数学模型方法分析简述
数学建模方法与分析

数学建模方法与分析
数学建模是利用数学方法解决实际问题的过程。
数学建模的一般步骤包括问题定义、建立数学模型、模型求解和结果分析等阶段。
数学建模方法可以分为多种,常见的方法包括:
1. 数据分析:通过统计分析和数据挖掘等方法,对问题中的数据进行处理和分析,找出其中的规律和趋势。
2. 最优化方法:根据问题的要求,建立相应的数学规划模型,通过求解最优化问题,得到最优解。
3. 随机模型:将问题建立为随机过程或概率模型,通过概率统计的方法进行分析和求解。
4. 系统动力学模型:将问题建立为动态系统模型,通过系统动力学的方法分析系统的行为和演化规律。
5. 图论和网络分析:将问题建立为图模型或网络模型,通过图论和网络分析的方法研究其结构和性质。
6. 分数阶模型:将问题建立为分数阶微分方程或分数阶差分方程,通过分数阶
微积分的方法进行分析和求解。
数学建模的分析阶段是对模型求解结果进行解释和评估。
分析结果可以包括对模型的可行性和有效性进行验证,对模型的优化方向进行探讨,以及对问题的解释和解决方案的提出等。
总的来说,数学建模方法与分析是数学建模过程中重要的环节,通过合理选择建模方法和深入分析模型结果,可以得到对实际问题有价值的解决方案。
线性离散系统数学模型和分析方法

线性离散系统数学模型和分析方法目录一、内容简述 (3)二、线性离散系统的数学模型 (3)2.1 离散系统的概念 (5)2.2 离散系统的描述方法 (6)2.2.1 差分方程 (7)2.2.2 马尔可夫过程 (8)2.2.3 状态空间表示 (10)2.3 线性离散系统的特性 (11)2.3.1 稳定性分析 (12)2.3.2 脉冲响应与收敛性 (13)2.3.3 系统性能评估 (14)三、分析方法 (16)3.1 拉普拉斯变换法 (17)3.1.1 基本概念 (19)3.1.2 应用分析 (20)3.1.3 收敛性与应用局限 (21)3.2 状态空间方法 (23)3.2.1 基本理论 (24)3.2.2 控制器设计 (25)3.2.3 参数估计 (26)3.3 Z变换法 (27)3.3.1 基本原理 (28)3.3.2 系统分析 (30)3.3.3 系统的性能评估 (31)3.4 时域分析方法 (33)3.4.1 序贯逼近法 (34)3.4.2 数值仿真 (34)3.4.3 基于数字模型的算法 (36)四、应用实例 (37)4.1 控制系统设计 (39)4.1.1 系统建模 (40)4.1.2 控制器设计与仿真 (42)4.2 信号处理 (43)4.2.1 离散信号处理 (45)4.2.2 滤波器设计 (46)4.3 通信系统 (47)4.3.1 调制与解调 (49)4.3.2 语音编码与加密 (51)五、结论与展望 (52)5.1 研究成果总结 (53)5.2 未来研究方向 (54)5.3 实际应用前景 (55)一、内容简述本文档旨在全面介绍线性离散系统数学模型的构建及其分析方法。
线性离散系统在现代科技、工程和经济学等领域具有广泛的应用,因此对其数学模型的理解和分析显得尤为重要。
我们将从线性离散系统的基本概念出发,详细阐述线性离散系统的定义、特点以及类型。
通过实例演示如何建立线性离散系统的数学模型,包括状态方程、传递函数等基本形式。
数学模型方法——数学模型概念

2、简明实用。 、简明实用。 在建模过程中, 在建模过程中,要把本质的东西及其关系 反映进去,把非本质的、 反映进去,把非本质的、对反映客观真实 程度影响不大的东西去掉, 程度影响不大的东西去掉,使模型在保证 一定精确度的条件下, 一定精确度的条件下,尽可能的简单和可 操作,数据易于采集。 操作,数据易于采集。 3、适应变化。 、适应变化。 随着有关条件的变化和人们认识的发展, 随着有关条件的变化和人们认识的发展, 通过相关变量及参数的调整, 通过相关变量及参数的调整,能很好的适 应新情况。 应新情况。
• 模型方法是为完成人类认识世界的某种目 的而进行的, 的而进行的,从分类的意义上来说有多种 多样的模型方法。 多样的模型方法。 • 人们一般把它划分为实物模型和思想模型 人们一般把它划分为实物模型 实物模型和 两种类型。 两种类型。进一步从构造意义上来划分还 可以分为数学模型 逻辑模型、功能模型、 数学模型、 可以分为数学模型、逻辑模型、功能模型、 图形模型等 图形模型等。
任意取黑白两种颜色的棋子8粒摆成一个圆圈。 任意取黑白两种颜色的棋子8粒摆成一个圆圈。然 后在相邻两粒同色棋子中间放一粒黑棋, 后在相邻两粒同色棋子中间放一粒黑棋,在相邻 两粒异色棋子中间放一粒白棋, 两粒异色棋子中间放一粒白棋,放完后撤掉原来 粒棋子。重复以上过程, 的8粒棋子。重复以上过程,问棋子的颜色会怎样 变化? 如果一开始是6粒黑白棋子摆成一个圆圈, 变化? 如果一开始是6粒黑白棋子摆成一个圆圈, 问重复上述操作后,棋子的颜色会怎样变化? 问重复上述操作后,棋子的颜色会怎样变化? (1)8次后变为全黑 (1)8次后变为全黑 (2)第 次操作后结果相同,是周期为6 (2)第2次、第8次操作后结果相同,是周期为6的 循环 2
数学模型( 数学模型(Mathematical Model) )
现代数学模型分析方法

基本假设
(1)分离定理 (2)市场组合 (3)有效集 “资本市场线”解析表达式为: E(Rp)= Rf + [(E(RM)– Rf)/SM]•Sp 其中E(Rp)和 Sp 表示一个有效组合中的预期收益率和标准差 Rf 是无风险利率 (E(RM) 和 SM 分别是市场组合的预期收益率和标准差。 而“资本市场线”的斜率(E(RM)– Rf)/SM 则反映了单位风险的市场价值。
2.证券投资收益和风险的衡量
01
历史的风险与收益(historical or ex post risk and return)
添加标题
02
预期的风险与收益(expected or ex ante risk and return)
添加标题
03
前者用于确定单一证券或证券组合以往的风险与收益,后者用于确定单一证券或证券组合未来的风险与收益。
资本市场线
证券市场线
证券市场线 : E(Rp)=Rf + (E(RM)–Rf)•βiM 与资本市场线不同,证券市场线上包含了所有的证券;不仅如此,它还包含了所有的证券组合 证券市场线也表示某一证券或证券组合处于均衡时的期望报酬率 βiM = Cov(Ri ,RM) /VM,其中Cov(Ri ,RM)是某种证券i与市场组合M情形
(二)机会轨迹(opportunity locus)
机会轨迹是一条反映资产组合的预期收益和风险之间关系的曲线。由上面的计算容易得到:X2=E(R)/r=S(R) /Sg 略加变形,即得:E(R)=(r/Sg)·S(R) 上式即为资产组合的机会轨迹的解析表达式。当r 、Sg固定不变时,资产组合的预期收益与风险成线性关系
马柯维茨的证券组合理论的假设条件 不满足与风险厌恶 证券收益率是服从正态分布的随机变量,并且投资者的效用函数是二次函数; 根据假定2,可以用预期收益率-方差(或 标准差)效用函数来描述投资者的效用水平,并且可以用方差(或标准差)衡量证券的风险; 投资者按照假定1行动,会遇到风险和收益之间的两难选择。投资者选择的最大预期收益的证券组合,极有可能也是风险最高的,而通过分散化投资降低了风险的同时,预期收益也有可能被降低了
数学建模方法分类

数学建模方法分类数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
2数学建模方法一层次分析法比较合适于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造推断矩阵,求出其最大特征值。
及其所对应的特征向量W,归一化后,即为某一层次指标关于上一层次某相关指标的相对重要性权值。
层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解推断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
3数学建模方法二回归分析:对具有相关关系的现象,依据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;推断每个自变量对因变量的影响是否显著;推断回归模型是否合适这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;关于每一步都要进行值检验,以保证每次引入新的显著性变量前回归方程中只包涵对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
数学建模的基本方法与实例

数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。
它在现代科学研究和工程实践中扮演着重要的角色。
本文将介绍数学建模的基本方法,并通过实例来详细说明。
一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。
这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。
通过充分了解问题,我们可以更加准确地进行建模和求解。
二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。
数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。
常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。
以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。
三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。
对于不同类型的模型,可以使用不同的数学方法和工具来求解。
常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。
四、模型验证与分析求解完模型后,需要对结果进行验证和分析。
这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。
通过对模型结果的分析,可以判断模型的有效性和可靠性。
接下来,让我们通过一个实例来具体说明数学建模的过程。
实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。
假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。
数学建模各种分析方法

数学建模各种分析方法数学建模是指将实际问题转化为数学问题,然后利用数学方法求解的过程。
在数学建模中,有各种各样的分析方法可以辅助研究人员进行问题分析和求解。
下面将介绍一些常用的数学建模分析方法。
1.计算方法:计算方法是数学建模中最基础也是最常用的方法之一、它可以包括求解方程组、数值积分、数值微分、插值与拟合、数值优化等。
通过这些计算方法,可以将实际问题转化为数学模型,然后利用计算机进行数值计算和模拟实验。
2.统计分析方法:统计分析在数学建模中也起着非常重要的作用。
它可以用来分析数据、建立概率模型、进行参数估计和假设检验等。
统计分析可以帮助研究人员从大量数据中提取有用的信息,深入分析问题的特征和规律,为问题解决提供参考。
3.线性规划模型:线性规划是一种优化模型,常用于解决资源分配、生产计划、物流运输等问题。
线性规划模型的目标是最大化或最小化一些线性函数,同时满足一系列线性等式或不等式约束。
通过线性规划模型,可以确定最优决策和最优解。
4.非线性规划模型:非线性规划是一种更一般的优化模型,用于解决非线性约束条件下的最优化问题。
非线性规划模型常用于经济管理、工程设计、生物医学等领域。
非线性规划模型的求解较复杂,需要借助数值计算和优化算法。
5.动态规划模型:动态规划是一种用来解决决策问题的数学方法,其特点是将问题分解为多个阶段,并利用最优子结构的性质进行递推求解。
动态规划模型常用于决策路径规划、资源调度、序列比对等问题。
它优化了逐步贪心法的局部最优解,能够得到全局最优解。
6.图论模型:图论是一种数学工具,用于研究图或网络结构及其属性。
图论模型在数学建模中可以用来分析网络拓扑、路径优化、最短路径、最小生成树等问题。
图论模型的特点是简洁明了,适用于复杂问题的分析和求解。
7.随机过程模型:随机过程是一种描述随机变量随时间变化的数学模型,常用于建立概率模型和分析具有随机性的系统。
随机过程模型常用于金融风险评估、天气预测、信号处理、优化设计等问题。
数学模型中的因子分析法

数学模型中的因子分析法因子分析是一种常用的数学模型,用于解释多个变量之间的关系和发现潜在的因素。
它是一种降维技术,旨在将众多变量转化为较少数量的无关因子。
因子分析在统计学、心理学和市场研究等领域广泛应用,可用于数据降维、消除多重共线性、提取潜在特征、构建模型等等。
在因子分析中,有两种主要类型:探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。
探索性因子分析用于发现数据中的潜在因素,而验证性因子分析则用于验证已经提出的因素模型是否符合实际数据。
探索性因子分析的步骤如下:1.提出假设:确定为什么要进行因子分析以及预期结果,用于指导后续的数据分析。
2.数据准备:收集和整理要进行因子分析的数据,确保数据的可用性和准确性。
3.因子提取:通过主成分分析或最大似然法等方法,提取出能够解释数据变异最大的因子。
4.因子旋转:因子旋转是为了使提取出的因子更易于解释和理解。
常用的旋转方法有正交旋转和斜交旋转等。
5.因子解释和命名:对于每个提取出的因子,需要根据变量的载荷矩阵和旋转后的载荷矩阵进行解释和命名。
载荷矩阵表示每个因子与每个变量之间的关系。
6.结果评估:对于提取出的因子,需要进行信度和效度的评估。
信度评估包括内部一致性和稳定性等指标;效度评估包括构造效度和相关效度等指标。
验证性因子分析通常用于验证已经提出的因子模型是否符合实际数据。
其步骤包括:1.提出假设:确定已存在的因子模型,并对其进行理论和实际的验证。
2.选择分析方法:确定适合验证性因子分析的模型拟合方法,如最大似然法或广义最小二乘法等。
3.构建模型:将因子模型转化为测量模型,并建立测量方程。
4.模型拟合:对构建的测量模型进行拟合,评估模型的拟合度,如χ²检验、准则拟合指数(CFI)等。
5.修正模型:根据拟合域冒去改进模型的拟合,如剔除不显著的路径、修正测量方程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.一、数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.二、数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.可用流程图表示如下:表述根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系.如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.求解选择适当的方法,求得数学模型的解答.解释数学解答翻译回现实对象,给实际问题的解答.验证检验解答的正确性.例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题.他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.CB图1 图2人们步行七桥问题,就相当于图2的一笔画问题,即能否将图2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质.哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型.经过理想化抽象所得到的如图2所示的一笔画问题便是七桥问题的数学模型.在一笔画的模型里,只保留了桥与地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的. 数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型.从狭义上讲,只有那些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型.在现代应用数学中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题.三、函数模型的建立研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立函数模型的步骤可分为:(1) 分析问题中哪些是变量,哪些是常量,分别用字母表示;(2) 根据所给条件,运用数学或物理知识,确定等量关系;(3) 具体写出解析式)(x f y =,并指明定义域.例1 重力为P 的物体置于地平面上,设有一与水平方向成α角的拉力F ,使物体由静止 开始移动,求物体开始移动时拉力F 与角α之间的函数模型(图3). 解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力αsin F P -成正比的(设摩擦系数为μ),故有)sin (cos αμαF P F -=,即 αμαμsin cos +=P F (0°<α<90°).建立函数模型是一个比较灵活的问题,无定法可循,只有多做些练习才能逐步掌握.图3例2 在金融业务中有一种利息叫做单利.设p 是本金,r 是计息的利率,c 是计息期满应付的利息,n 是计息期数,I 是n 个计息期(即借期或存期)应付的单利,A 是本利和.求本利和A 与计息期数n 的函数模型解 本金计息期满的利息计息期的利率= ,即=r p c .由此得 pr c =,单利与计息数成正比,即n 个计息期应付的单利I 为cn I =,因为 pr c =,所以 prn I =,本利和为 I p A +=,即 prn p A +=,可得本利和与计息期数的函数关系,即单利模型)1(rn p A +=.四、数学建模方法数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.常用的数学建模方法如下:(一) 机理分析法 从基本物理定律以及系统的结构数据来推导出数学模型的方法1. 比例分析法 —— 建立变量之间函数关系的最基本、最常用的方法.2. 代数方法——求解离散问题(离散的数据、符号、图形)的主要方法.3. 逻辑方法——是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问题,在决策论,对策论等学科中得到广泛应用.4. 常微分方程——解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5. 偏微分方程——解决因变量与两个以上自变量之间的变化规律.(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法1. 回归分析法——用于对函数()f x 的一组观测值(,())(1,2,)i i x f x i n = ,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2. 时序分析法——处理的是动态的相关数据,又称为过程统计方法.(三)仿真和其他方法1. 计算机仿真(模拟)——实质上是统计估计方法,等效于抽样试验.① 离散系统仿真——有一组状态变量.② 连续系统仿真——有解析表达式或系统结构图.2. 因子试验法——在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3. 人工现实法——基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.五、名师谈数学建模竞赛1.全国人大常委会副委员长、著名数学家丁石孙建模竞赛,我认为是一个非常有意义的活动.很多人都知道,数学是非常重要的.我们教了几十年的数学,曾经花了很多力气想使得大家能够认识到数学的重要性,但是我们没有找到一个合适的方法.我觉得,建模竞赛是一个很好的方法,使得更多的学生,包括他们有关的朋友,能够认识到数学的真正用处.因为,数学对于学生的培养,不只是数学定理、数学公式,这其实是次要的,像刚才同学所说的,更重要的是培养同学一个正确的思想方法,而且依据自己所学到的知识,能够不断创新,不断地找出新的途径.这不是在课堂里死啃几个定理就能够解决的.我们用什么办法才能让更多的人,更多的学生认识到这个事情呢?我觉得,建模竞赛是一个很好的方法.2.前教育部副部长周远清数学建模竞赛的特点是题目由工程技术、管理科学中的实际问题简化加工而成,对数学知识要求不深,一般没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神.由于竞赛是由三名大学生组成一队,在三天时间内分工合作,共同完成一篇论文,因而也培养了学生的合作精神.加之竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准,因此,这项活动的开展有利于对学生知识、能力和素质的全面培养,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件.3.中国工业与应用数学学会理事长、中科院院士曾庆存同学们不要忘记,中华文化是博大精深的,很可能下个世纪是中西文化的合璧.现在已经有很多苗头,光靠西方的演绎或者是还原论的东西解决不了问题,说不定要借助于东方的文化,正像莱布尼茨借助于中国的哲学一样,还有控制论、系统论是借助于中国的思维.希望同学们看怎么样能够把中华文化的精华和西方的结合起来,我看我们大有前途.下个世纪,有人说是知识经济,是美国人提出来的,我们可以同意,也可以不同意.但有一点,知识在经济或者社会发展当中所占的比例是越来越大,甚至会起决定性的作用,而知识思维的方式,不管是定量的或是定性的描述,都离不开数学.我希望同学们加把劲,把我国实现中等发达的过程更缩短一点.4.叶其孝、姜启源教授谈大学生数学建模竞赛数学建模:不仅仅是一项竞赛.数学建模,专家给它下的定义是:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.1985年,美国率先举办了大学生数学建模竞赛.1992年中国工业与应用数学学会开始组织全国大学生数学建模竞赛.1994年起,这项竞赛由教育部高教司和中国工业与应用数学学会共同组织.姜启源教授介绍说,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算机方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实现问题,有较大的灵活性供参赛者发挥其创造性,结果的正确性和文字表述的清晰程度为主要标准.全国大学生数学建模竞赛的规模逐年扩大,参赛学生也从几百人增加到几千人.每年还有不少学生参加美国大学生的数学建模竞赛,成绩优秀,在国际上产生了很大的影响.为什么这样的单项竞赛能够产生如此的吸引力呢?开展这项竞赛并开设相关的课程,对高等院校的教学工作会起什么样的作用?对大学生全面素质的提高又有什么样的帮助?对记者的问题,叶其孝教授回答说,这种竞赛对参加者来说,是一种综合的训练,在相当程度上模拟了大学生毕业以后的工作环境.参赛者不要求预先掌握深入的专门知识,只需要学过普通高校的数学课程;更主要的是要靠参赛者自己动脑子,自己查找文献资料,同队成员讨论研究,齐心协力完成答卷.因此,它对学生的能力培养是多方面的.叶教授将之归纳为:应用数学进行分析、推理、证明和计算的能力;“双向翻译”(即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果)的能力;应用计算机及相应数学软件的能力;应变能力(即独立查找文献,消化和应用的能力);组织、协调、管理特别是及时妥协的能力;交流表达的能力;写作的能力;创造性、想像力、联想力和洞察力.它还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养正确的数学观.数学模型是联系实际问题与数学的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题和探索新真理的工具.数学模型具有解释、判断、预测等重要功能,它在各个领域的应用会越来越广泛.其主要原因是:(1)社会生活的各个方面正在日益数量化,人们对各种问题的要求愈来愈精确;(2)计算机的发展为精确化提供了条件;(3)很多无法实验或费用很大的实验问题,用数学模型进行研究是一个有效途径.很多像牛顿一样伟大的科学家都是建立和应用数学模型的大师,他们将各个不同的科学领域同数学有机地结合起来,在不同的学科中取得了巨大的成就.如力学中的牛顿定律,电磁学中的麦克斯韦方程组,化学中的门捷列夫周期表,生物学中的孟德尔遗传定律等都是经典学科中应用数学模型的光辉范例.目前在计算机的帮助下数学模型在生态、地质、航空等方面有了更加广泛和深入的应用.因此,从某种意义上讲,数学建模是培养现代化高科技人才的重要途径.数学建模课程可以培养和提高学生下列能力:(1)洞察能力.许多提出的问题往往不是数学化的,这就是需要建模工作者善于从实际工作提供的原形中抓住其数学本质;(2)数学语言翻译能力,即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众化的语言表达出来,在此基础上提出解决某一问题的方案或建议;(3)综合应用分析能力.用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力.对于不少的实际问题,看起来完全不同,但在一定的简化层次下,它们的数学模型是相同的或相似的.这正是数学应用广泛性的体现,这就是培养学生有广泛的兴趣,多思考,勤奋踏实地工作,通过熟能生巧达到触类旁通的境界;(5)各种当代科技最新成果的使用能力.目前主要是应用计算机和相应的各种软件包,这不仅能够节省时间,得到直观形象的结果,有利与用户深入讨论,而且能够养成自觉应用最新科技成果的良好习惯.由于数学建模是以解决实际问题和培养学生应用数学的能力为目的的,它的教学内容和方式是多种多样的.从教材来看,有的强调数学方法,有的强调实际问题,有的强调分析解决问题的过程;从教学方式来看,有的以讲为主,有的以练为主,有的在数学实验室中让学生探索,有的带领学生到企事业中去合作解决真正的实际问题.尽管数学建模已有了很久的历史,数学建模课程却还是很年轻的一门课程.在70 年代末和80年代初,英国著名的剑桥大学专门为研究生开设了数学建模课程,差不多同时,欧美一些发达国家开始把数学建模的内容列入研究生、大学生以至中学生的教学计划中去,并于1983年开始举行两年一度的“数学建模教学和应用国际会议”进行定期交流.数学建模教学及其各种活动发展异常迅速,成为当代数学教育改革的主要方向之一.。