激光分析仪技术原理只是分享
激光扫描的工作原理

激光扫描的工作原理
激光扫描是一种利用激光束进行扫描的技术,可以用于测量、定位和识别目标物体的表面形状和特征。
激光扫描的工作原理如下:首先,激光器发射出一束窄而强大的激光束。
该激光束经过光路设计,使其具有一定的聚焦能力和扩散角度。
然后,激光束会被定向到目标物体上,并朝着目标物体表面发射。
当激光束照射到目标物体表面时,会与表面发生反射、散射和吸收等行为。
接下来,激光束反射回到激光扫描仪上的接收器中。
接收器会测量激光束的位置、强度和时间等参数,并将这些数据传输到计算机中进行处理。
计算机会根据接收到的数据,重建出目标物体的表面形状和特征,并生成对应的图像或三维模型。
激光扫描的精度和分辨率取决于激光束的质量、探测器的灵敏度和采样频率等因素。
此外,激光扫描还可以通过改变激光束的扫描角度和扫描速度等参数,来获取不同精度和分辨率的扫描结果。
总的来说,激光扫描利用激光束的特性,通过测量激光束在目标物体表面的反射和散射行为,实现对目标物体的测量和识别。
这项技术在测绘、3D建模、工业检测等领域具有广泛的应用。
激光粒度分析仪原理

激光粒度分析仪原理
激光粒度分析仪通过激光散射原理测定颗粒的大小分布。
其工作原理可分为激光散射、多角度散射和光散射模型解析三个步骤。
首先,激光粒度分析仪发射激光束,并使其经过样品。
当激光束与样品中的颗粒相互作用时,激光光束会在不同方向上被散射。
这种散射现象通常被称为Mie散射。
其中,大颗粒会散射激光光束较强的光强,而小颗粒则会散射较弱的光强。
其次,在激光散射中,多角度散射是关键。
激光粒度分析仪通过设置多个收集光探测头在不同角度上收集散射光,以得到从不同方向上散射的光强。
通过多角度散射的光强数据,激光粒度分析仪可以计算出颗粒的大小和分布情况。
最后,根据光散射模型解析得出的数据,激光粒度分析仪可以绘制颗粒大小分布曲线。
根据不同的分析需求,该仪器可以提供不同的参数和显示方式,如粒径均值、粒径分布图等。
总的来说,激光粒度分析仪利用激光散射原理和多角度散射技术,通过测量颗粒在不同角度上散射的光强来确定颗粒的大小和分布。
这种分析方法高效、准确,被广泛应用于颗粒物料的分析与研究领域。
激光分析仪技术原理

利用激光的高亮度和单 色性,进行长度、角度、
速度等测量。
利用激光的高能量密度, 进行切割、焊接、打标
等加工操作。
利用激光的生物效应, 如光热、光化学等,进
行医学诊断和治疗。
PART 02
激光分析仪的基本原理
激光分析仪的构成
激光发射器
用于产生特定波长的激光束, 是激光分析仪的核心部件。
激光技术概述
激光的特性
01
02
03
相干性
激光具有高度相干性,其 光波列的相位、振幅和偏 振状态一致。
单色性
激光的波长范围很窄,具 有极佳的单色性,适合用 于光谱分析。
高亮度
激光的亮度极高,能够在 远距离聚焦形成小光斑, 提高测量精度。
激光的种类
01
02
03
04
气体激光器
以气体为工作物质,产生特定 波长的激光,如氦氖激光器。
信号放大与处理
为了提高测量精度和灵敏度,需要将光电转换器输出的微 弱电信号进行放大和处理。激光分析仪采用电子线路对信 号进行放大、滤波、调制和解调等处理。
数据采集与处理
激光分析仪通常配备高精度的数据采集系统和计算机软件, 可以对采集到的数据进行实时处理、分析和存储。
计算机技术
数据采集与控制
计算机通过数据采集卡和控制卡 等硬件与激光分析仪连接,实现 对仪器工作状态的控制和数据的
PART 05
激光分析仪的发展趋势和 未来展望
激光分析仪的发展趋势
技术创新
智能化发展
随着科技的不断进步,激光分析仪在技术 上不断创新,提高检测精度和稳定性,拓 展应用领域。
激光分析仪正朝着智能化方向发展,通过 引入人工智能和机器学习技术,实现自动 识别、自动调整和智能诊断等功能。
激光测量仪的工作原理

激光测量仪的工作原理
激光测量仪的工作原理是利用激光束的发射、传播和接收来测量目标物体的距离和位置。
其主要包括激光器、发射器、接收器和电子控制器这几个部分。
1. 激光器:激光测量仪使用的激光器通常是半导体激光器,其特点是体积小、功耗低、发射能量高。
激光器通过激活半导体材料,使其产生激发,从而产生一束高度聚焦的激光束。
2. 发射器:激光测量仪的发射器将激光束从激光器中引导出来,经过透镜系统进行聚焦和准直,使激光束变得更加稳定和准确。
3. 接收器:激光测量仪的接收器主要是用来接收激光束反射回来的信号。
接收器中通常包含光电二极管或光电探测器,能够将激光束的光能转化为电信号。
4. 电子控制器:激光测量仪的电子控制器负责控制整个测量过程。
它可以控制激光器的开关,以及接收到的激光信号进行放大、滤波和数字化处理,最后通过计算和数据分析得到目标物体的距离和位置。
运行模式:
1. 时差测量法:通过测量激光束反射回来的时间差,根据光在真空中的传播速度,计算出目标物体与测量仪之间的距离。
这种方法适用于测量较长距离。
2. 相位测量法:通过测量相位差,即测量激光束反射回来时的
相位与原先发射时的相位之间的差别,计算出目标物体与测量仪之间的距离。
这种方法适用于高精度测量。
总的来说,激光测量仪利用激光束的发射、传播和接收,通过测量时间差或相位差来计算目标物体的距离和位置。
其优点是测量精度高,测量范围大,适用于许多领域的精密测量和定位。
激光测试技术 原理(二)

激光测试技术原理(二)激光测试技术原理1. 激光的基本原理•激光(laser)是一种高度集中和定向的光束,其产生原理是基于激光器中的受激辐射。
•激光器由三个基本组件组成:工作物质、泵浦源和光学谐振腔。
•工作物质可以是固体、气体或液体,泵浦源向工作物质提供能量,光学谐振腔保持光波的相干性。
2. 激光测试的原理•激光测试技术利用激光束对被测物体进行扫描和测量,以获取关于物体特征和性质的信息。
•激光束可以通过光学透镜和反射镜进行聚焦和导向,使其经过被测物体并接收反射回来的光信号。
•接收的光信号经过光电转换后,就可以利用相应的信号处理和分析技术,获取被测物体的相关数据。
3. 激光测试的应用领域•激光测试技术在各个领域都具有广泛的应用。
•在制造业中,激光测试可以用于测量零件尺寸、检测表面缺陷,并对产品质量进行评估。
•在医学领域,激光测试可以用于激光成像、激光治疗和激光手术等应用。
•在环境监测中,激光测试可以用于大气污染物的检测、水质分析和地球观测等方面。
•在科学研究中,激光测试可以用于光谱分析、发射光谱测量和激光光谱学等研究。
4. 激光测试技术的发展趋势•随着科技的发展,激光测试技术也在不断演进。
•近年来,随着激光器的小型化和便携化,激光测试设备越来越普及和易用。
•同时,激光测试技术的精度和灵敏度也在不断提高,可以满足更多复杂和高精度测量的需求。
•未来,激光测试技术有望在汽车、航天、无人机等领域得到更广泛的应用,并为行业的发展提供支持。
结论通过本文的简要介绍,可以看出激光测试技术在不同领域具备广泛的应用前景。
随着技术的不断进步,相信激光测试技术将为各行各业带来更多的创新和发展机会。
让我们拭目以待,见证激光测试技术的未来!。
激光扫描测绘技术的原理与应用解析

激光扫描测绘技术的原理与应用解析一、引言地图是人类认知和探索世界的重要工具,而测绘技术则是制作地图的基础。
随着科技的发展,激光扫描测绘技术逐渐崭露头角,成为测绘领域的重要工具。
本文将对激光扫描测绘技术的原理与应用进行解析。
二、激光扫描测绘技术的原理激光扫描测绘技术是一种利用激光器产生激光束扫描地面或物体的技术。
其原理基于激光的高亮度、非常狭窄的束宽以及可控的扫描系统。
激光扫描测绘技术的核心是激光测距。
激光束经过衍射装置后,形成一束平行且聚焦的激光束,然后通过激光接收器接收反射回来的激光束。
利用光电转换装置将激光信号转化为电信号,然后测量激光到达物体和返回的时间差,即可得到距离信息。
通过测量不同位置的距离信息,可以构建出精确的三维模型。
三、激光扫描测绘技术的应用1. 建筑测绘激光扫描测绘技术在建筑领域有着广泛的应用。
利用激光扫描仪,可以快速获取建筑物的三维数据,包括立面、平面和内部结构。
这为建筑师和设计师提供了准确的数据基础,可以应用于建筑设计、规划和改造等方面。
2. 地质勘探激光扫描测绘技术在地质勘探中有着重要的作用。
地质勘探需要获取地形地貌的精确信息,而传统的测绘方法往往耗时且成本较高。
利用激光扫描测绘技术,可以高效地获取地质数据,包括地表形态、地下岩层等,提高勘探的效率和准确性。
3. 文化遗产保护激光扫描测绘技术在文化遗产保护方面也有着重要的应用。
许多文化遗产,如大型雕塑、古建筑等,需要进行精确的保护和修复工作。
利用激光扫描测绘技术,可以获取文物的高精度三维模型,为保护和修复提供准确的数据支持。
四、激光扫描测绘技术的优势与挑战激光扫描测绘技术相比传统测绘方法具有许多优势。
首先,激光扫描测绘技术能够高效地获取大量数据,大大提高了测绘的效率。
而且,激光扫描测绘技术具有高精度、非接触性和可重复性的特点,能够获取真实、可靠的数据。
然而,激光扫描测绘技术也存在一些挑战。
首先,激光扫描仪的成本较高,限制了其广泛应用。
激光分析仪技术原理

激光分析仪技术原理激光器是激光分析仪最重要的组成部分之一、它可以产生具有高相干性和单色性的激光束。
常见的激光器包括气体激光器、半导体激光器、固体激光器等。
激光器的发射波长、功率、光束质量等参数对激光分析仪的性能有着重要的影响。
样品是激光束与之相互作用的对象。
样品可以是气体、液体或固体等多种形式的物质。
当激光束与样品相互作用时,会发生一系列的光学和物理过程,如吸收、散射、荧光等。
这些过程中样品会吸收一部分激光能量,并发射出特定的光信号。
探测器是接收并测量样品发射的光信号的装置。
它可以是光电二极管、光电倍增管、光谱仪等。
探测器的选择要根据样品发射的光信号的特点来决定。
探测器接收到样品发射的光信号后,会转换成电信号,并经过电子学处理,得到与被测量相关的信息。
吸收光谱法是利用被测样品对激光光束的吸收特性来进行分析。
当激光光束通过被测样品时,样品会吸收特定波长的光,这部分吸收光的强度与样品中目标组分的浓度有关。
通过测量吸收光的强度变化,可以得到被测样品中目标组分的浓度信息。
荧光光谱法是通过测量被测样品在受激光束的作用下发射出的荧光光谱来进行分析。
当激光光束照射到被测样品上时,样品中的一些分子或原子可能会吸收光束的能量,并发射出特定的荧光光。
这些荧光光的波长和强度可以提供关于被测样品的信息。
拉曼光谱法是通过测量样品受激光束作用后发射的拉曼散射光谱来进行分析。
当激光光束入射到样品上时,样品中的分子或原子会发生振动、转动等运动,这些运动会导致光的频率发生变化,出现了拉曼散射光。
通过测量拉曼散射光的波长和强度变化,可以获得被测样品的结构和组分信息。
综上所述,激光分析仪的工作原理主要涉及激光器、样品和探测器三个主要部分。
通过选择合适的技术和分析方法,可以获取被测样品的相关信息,实现对样品的分析和检测。
激光多普勒测速仪(LDV)相位多普勒粒子分析仪(PDPA)

L2
在差动多普勒技术中,相交光束产生的条纹图
条纹间距:
f
F 2sin( / 2) s
LDV测速的关键参数,可用速度标定工具来检验
粒子速度: v fD f
椭球型控制体基本参数:
直径:
dw
4F d
宽度:
L1
dw cos(
/
2)
长度:
L2
dw sin( /
2)
8F 2 ds
1.2 激光多普勒测量原理
粒子大小和浓度测量:信号可见度法
信号底基幅值法
在多普勒信号中有可见度的定义: V Imax Imin I max I min
可见度和球形颗粒度的关系,可近似用第一类一阶贝塞尔函数的形式来
表示:
V 2J1(d p / f ) d p / f
J1:一阶贝塞尔函数 dp:粒子直径 f:干涉条纹间距
2.5 PDPA应用实例
PDPA测量喷射燃料粒子场
两束激光束相交处为测 量区域, 在该区域形成干涉 条纹, 喷雾场粒子通过该区 域, 接收探头接收到折射和 散射光信号, 经信号分析和 数据处理, 得到粒子速度和 粒径信息。
实验结果
左图为PDPA 测量粒径统 计分布结果, 横坐标为喷雾 粒径, 单位为μm, 纵坐标为 统计个数。
1. 由于是激光测量,对于流场没有干扰,测速范围宽, 2. 由于多普勒频率与速度是线性关系,和该点的温度、
压力没有关系; 3. 消除了由于散射光干涉带来的复杂问题; 4. 对采样体的精确确定,使得在测量粒子速度和粒径的
同时,也可以测量粒子的密度和体积流量; 5. 信号处理技术的优势提高了数据的可靠性; 6. 目前还只能被用在固体浓度较低的环境中。
全息摄影与普通摄影的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温、高粉尘、高水分、高流速、强腐蚀等恶 劣环境适应能力强
只能测量恒温、恒压、恒流、干燥及无粉尘的气体
快:仅取决于仪表响应时间,<1秒
吸收光谱技术
能级的概念
E2 - E1 = hn
光子
分子能量表现
E2
能级跃迁
E1
旋转
4
振动Βιβλιοθήκη 电子跃迁Copyright @2005 FPI inc, all right
分子光谱
每两个能级对应一根吸收谱线 在低分辨率光谱上表现为谱带
-1 -2
L in e s tr e n g th [ a tcmm ]
公式说明
线型函数Φ
产生原因:测不准原理 影响因素:温度/压力 归一性:面积不变
8
Copyright @2005 FPI inc, all right
DLAS技术
DLAS——Diode Laser Absorption Spectroscopy 半导体激光吸收光谱
与传统吸收光谱相似,基于受激吸收效应并遵循Beer – Lambert公式
7880
7890
7900
Frequency (cm -1)
7910
0
7920
7884.0
7884.2
7884.4
7884.6
Frequency (cm -1 )
单线光谱技术无交叉气体干扰:
激光谱宽非常窄(单色性好) 激光频率扫描范围内只有被测气体吸收谱线
15
Copyright @2005 FPI inc, all right
Absorbance [cm-1]
10 0
CO 2
10 -5
10 0 10 -2 10 -4 1100-62 10 0 1v (4.6 m) 10 -2 10 -4
H 2O
R branch 2v (2.3 m)
CO 3v (1.55 m)
2000
4000
6000
Frequency [cm
-1 ] 8000
调制光谱技术
半导体激光器调制特性
电流波长调谐技术 抗粉尘测量 相敏检测技术 提高探测灵敏度
16
Copyright @2005 FPI inc, all right
2f trace [a.u.]
环境因素修正
0.25 Increasing pressure (P = 3.4, 4.8, 6.3, 7.6, 8.9, 10.5 bar)
5
5x10-6
10 ppm CO @1atm, 300K
4
3
2
1
10000
0
4200
4240
4280
Frequency [cm-1]
4320
浓度测量公式
测量基本公式
吸收率absorbance
透过率曲线
T (v)
ln(I) ln(I)d
X I0
I0 (1.2)
PSL
PSL
v0
v
关键因素X=F(Absorbance,T,P,L)
光程 光源是用半导体激光: 波段窄,可调制
技术上的特点决定了安装测量方式:原位测量
11
Copyright @2005 FPI inc, all right
原位分析
发射单元
L 接收单元
过程气体
半导体激光 驱动电路
数据分析 及控制
中央分析仪器元
数据采集
12
Copyright @2005 FPI inc, all right
DLAS技术
使用半导体激光器作为光源
单色性好,即光的波长宽度窄。<0.0001nm,传统红外 光源一般在20-30nm左右
可调制扫描
绝大部分光属于红外区域,
波长范围750-2000nm左右。
激光波 长范围
10
Copyright @2005 FPI inc, all right
小结
基于吸收光谱技术,直接测量的是吸收率 浓度测量值和四个因素相关:吸收率、温度、压力、
17
Copyright @2005 FPI inc, all right
技术比较-传统光谱技术
指标 预处理系 统 测量方式 气体环境
响应速度
准确性
连续性 可靠性 介质干扰 尾气排放 标定维护
运行费用
LGA-2000激光现场在线气体分析仪
传统光谱在线气体分析仪
不需要
必需
现场、连续、实时测量
采样预处理后间断测量
原位分析 VS 采样分析
采样分析
获得样本 预处理 分 析
众多缺点:
• 系统复杂、故障率高 • 探头腐蚀、堵塞 • 长时间滞后 • 经常性的标定
原位分析
现场直接分析过程气体 针对测量工艺的定制化开
发
13
Copyright @2005 FPI inc, all right
原位测量必须解决三个问题
0.20
R7Q8
R7R7
(13142.584 cm-1)
(13140.568 cm-1)
0.15
0.10
0.05
0.00
-0.05
-0.10
0
2
4
6
8 10 12 14 16
Time [ms]
测量气体的温度、压 力等环境参数影响气体 吸收谱线展宽 通过展宽补偿技术可 进行精确补偿: 单线光谱数据 针对测量工艺的展宽 补偿
采用半导体激光器为光源,并可采用调制吸收光谱技术 (TDLAS)
发展历史:
上世纪六十年代,激光器发明 上世纪七、八十年代,激光吸收光谱技术逐步应用于科学实验的精密测量 上世纪九十年代,半导体激光器和光纤元件大规模商用化 上世纪九十年代,欧美国家开始DLAS技术产业化研究
9
Copyright @2005 FPI inc, all right
6
Copyright @2005 FPI inc, all right
公式说明
在波长一定的情况下,S线强由两方面因素决定:
① 分子跃迁上,下能级的波函数 —由分子结构等性质决定
② 分子的集居(Population) —与温度相关
7
Copyright @2005 FPI inc, all right
不受背景气体交叉干扰 不受测量现场粉尘等颗粒物干扰 不受气体参数(温度、压力等)变化的影响
14
Copyright @2005 FPI inc, all right
“单线光谱”技术
-6
x10 -6 x1 0
60
60
传统光源波长宽度
50
50
激光器波长宽度
40
40
30
30
20
20
10
10
0 7870
FOCUSED PHOTONICS INC
DLAS技术原理培训
市场部-许鹏 2020/4/11
产品基本情况
2
Copyright @2005 FPI inc, all right
吸收光谱技术
吸收光谱技术 半导体激光吸收光谱(DLAS)技术
3
Copyright @2005 FPI inc, all right