MEMS加速度传感器简介(最终版)

合集下载

MEMS加速度传感器简介(最终版)

MEMS加速度传感器简介(最终版)

MEMS电容式加速度传感器学校:哈尔滨工业大学(威海)学院:信息与电气工程学院专业:电子科学与技术作者:***090260207纪鹏飞090260208摘要本文从MEMS电容式加速度传感器的基本原理切入,主要介绍了该类型传感器的原理和三种主要结构:三明治式、扭摆式、梳齿式及其各自结构方面优点。

同时介绍目前应用较为广泛的集成式的基于电容原理的芯片MMA7455,主要分析了该集成传感器的内部结构和应用。

关键字:MEMS,电容式,加速度传感器,MMA7455AbstractIn this paper, we discussed the MEMS capacitive accelerometer from its fundamental principle and its three main structure which are sandwich, twist, and comb. Different structures have their own advantages. We also give the introduction to a popular IC accelerometer MM7455, putting an emphasis on its internal structure and some applications.Key words:MEMS, capacitive, accelerometer, MMA7455一、引言1.1 MEMS 加速度传感器简介MEMS(Micro-Machined Electro Mechanical Sensor)是微机电机械传感器的简称,它是一种微米级的类似集成电路的装置和工具。

MEMS 技术是一项有着广泛应用前景的基础技术。

以半导体技术和微机电加工工艺设计、制造的MEMS 传感器,集成度高,并可与信号处理电路集成在一起,大大降低了生产成本,已在汽车、消费电子和通信电子领域取得极大发展。

MEMS加速度传感器

MEMS加速度传感器

2021/10/10
12
GrLoOuGpO3
电容式加速度传感器
电容式加速度传感器是基于电容原理的极距变化型的电容传感器,其中一个电极 是固定的,另一变化电极是弹性膜片。弹性膜片在外力(气压、液压等)作用下发 生位移,使电容量发生变化。这种传感器可以测量气流(或液流)的振动速度(或加 速度),还可以进一步测出压力。
2021/10/10
23
GrLoOuGpO3
其他类型加速度传感器
3.热对流加速度计
一个被放置在芯片中央的热源在一个空腔中产生一个悬浮的热气团,同时由铝和 多晶硅组成的热电偶组被等距离对称地放置在热源的四个方向。在未受到加速度 或水平放置时,温度的下降陡度是以热源为中心完全对称的。此时所有四个热电 偶组因感应温度而产生的电压是相同的。
2021/10/10
11
GrLoOuGpO3
压阻式加速度传感器
工艺流程
(a)
在硅片两侧积淀氮化硅。
(b)
在硅片的前侧积淀第一层多晶硅牺牲层,然后制作第一层。
(c)
在硅片的前侧积淀第二层氮化硅,并在硅片后侧积淀第一层氮化硅。
(d)
制作前侧和后侧。
(e)
积淀并制作金属层(镍)。
(f)
各向异性腐蚀来得到沟槽。
压电式
2021/10/10
压电式加速度传感器是利用某些物 质如石英晶体的压电效应,在加速 度计受振时,质量块加在压电元件 上的力也随之变化。
21
新 新 新 成熟
GrLoOuGpO3
其他类型加速度传感器
1.光波导加速度计
光波导加速度计的原理如下图所示:光源从波导1进入,经过分束部分后分成两部 分分别通入波导4和波导2,进入波导4的一束直接被探测器2探测,而进入波导2的 一束会经过一段微小的间隙后进入波导3,最终被探测器1探测到。有加速度时, 质量块会使得波导2弯曲,进而导至其与波导3的正对面积减小,使探测器1探测到 的光减弱。通过比较两个探测器检测到的信号即可求得加速度

MEMS加速度传感器

MEMS加速度传感器

MEMS加速度传感器一.有关MEMS与MEMS传感器MEMS是微机电系统的缩写。

MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。

MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。

目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。

微传感器是采用微电子和微机械加工技术制造出来的新型传感器。

与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。

同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。

本文概述MEMS为加速度传感器的类型、工作原理、性能、应用和发展方向。

重点介绍一下电容式MEMS加速度传感器和MEMS传感器的应用二.MEMS微加速度传感器的原理MEMS技术所制造的加速度传感器根据原理分类有压阻式加速度传感器、压电式加速度传感器、电容式加速度传感器、热电偶式加速度传感器、谐振式加速度传感器、光波导加速度传感器,其中应用最广泛、受关注程度最高的是电容式加速度传感器。

传统加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。

由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。

2.1压阻式加速度传感器压阻式加速度传感器是最早开发的一种。

其原理为外力作用下,单晶硅材料发生微小形变,原子内部电子能级发生变化,从而产生剧烈电阻率的变化,从而改变输出电信号,也就是压阻效应。

MEMS加速度计

MEMS加速度计

MEMS加速度计MEMS(Micro-Electro-Mechanical Systems)加速度计是一种集成了微电子技术、微机械技术和传感器技术的微型加速度计。

MEMS加速度计以微机电系统技术为基础,利用微型机械结构和微电子技术制作而成的一种传感器。

其结构通常包括一个质量并且可以在三个不同方向上移动的臂梁,一些感应电极以及一个基座。

当加速度计受到外部加速度作用时,质量会受力发生偏移,从而导致感应电极的电荷和电场发生变化,通过测量这些变化,就可以得到外部加速度的信息。

MEMS加速度计主要有压电加速度计和电容加速度计两种类型。

压电加速度计是利用压电效应实现加速度测量的,当受到外部加速度作用时,压电材料产生电荷,从而产生电压输出。

电容加速度计是基于电容变化原理设计的,当加速度计产生加速度时,微机械结构中的电容会发生变化,通过测量电容变化就可以得到加速度的信息。

由于压电加速度计和电容加速度计都是微型化设计,制作工艺成熟,因此MEMS加速度计具有尺寸小、功耗低、成本低和可靠性高等特点。

MEMS加速度计广泛应用于许多领域,特别是在移动设备、汽车、航空航天、智能穿戴设备和工业自动化等领域。

在移动设备方面,MEMS加速度计可用于屏幕旋转、晃动控制和跌落检测等功能。

在汽车领域,MEMS加速度计能够实现碰撞检测、车身稳定控制和自动泊车等功能。

在航空航天领域,MEMS加速度计可用于姿态测量和导航系统。

在智能穿戴设备方面,MEMS加速度计可用于步数统计、睡眠监测和运动追踪等功能。

在工业自动化领域,MEMS加速度计可用于振动检测和故障诊断等应用。

然而,MEMS加速度计也存在一些问题。

首先,由于其微小尺寸,对温度、湿度和振动等环境因素的影响较大,可能会导致测量误差。

其次,MEMS加速度计的精度和分辨率相对较低,对微小加速度的测量不够敏感。

此外,MEMS加速度计的线性度和漂移等问题也需要进一步优化和改进。

综上所述,MEMS加速度计作为一种集成了微电子技术、微机械技术和传感器技术的微型加速度计,在各个领域有着重要的应用价值。

mems电容式加速度计原理

mems电容式加速度计原理

MEMS电容式加速度计原理一、工作原理MEMS电容式加速度计是一种基于微机械加工技术制成的传感器,用于测量加速度。

其核心部分是可移动的感应质量块和固定电极,它们之间存在微小的间距。

在工作状态下,当被测物体发生加速度时,感应质量块会受到力的作用,从而产生位移。

这个位移量会改变感应质量块与固定电极之间的距离,从而引起电容值的改变。

通过测量电容值的变化,可以推导出物体的加速度。

二、结构设计MEMS电容式加速度计的典型结构包括一个可移动的感应质量块和两个对称的固定电极。

感应质量块通常采用单晶硅材料制成,形状为长方形或圆形,其两端固定在弹性梁上。

弹性梁的材料一般为氮化硅或石英,它们具有良好的弹性性能和稳定的热性能。

固定电极一般采用金属材料制成,与硅衬底形成电容器。

当加速度作用在感应质量块上时,感应质量块会沿着敏感轴方向产生位移,从而改变电容器的电容值。

三、电容变化当感应质量块发生位移时,它与固定电极之间的距离会发生变化,导致电容值的改变。

这个电容变化量可以通过外部电路检测并转换为电压信号输出。

在MEMS电容式加速度计中,通常采用差分电容检测方式来提高检测灵敏度和减小外界干扰的影响。

差分电容检测方式是将两个对称的电容器串联在一起,通过测量两个电容器的电容差值来推导出加速度值。

四、测量范围MEMS电容式加速度计的测量范围取决于其结构设计、制造工艺和材料选择等因素。

一般来说,MEMS电容式加速度计的测量范围在±2g 至±10g之间。

在实际应用中,可以根据需要选择适合测量范围的加速度计。

此外,为了减小测量误差和提高测量的稳定性,可以对加速度计进行温度补偿和线性补偿等处理。

五、方向测量MEMS电容式加速度计一般只能测量单一方向的加速度值,而要实现方向测量则需要使用多个加速度计。

一般来说,将多个MEMS电容式加速度计按不同的方向布置在同一个被测物体上,每个加速度计负责测量一个方向的加速度值。

通过对这些加速度值进行处理和分析,可以获得物体在三维空间中的运动状态和方向信息。

MEMS压电式加速度计

MEMS压电式加速度计

MEMS压电式加速度计MEMS(Micro-Electro-Mechanical Systems)压电式加速度计是一种利用压电效应测量加速度的传感器。

它基于微纳技术制造而成,具有小型化、低功耗、高性能等优势,在汽车、航空航天、智能手机等领域广泛应用。

MEMS压电式加速度计的主要原理是利用压电材料的特性。

压电材料是一种在受到力或压力作用下会产生电荷的材料。

当压电材料受到加速度作用时,会产生应变,从而产生电荷。

通过测量这个电荷的大小,就可以确定加速度的大小。

MEMS压电式加速度计由压电传感器和信号处理电路组成。

压电传感器通常采用层状压电片结构,其中包含了压电材料和电极层。

当压电材料受到加速度作用时,会产生电荷,在电极间形成电压。

信号处理电路会将这个电压转换为数字信号,并进行处理和分析。

MEMS压电式加速度计具有以下优势。

首先,它是一种小型化的传感器,体积小、重量轻,可以方便地集成到其他设备中。

其次,它具有低功耗的特性,适合于电池供电的应用。

此外,它的响应速度快,可以检测频率较高的加速度变化。

最后,它的测量精度高,可以达到微米级的精度要求。

MEMS压电式加速度计在汽车行业中得到广泛应用。

例如,在车辆的安全系统中,可以通过加速度计来检测车辆的碰撞、翻滚等情况,从而触发安全气囊的打开。

此外,它还可以被用于车辆的悬挂系统、刹车系统等方面的控制和监测。

在航空航天领域,MEMS压电式加速度计可以用于火箭、导弹等飞行器的姿态控制和导航系统中。

通过测量加速度,可以确定飞行器的姿态和位置,从而实现精确的导航和控制。

在智能手机等消费类电子产品中,MEMS压电式加速度计可以用于屏幕旋转、手势识别等功能。

通过感知手机的倾斜、旋转等动作,可以实现屏幕的自动旋转、游戏的控制等功能。

总之,MEMS压电式加速度计是一种应用广泛的传感器,具有小型化、低功耗、高性能等优势。

它在汽车、航空航天、智能手机等领域发挥着重要的作用,为这些领域的发展和进步做出了贡献。

MEMS加速度传感器的研究报告

MEMS加速度传感器的研究报告

MEMS加速度传感器的研究报告MEMS(Micro-Electro-Mechanical Systems)加速度传感器是一种基于微纳技术制造的传感器,用于测量物体加速度的工具。

它具有小尺寸、低成本、高精度等优点,被广泛应用于汽车安全系统、移动设备、航空航天等领域。

本文主要对MEMS加速度传感器的原理、制造工艺、应用以及发展趋势进行研究和分析。

首先,MEMS加速度传感器的原理是基于微机械系统的振动原理。

当传感器受到加速度作用时,会引起传感器内部的微结构振动。

通过测量这种振动信号的变化,即可获得物体的加速度信息。

通常,MEMS加速度传感器采用谐振质量块和弹性支撑等微结构来实现。

其次,MEMS加速度传感器的制造工艺主要包括光刻、离子刻蚀、薄膜沉积等步骤。

首先,利用光刻技术在硅片上形成所需的结构图案。

然后,通过离子刻蚀方法将不需要的部分去除,形成谐振质量块和弹性支撑等微结构。

最后,通过薄膜沉积技术在微结构上形成感应电极,完成传感器的制造。

MEMS加速度传感器在众多领域有着广泛的应用。

在汽车安全系统中,它可以检测到车辆的碰撞或急刹车等情况,从而触发安全气囊的部署。

在移动设备中,它可以用于屏幕自动旋转、运动跟踪等功能。

在航空航天领域,它可以用于飞机的姿态稳定和导航系统的精确定位等。

随着技术不断发展,MEMS加速度传感器也呈现出一些新的趋势。

首先,尽管MEMS加速度传感器已取得很大进展,但其精度仍有提高的空间。

未来的研究将集中于提高传感器的精度和稳定性,以满足更高精度的应用需求。

其次,为了应对多种复杂环境下的应用需求,MEMS加速度传感器还需要增强其抗干扰能力和适应性。

此外,随着物联网技术的快速发展,MEMS加速度传感器将与其他传感器相结合,为更广泛的应用提供数据和支持。

综上所述,MEMS加速度传感器是一种重要的微纳技术应用,具有广泛的应用前景。

通过对其原理、制造工艺、应用和发展趋势的研究,可以更好地理解和推动该技术的发展,为相关领域的应用提供更好的解决方案。

MEMS加速度传感器地原理与构造

MEMS加速度传感器地原理与构造

MEMS加速度传感器地原理与构造MEMS加速度传感器(Microelectromechanical systems accelerometer)是一种用于测量物体加速度的装置,它基于微电子技术和微机械技术的结合而实现。

MEMS加速度传感器的原理是利用微机电系统技术制造出微小而灵敏的质量悬浮结构,并通过对这些悬浮结构的位移或应力进行测量来确定物体的加速度。

首先是丙烯酸胶悬浮结构,它由一个质量悬浮结构和一个用于固定的结构组成。

质量悬浮结构通常由硅制成,具有非常小的质量并能自由运动。

它的运动会受到物体的加速度影响,从而使得该结构发生位移或应力变化。

接下来是压电传感器,它位于质量悬浮结构上方的盖片上。

压电传感器由压电材料制成,当质量悬浮结构发生位移或应力变化时,会产生相应的压电电荷。

这些电荷会由传感器收集并转化为电压信号。

最后是电路及信号处理部分。

传感器收集到的电荷信号会通过一些电路进一步放大和处理,从而得到一个可以测量的模拟电压信号。

这个电压信号可以转化为数字信号,并通过计算机或其他设备进行进一步分析和处理。

MEMS加速度传感器的工作原理基于牛顿力学中的加速度定义。

当物体受到外力作用导致加速度发生变化时,质量悬浮结构会通过惯性产生位移或应力变化。

这些变化被传感器捕捉并转化为电信号,从而可以测量物体的加速度。

总结来说,MEMS加速度传感器通过微电子和微机械技术,利用质量悬浮结构位移或应力变化来测量物体加速度。

其构造包括丙烯酸胶悬浮结构、压电传感器、电路及信号处理部分等组成。

通过该传感器可以实现物体加速度的测量,并在各种应用领域发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MEMS电容式加速度传感器
学校:哈尔滨工业大学(威海)
学院:信息与电气工程学院
专业:电子科学与技术
作者:***090260207
纪鹏飞090260208
摘要
本文从MEMS电容式加速度传感器的基本原理切入,主要介绍了该类型传感器的原理和三种主要结构:三明治式、扭摆式、梳齿式及其各自结构方面优点。

同时介绍目前应用较为广泛的集成式的基于电容原理的芯片MMA7455,主要分析了该集成传感器的内部结构和应用。

关键字:MEMS,电容式,加速度传感器,MMA7455
Abstract
In this paper, we discussed the MEMS capacitive accelerometer from its fundamental principle and its three main structure which are sandwich, twist, and comb. Different structures have their own advantages. We also give the introduction to a popular IC accelerometer MM7455, putting an emphasis on its internal structure and some applications.
Key words:MEMS, capacitive, accelerometer, MMA7455
一、引言
1.1 MEMS 加速度传感器简介
MEMS(Micro-Machined Electro Mechanical Sensor)是微机电机械传感器的简称,它是一种微米级的类似集成电路的装置和工具。

MEMS 技术是一项有着广泛应用前景的基础技术。

以半导体技术和微机电加工工艺设计、制造的MEMS 传感器,集成度高,并可与信号处理电路集成在一起,大大降低了生产成本,已在汽车、消费电子和通信电子领域取得极大发展。

MEMS 加速度传感器按敏感原理的不同可以分为压电式、压阻式、电容式、谐振式、热对流式等。

本文主要介绍MEMS 电容加速度传感器。

二、传感器工作原理与常见结构
2.1 MEMS 电容式加速度传感器工作原理
电容式微加速度传感器的基本结构是质量块与固定电极构成的电容。

当加速度使质量块产生位移时改变电容的重叠面积或间距。

检测到的电容信号经过前置放大、信号调理后,以直流电压方式输出,从而间接实现对加速度的检测。

如图1所示,电容式加速度传感器由两块固定电极夹着一块活动电极。

在静止的情况下,活动电极与两块固定电极的距离均为d 0形成两个大小为C 0的串联的电容。

当加速度传感器检测加速度时,活动电极受加速度力产生位移,两个电容的d 发生变化。

根据平行板电容的计算公式:
r S C d εε= 可知两个电容的大小将发生变化。

由于此时电容值和极板间隙不是线性关系,常
常采用差动电容检测方式以解决线性问题:
00020002r r r S S
S C d d d d d d εεεεεε∆=
-=∆-∆+∆
上式在d d ∆<<时成立。

图2-1 MEMS电容式加速度传感器工作示意图
2.2 MEMS电容加速度传感器的常见结构
2.2.1三明治式
所谓“三明治”结构,就是指检测质量夹在两块玻璃片之间的结构形式,如图3-1所示。

固定电极分布在活动电极两边,敏感质量块的上下两面均作为动极板。

当有加速度作用时,敏感质量块发生摆动,一对电容极板间的间距变大,而另一对电容极板闭的问距变小,从而形成差动检测电容。

这种结构需要双面光刻,加工工艺设备较多.器件加工制造难度较大:井因为悬臂支撑梁所能承受的应力有限,这种传感器所能测量的最大加速度值较小。

图2-2三明治式电容加速度计结构示意图
2.2.2 扭摆式
扭摆式是基于三明治式,扭摆式微加速度计的两个固定电容极板设计在活动极板的同一侧形成的。

由图3—2扭摆式微加速度计的结构可以看出,位于支承弹性粱两边的敏感质量和惯性矩不相等,当有垂直于基片的外界加速度作用时,敏感质量片将围绕支承弹性粱扭转,结构电容大小发生变化,一对结构电容增大,一对结构电容减小.从而形成结构差动电容,测量此差动电容值即可得到外界输入的加速度载荷大小。

这种传感器结构比较简单,不需要双面光刻.且能进行较大加速度值的测量。

图2-3 扭摆式电容加速度计结构示意图
图2-4 跷跷板式扭摆式电容加速度计结构示意图
2.2.3疏齿式
梳齿式电容加速度计利用若干对梳齿形状的电极形成检测电容和加力电容,它的一个明显优点就是利用增加电极数的方式来增大检测电容。

梳齿有定齿和动齿两种,定齿固定在基片上,动齿则附着在检测质量上。

检测质量由弹簧支撑于基片上。

当有外部加速度输入时,动齿随同检测质量一起运动,并产生微位移,引起动齿与定齿之间电容的变化,电容的变化量可以通过检测电路检测出来,进而检测出微位移和输入加速度的值。

其键台强度高、面积大、难度低,键台接触电阻小、均匀且成品率高,提高了加速度计的分辨率和精度。

但是结构相对比较复杂,加工起来难度较大。

图2-5 疏齿式电容加速度计结构示意图
三、MMA7455三轴加速度传感器
3.1 MMA7455内部结构
MEMS加速度传感器主要有两部分:微电子技术加工的电容性机械系统( Micro Electro Mechanical System )和带有闭环反馈的信号转换控制系统ASIC( Application System Integrated Circuit )。

MMA7455内部由三轴加速度传感器、多路开关、C—V转换器、放大电路、AD转换、以及控制电路与输出
驱动电路,如图3-1所示。

图3-1 MMA7455内部结构
3.2 MMA7455应用
3.2.1 MMA7455加速度测量
MMA7455可以设置三种模式2g、4g和8g,不同模式下测量精度不同输出也不同。

根据三轴检测数据的输出与芯片工作模式可以计算出不同轴方向加速度分量大小,最后求出加速度方向与大小。

图3-2为2g模式下芯片不同放置X、Y、Z的输出。

图3-2
由图可以看出芯片纵向为X轴方向,横向为Y轴方向,垂直方向为Z轴。

对于传感器模式的选择及g值的选择强调不同的应用环境。

一般来说1.5g 适合自由落体与精确的倾斜补偿的应用,2g适合手持运动检测与游戏控制器,4g适合低振动监控、运输与处理,8g适合高震动监控与较高震动的读取。

合适选取模式可以获得较高的精确度。

3.2.2 MMA7455倾角测量
加速度传感器可以用于多种场合的检测与监控,如倾斜度的侦测、运动检测、定位侦测、震动侦测、振动侦测以及自由落体等。

利用三轴加速度传感器计算单轴倾角。

图3-3是倾角测量图解。

这时加速度输出与倾角的关系
所以γ可以用反正切方程求的
图3-3倾角测量图解
四总结
本文介绍了电容式微机械加速度传感器工作原理,结构组成以及飞思卡尔半导体公司的MMA7455三轴加速度传感器芯片内部组成、测量应用等。

电容式加速度微传感器具有灵敏度高、直流响应和噪声特性好、温漂低、低温灵敏度好、功耗低等优点。

参考文献
[1] 刘晓宁《半导体传感器》哈尔滨工业大学(威海) 2011
[2] 孙以材编著《微电子机械加工系统(MEMS)技术基础》冶金工业出版社 2009
[3] Sadra/Smith 《Microelectronics Circuits》电子工业出版社2006
[4] 王巍等基于微机械传感器的倾角传感器 2010
[5] Freescale Semiconductor, Inc. MMA7455 Device User Guide.。

相关文档
最新文档