物。根据其生长的酸度特性不同,可分为极端嗜酸型(生长pH≤1)和嗜酸型(生长pH≤3,最适生长pH在1.0-2.5之 (北京师范大学生命科学学院北京100875) 中图分类号:Q93-3文献标识码:A文章编号:1672-7894(2012)04-0087-02 87

极端环境下微生物教程文件

极端环境下微生物

列举五种极端环境下微生物及其应用 所谓极端环境是指高低温环境,高盐环境,高酸,高碱环境,高酸热环境,高压环境,还有其他特定环境如油田、矿山、火山地、沙漠的干旱地带、地下的厌气环境、原子炉等高放射能环境、高卤环境以及低营养环境等。能够在这些具有强烈限制性因子的环境下顽强生存的微生物,一般统称为极端环境微生物。 【1.极端嗜盐菌】人们发现在高浓度盐环境中,存在许多抗高渗压的微生物。我国从新疆和内蒙古的盐碱湖中分离出了一些极端耐盐菌。它们竟能在含0—15%Nacl的环境中生长。有些菌株可以在含5%—25%Nacl范围中生长。极端嗜盐微生物中唯一的真细菌是光合微生物的外硫红螺菌属;唯一的真核嗜盐微生物是杜氏藻类。微生物学家琼纳斯克在含盐量高达36%盐液中发现一种微生物,命名为Halophiles。还有地中海嗜盐杆菌等 应用:第一,医药工业:西班牙学者报道地中海嗜盐杆菌在高浓度NaCl介质中生长,聚B-羟基丁酸积累达细胞干重的45%,具有一定的应用前景。PHB能用于医学领域可降解生物材料的开发,如人造骨骼支架、药物微球体、外科手术以及裹伤用品等。此外,目前发现有些嗜盐菌素对去盐作用不敏感,所以可能有比较广泛的应用领域,筛选抑菌谱广、性质稳定的嗜盐菌素,在理论和实践中具有重要意义。第二,环境生物治理:嗜盐碱放线菌Nocardioidessp. M6能快速降解污染物2,4,6-三氯酚可应用于环境治理,利用其嗜盐特性除去工业废水中的磷酸盐,还可用于开发盐碱地等。由于bR蛋白具有质子泵作用,在未来的太阳能利用技术设备中,还可用作海水淡化和研制天然的太阳能电池。

极端微生物生态学

嗜酸微生物的生态学思考 专业:微生物学姓名:袁昌果学号:12014000892 【摘要】:介绍嗜酸微生物在微生物分类地位上的分布,种群结构的多样性以及适应环境的生理机制,并比较纯培养与免培养之间的的关系,它们对于全面、准确地反映嗜酸微生物多样性起到了怎样的的作用。 【关键词】:嗜酸微生物、双层固体培养、分子生物学、生理机制 嗜酸微生物是极端微生物中的一种类群,丰富了生命存在的形式,激发了人们探索生命禁区的兴趣。嗜酸微生物生活于pH为1.0~3.0,其最适生长pH范围2.5~1.0。嗜酸微生物的生境分布广泛,主要有硫矿和金属硫化矿酸性矿水、煤矿排出水、含硫的酸性土壤以及深海火山等区域,其横跨原核和真核两大类群,具有较广的物种区系,其中以古细菌为最多[1]。由于嗜酸微生物有其特殊的遗传物质、适应特殊环境的生理机制以及特殊的代谢产物,因而对于解决一些重要问题可以提供很多启示,比如环境问题的生物修复等急亟解决的诸多问题。 1、嗜酸微生物的分类及其多样性 嗜酸微生物的分类主要有四种,其一:按照生长的pH范围分为嗜酸型和耐酸型两类,前者pH上限为3.0,最适生长范围2.5~1.0;后者pH上限为5.0,最适生长范围 4.5~3.0;其二:按照生长的温度范围分为常温型、中温型和高温型三个类群,其温度范围分别为20~40℃、40~60℃、60℃以上,另外还有少数生存于寒冷环境中的嗜酸型微生物,但由于技术的限制,这方面的报道还很少,不足于解释什么问题;其三:按照生长的营养类型分为化能自养、化能异养以及少数自养兼具异养的嗜酸型,前者主要以CO2为碳源、通过氧化铁、硫等元素获得生命活动所需的能源,后者主要以有机物进行异养生长,因而通常与前者相伴而生,通过分解其产生的有机物和死亡细胞获得碳源和能源;其四:按照生长过程中氧所需的程度分为好氧型、兼性厌氧型和严格厌氧型。 目前已报道的嗜酸微生物在三域生命的系统发育树中分布于11个属25个种[2],其中化能自养为7个属15个种,化能异养为5个属10个种,体现了其分布的多样性,其中最具代表性的嗜酸菌是:氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)、氧化硫硫杆菌(Acidithibacillus thiooxidans)、铁氧化钩端螺旋菌(Leptospirillum ferrooxidans)等。

微生物对人类生活的影响

微生物对人类生活的影响 2007年04月17日星期二18: 56微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。 微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。 微生物对人类最重要的影响之一是导致传染病的流行。 在人类疾病中有50%是由病毒引起。 世界卫生组织公布资料显示: 传染病的发病率和病死率在所有疾病中占据第一位。 微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。 在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。 一些疾病的致病机制并不清楚。 大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。 一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。 每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。 而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。

微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。 最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。 后来大量的抗生素从放线菌等的代谢产物中筛选出来。 抗生素的使用在第二次世界大战中挽救了无数人的生命。 一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如: 高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。 看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。 例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。 在肠道环境中这些细菌相互依存,互惠共生。 食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。 一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。 人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。

微生物资源的开发与利用资料

微生物资源的开发与利用 摘要:微生物资源的开发利用前景将会在解决人类社会面临的人口剧增、资源匮乏、环境恶化问题和实现可持续发展等方面发挥不可替代的作用。本文综述了微生物资源以及其开发利用过程这两个方面。 关键词:微生物资源,放线菌,开发,利用 1.引言 当今,人类的工业是建立在化石能源基础之上的,而其特点必然要导致大量不可再生资源的消耗,大量温室气体的排放以及伴随着生态环境的破坏。导致人类社会面临着人口剧增、资源匮乏、能源危机、环境恶化等一系列问题,而人类又要求不停的发展,解决这些问题的关键在于寻求一条可持续发展的道路。 生物技术正在推动着以化石能源为基础的经济向以知识经济、循环经济为主的经济结构转型,是实现人类可持续发展的关键技术。因此大力发展生物技术对经济的发展以及人类社会的发展有着巨大而深远的影响,而作为生物技术的核心技术,微生物工程技术的发展将要涉及到微生物资源的开发与利用问题[1]。 微生物资源利用的核心是在于利用其产生的生物活性物质,目前,微生物活性物质绝大部分来源于普通环境中的微生物,因此从普通环境微生物中寻找新的活性物质难度越来越大。新的基因有很大的可能产生新的生物活性物质,因此通过寻找新的基因来寻找新的生物活性物质。基于该思路,稀有放线菌、海洋微生物、极端环境微生物等过去很少触及的微生物资源已越来越受重视[2]。 2.微生物资源 2.1微生物资源的特点 环境中存在着大量的微生物, 据估计, 每克土壤样品中可含有高达1000种不同的微生物[3], 这些微生物产生多种多样的活性物质(包括酶与次生代谢产物两部分) ,

对人类有实用意义的抗生素—青霉素、链霉素、抓霉素、金霉素、土霉素、红霉素、新霉家、万古霉素、庆大霉素等都是从微生物中发现并开发出来的; 基因工程中各种工具酶几乎都来自多种不同的微生物[4] 微生物是一类物种丰富的生物资源和基因资源,迄今为止我们所分离到的微生物主要有:真菌70000多种、细菌5000多种、放线菌3000多种。而这些人类所知道的微生物估计仅占自然界存在的微生物不到10%,而被利用的还不到1%。 微生物具有很快的生长繁殖速度,有的细菌的时代时间仅仅20分钟,而且微生物可以再人工控制的条件下大规模培养,并且几乎不受地域、气候等条件的影响。 相比于动、植物品种遗传基因结构,微生物的基因组小得多,基因拷贝数比较少,比较容易进行基因操作,微生物改良易于操作,改造性能、提高产率相对容易。 微生物资源丰富,微生物资源的开发与利用不会导致微生物物种的减少和环境的破坏。部分动植物资源的不合理开发利用导致物种的减少甚至灭绝,造成严重的环境的恶化和污染问题,而微生物资源的开发利用不会存在此类问题。但我们必须注意到并引起重视的现实问题是由于环境的改变和恶化,如原始森林开发成旅游区等现象,造成的天然微生物的破坏,使得许多在该类环境中赖以生存的微生物在人类还没有认识它之前就悄悄灭绝了[1]。 微生物资源是新抗菌剂的主要来源之一,然而即使采用先进的方法, 绝大部分微生物也仍然不可培养、只能用分子指纹图谱来描述[5]。 2.2稀有放线菌 目前大部分生物活性物质来自链霉菌,所以从链霉菌中发现性的活性物质的几率已经大大降低。自20世纪50年代以来, 已从部分稀有放线菌代谢产物中得到许多已经临床应用的重要活性物质, 如红霉素B、利福霉素、庆大霉素、其它放线菌素类、安莎类、肽类、酶抑制剂等活性物质。 尽管新的种、属不断被发现, 但据估计, 目前分离到的放线菌种类, 仅为实际存在种类的0.1%~1%。因此, 放线菌还有极其丰富多样的未知种群等待人们去发现 [6]。如日本Takahashi 等[7] 报道, 从不同的环境, 利用特殊的分离方法分离到放线 菌的新种、新属,并从这些放线菌发酵产物中得到许多新结构的活性物质。

相关文档
最新文档