周期问题奥数专题
小学奥数周期问题专题训练含答案

小学奥数周期问题专题训练姓名:1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?2.如下图摆法摆251个图形,其中有几个正方形? 3.把72化成小数后第351位是几?4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几?5.21999=n ,n 的最终一位是多少?6.下表是11位数,随意相邻的三个数字之和是17,请将剩下几位填完。
7.下表中,每列上下的两个汉字成为一组,如第一组为“学做”, 第二组为“习接”,则第649组是什么? 8.循环小数··51238.0及··522348944.0首次出现该数位的数字都是5是在小数点后的哪一位? 9.2001年的植树节是星期一,则这年的国庆节是星期几?10.一本童话书,每2页文字之间有3页插图,也就是说3页插图前后各有1页文字,假如这本书有128页,而第1页是文字,这本书共有插图多少页?11.100个3相乘,得数的个位是几?12.小张工作3天休息1天,小李工作4天休息一天,小刘工作7天休息一天,假设今日他们都休息,则下次都休息是在几天以后?小学奥数周期问题专题训练(答案)1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?97÷6=16(组)……1(根)答:第97根旗是红颜色的。
2.如下图摆法摆251个图形,其中有几个正方形?251÷7=35(组)……6(个) 35×2+2=72(个)答:其中有72个正方形。
3.把72化成小数后第351位是几?2÷7=``485712.0 351÷6=58(组)……3(位) 答:把72化成小数后第351位是5。
4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几? 31×2+30×2+1=123(天) 123÷7=17(周)……4(天)答:同年的7月1日是星期四5.21999=n ,n 的最终一位是多少?规律:2个位2,2²个位4,2³个位8,24个位6,25个位2又开始循环 1999÷4=499(组)……3(位) 答:n 的最终一位是8。
小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)(朵)这六朵花,前5朵是红花,最后1朵应是黄花。
朵应是黄花。
红花:5×5×99+5=50(朵)黄花:9×9×99+1=82(朵)(朵)绿花:13×13×99=117(朵)(朵)答:最后一朵是黄花。
这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。
朵。
模拟练习:模拟练习: 1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)(张)答:最后一张是红色。
第140张是白色。
张是白色。
2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。
最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×2×5+2=125+2=12(盏)蓝灯有4×4×5=205=20(盏) 黄灯有3×3×5=155=15(盏)答:最后一盏是红灯。
红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。
例2:2002年元旦是星期二,那么,2003年1月1日是星期几?日是星期几?2002年是平年,365+1=366(天) 366÷366÷7=527=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。
小学四年级奥数思维训练-周期问题

小学四年级奥数思维训练-周期问题专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,如人的生肖、每周的七天等等.这种规律性问题称为周期问题.解答时先找出周期,看一个周期里包含几个对象.用总量除以周期内对象数:没有余数结果为周期里的最后一个对象;有余数,余几就是周期里第几个对象.例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么.(1)□△□△□△□△……(2)□△△□△△□△△……分析:第(1)题排列周期里包含两个对象:“□△”.20÷2=10,没有余数,所以第20个图形是△.第(2)题排列周期里包含三个对象“□△△”.20÷3=6…2,余2第20个图形是周期里的第二个对象“△”.试一试1:盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2013个字是什么?例2:有一列数,按5、6、2、4、5、6、2、4…排列.(1)第129个数是多少?(2)这129个数相加的和是多少?分析:(1)一个周期里包含“5、6、4、2”四个对象.129÷4=32……1,余1是周期里的第1个对象“5”.(2)一个周期的和是5+6+4+2=17,共有32个周期和1个“5”.所以,这129个数相加的和是17×32+5=549.试一试2:河岸上种了100棵桃树,第一棵是蟠桃,后面两棵是水蜜桃,再后面三棵是大青桃.接下去一直这样排列.问:第100棵是什么桃树?三种树各有多少棵?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…分析:一个周期里有4个对象.39÷4=9…3,余3所以在第3个对象字母C下面;88÷4=22,没有余数,所以在最后一个对象字母D下面.试一试3:假设所有自然数如下图排列起来,78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12……例4:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析:“一个星期是7天”所以一个周期里有7个对象.“(止日-起日+星期几)÷7”余几就是星期几.(止日-起日+星期几)÷7(1)(22-1+2)÷7=3……2(是星期二)(2)(28-1+2)÷7=3……1(是星期一)(3)1991年、1993年是平年,1992年是闰年,从1991年1月1日到1994年1月1日共365+366+365+1=1097天.(1097-1+2)÷7=3……6(是星期六)试一试4:1996年8月1日是星期四,1996年的元旦是星期几?。
五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。
男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。
男生和女生是一对一配对的,所以有15对。
问题2:在一个奥数比赛中,一支队伍需要有4个人。
有9个学生报名参赛。
请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。
C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。
问题3:一个街区有10幢房子,每幢房子都有不同的颜色。
现在有4个人,每个人都要住在不同颜色的房子里。
请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。
所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。
问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。
请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。
C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。
问题5:一个四位数的各位数字互不相同,且是4个奇数。
请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。
百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。
所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。
人教版四年级上册数学奥数 周期问题(课件)(共19张PPT)

【例3】下表中,将每列上面的汉字和下面的字母组成一组,例如,第一组为(我,A), 第二组为(们,B),那么第136组是什么?
【分析与解答】 咦,这道题中上、下两行的周期不一样啊!上面是5个汉字为一个周期,下面是4个字母为一个 周期。对,这就是这道题与前面例题不同的地方,上、下两行的变化规律不统一,也就是周期 里汉字、字母的个数不同。因此,我们必须分别找出两行中第136个汉字或字母是什么,把它们 组成一组。这样,问题就迎刃而解了。
我来解答:130÷4=32(组)……2(个) (5+6+4+2)×32+5+6=17×32+11=555
小结与提示 解答这道题时要注意:求和时,最后多出来的两个数是5和6,别漏加或错加。
实践与应用
【练习2】 P124 有一列数:6,1,0,8,6,1,0,8,··· (1)第122个数是多少? (2)这122个数相加的和是多少?
实践与应用
【练习4】 P126 2016年植树节是星期六,则2017年植树节是星期几?
【例5】 10个2连乘的积的个位上是几?
【分析与解答】 这道题很简单,只要把10个2连乘起来,不就知道积的个位上的数字了吗?这个方法虽行得通, 但太麻烦,假如有100个2连乘,那该怎么算啊?我们应该找出积的个位上的变化规律。 对,这道题只要求出积的个位上的数字,就可以利用列表的方法找出积的个位上的变化规律。 从表中可以清楚地看出,积的个位上的数字以2,4,8,6为一个周期。 我来解答:10÷4=2(组)…2(个),所以,10个2连乘的积的个位上是4。 小结与提示 当求许多个相同的数相乘的积的个位上的数字时,一个一个求积太麻烦,我们不妨过列表 一一列举,这样就能发现规律。即使100个相同的数相乘,也能快速解答。
四年级奥数周期问题

8、一列长230米的火车,以平均速度每秒30米的速度过一座长730米的大桥,完全过桥需要多少秒时间?
签
课前审核: 家长签字:
字
日期:年月日日期:年月日
上课班级:
中年级
课பைடு நூலகம்:
周期问题
授课人:
陈
老师
教
学
过
程
例题1:有一列数5,6,2,4,5,6,2,4 …… (1)第89个数是多少?(2)这89个数相加的和是多少?
2、有一列数1,4,2,8,5,7,1,4,2,8,5,7……(1)第58个数是多少?(2)这58个数相加的和是多少?
3、有一列数是4、5、3、7、4、5、3、7……(1)第80个数是多少?(2)前50个数的和是多少?
5、一些彩笔按2支红色、3支蓝色、5支绿色的顺序依次排列,如果从头到尾一共排了47支,那其中蓝笔比绿笔少多少支?
练习:1、有一列数按6、7、3、4、9、6、7、3、4、9……排列,(1)那么前66个数的和是多少?(2)前88个数字中数字6比数字9多多少个?
2、
甲
乙
丙
丁
甲
乙
丙
丁
春
夏
秋
春
夏
秋
春
夏
上表中汉字按规律排列,每一列两个汉字组成一组,如第一组“甲春”,第二组“乙夏”……问第20组是什么?第100组又是什么?
3、计算(1)6+10+14+18+22+……+102(2)10000-3-6-9-12-……-90
4、小天和小美一共有500张卡片,如果小天给小美43张,小天还比小美多42张,原来两人各有多少张卡片?
小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。
(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
五年级奥数专题:周期性问题(含答案)

周期性问题在日常生活中,有一些现象按照一定的规律不断重复出现。
如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。
像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。
这类问题一般要利用余数的知识来解决。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。
一、例题与方法指导例1. 某年的二月份有五个星期日,这年六月一日是星期_____.思路导航:因为7⨯4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93÷7=13…2,所以这年6月1日是星期二.例2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____.思路导航:依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有365⨯10+2=3652(天)因为(3652+1)÷7=521…6,所以再过十年的12月5日是星期日.[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例3. 按下面摆法摆80个三角形,有_____个白色的.……思路导航:从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为80÷6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13⨯3=39(个).例4. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.思路导航:依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由73÷4=18…1,可知第73盏灯是白灯.例5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.思路导航:分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991÷24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.二、巩固训练列,那么数“1992”在_____列. 2. 把分数7化成小数后,小数点第110位上的数字是_____. 3. 循环小数7992511.0 与74563.0 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.10. 7⨯7⨯7⨯……⨯7所得积末位数是_____.50个答案:6. 3仔细观察题中数表.1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上. 7. 774=0.57142857…… 它的循环周期是6,具体地六个数依次是5,7,1,4,2,8110÷6=18 (2)因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8. 35 因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3⨯284+1=853(个),9的个数是2⨯284+2=570(个),4的个数是2⨯284=568(个).这些数字的总和为1⨯853+9⨯570+4⨯568=8255.三、拓展提升1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?3. 设n =2⨯2⨯2⨯……⨯2,那么n 的末两位数字是多少?1991个4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?答案:11. 依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两. . . .位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990÷10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.13. n 是1991个2的连乘积,可记为n =21991,首先从2的较低次幂入手寻找规律,列表如下: n n 的十位数字 n 的个位数字 n n 的十位数字 n 的个位数字21 0 2 212 9 622 0 4 213 9 223 0 8 214 8 424 1 6 215 6 825 3 2 216 3 626 6 4 217 7 227 2 8 218 4 428 5 6 219 8 829 1 2 220 7 6210 2 4 221 5 2211 4 8 222 0 4观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990÷20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5⨯5-6⨯4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2⨯[(100-10)÷30]+1=2⨯3+1=7(段)[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.. . . . . . 6 12 18 24 30 5 10 15 20 25 95 96 100 . 90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期问题奥数专题第1篇:周期问题奥数专题未完,继续阅读 >第2篇:奥数周期问题专项练习1.今天是星期四,在过90天是星期()。
2.一个循环小数0.1428571428571428……,小数点后第1000位的数字是()。
3.把写着1,2,3,4,……,200号的卡片依次分发给a,b,c,d 四个人。
已知13号发给a,28号发给()。
105号发给()。
134发给()。
4.有一堆围棋子,如果按“二白三黑”的顺序依次排列起来(如图),第84颗是白*还是黑*?第53颗和第91颗呢?○○●●●○○●●●○○●●●……5.小明观察交通岗处的信号灯变化情况是红、黄、绿、黄、红、黄,……如果从红灯亮开始,当信号灯变化了39次时是()*灯在亮。
6.除数是7,所得的余数和商相同,你能列出()个这样的算式。
这些算式有何特点。
7.有△,□,○共720个,按2个△,3个□,4个○排列,如图。
△△□□□○○○○△△□□□○○○○……8.4×4×……×4(25个4),积的个位数是几?9.有一列数135791357913579……前48个数之和是多少?10.2004年*节是星期五,问2004年12月1日星期几?11.桌子上摆了很多硬*,按一个一角,两个五角,三个一元的次序排列,一共19枚硬*。
问:最后一个是多少钱的?第十四个是多少钱的?12.小刚摆放围棋子,每两个黑棋子之间摆5个白棋子,共84个棋子未完,继续阅读 >第3篇:奥数周期问题学校大门有一串*灯,按"红、黄、绿、白"的规律排列起来,请你算一算:第13只*灯和第24只*灯分别是什么颜*?解答:红*、白*这些*灯按"红、黄、绿、白"四种颜*为一个周期。
先算出13只*灯有几个这样的周期:13÷4=3…1,余数是1,这只*灯是第3个周期之后的红**灯。
同理,算出24只*灯有几个这样的周期:24÷4=6,无余数,这只*灯是第6个周期的最后一个颜*,即白*未完,继续阅读 >第4篇:12道小学奥数专题之周期问题1.2001年10月1日是星期一,问10月25日是星期几?2.100个3相乘,积的个位数字是几?3.3×3×3×3×3×3……×3(23个3),积的个位数字是几/4.100个2相乘,积的个位数字是几?5.abcabcab……万事如意万事如意……上表中,第一列两个符号组成一组,如第一组”a万”,第二组”b 事”,……问第20组是什么?6.课外活动中,有4个同学在进行报数游戏,他们围成一圈,*报1,乙报2,*报3,丁报4,每个人报的数总比前一个人多1,问45是谁报的?123呢?7.有一列数按”432791864327918643279186……”排列,那么前后54个数字之和是多少?8.小红买了一本童话书,每两页文字之间有3页*图,也就是说3页*图前后各有1页文字.如果这本书有128页,而第一页是文字,这本童话书共在*图多少页?9.校门口摆了一排花.每两盆菊花之间摆3盆月季花.共摆了112盆花,如果第一盆花是菊花,那么共摆了多少盆月季花?10.同学们做早*,36个同学排成一列,每两个女生中间有两个男生,第一个是女生,这列队伍男生有多少人?11.一个圆形花圃周长30米,沿周围每隔3米*一面红旗,每两面红旗之间*两面黄旗,花圃周围共*黄旗多少面?12.将a,b,c按一定规律排列成abacbab未完,继续阅读 >第5篇:奥数专题问题例1:自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,已知小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?例2:两只蜗牛由于耐不住阳光照*,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。
问井深是多少?例3:画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。
求第一个观众到达的时间。
试一试:牧场的草,可供27头牛成6天,46只羊成9天,如果1头牛吃的等于2只羊吃的,那么11头牛和20只羊一起吃可以吃多少天?(12)例4、东胜牧场南边一块2000平方米的牧场,可供18头牛吃16天,27头牛吃8天。
如果西边有一块6000平方米的牧场,6天中可供多少头牛吃?1.一片牧草,可供16头牛吃20天,也可以供80只羊吃12天,如果每头牛每天吃草量等于每天4只羊的吃草量,那么10头牛与60只羊一起吃这一片草,几天可以吃完?()a.10b.8c.6d.42.两个孩子逆着自动扶梯的方向行走。
20秒内男孩走27未完,继续阅读 >第6篇:奥数周期的相关问题1.有红、黄、蓝三种颜*的小纸花140朵,把它们按4朵红的、3朵黄的、2朵蓝的顺序排列着。
问最后一朵是什么颜*的?三种颜*的小花各多少朵?2.把“”化成小数,小数点后边第200位上的数字是什么?3.“11÷70”的商的小数部分的第1995位是什么数字?4.有1111个8连乘:它们的积的个位数字是几?1999个1997连乘的积的个位数字是几?8.把化成小数,从小数点右边第一个数字至第1992个数字全部加起来,所得的数被5除余数是几?9.由1994个1994组成的一个多位数,这个多位数除以13,余几?10.有一组数:1、3、4、7、11、18……它们从第三个数开始,每个数都是它前边两个数的和。
请问,第5555个数被5除,余数是几?11.有一组数如下:1、3、4、7、11、18……它们从第三个数开始,每个数都是它前边两个数的和。
这列数的第5555个数被4除,余几?12.4971427与199的乘积被7除,余数是多少?13.小荣把积存的一些硬*按四个1分,再三个2分,后二个5分的顺序一直往下排。
a.当她排到第111个硬*时,这个硬*是几分*?b.这111个硬*的总价值是多少元?14.有35位同学,他们带的钱分别为1元3角、1元4角、1元5角、……4元7角。
他们都用所带的钱全部买课外读物。
课未完,继续阅读 >第7篇:奥数专题:平均数问题1、解放路小学举行珠算式心算比赛,前六名平均每人做对108道题,第一名比第二到第六名做对的题目平均每人多2道题。
你知道,第一名获得者做对了多少道题吗?2、某次数学竞赛原设定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样二等奖的学生的平均分数提高了1分;得一等奖的学生的平均分数提高了3分.问,原来一等奖比二等奖的平均分高出多少分?3、一学期中进行了五次数学测验,小明的得分是95,87,94,100,98.那么他的平均成绩是多少?4、小明4次语文测验的平均成绩是89分,第5次测验得了97分,5次测验的平均成绩是多少?5、小强4次语文测验的平均成绩是87分,5次语文测验的平均成绩是88.4分,问第5次测验他得了多少分?6、全班有50人,其中15人9岁,17人10岁,18人11岁,那么这个班的平均年龄是多少岁?7、有六个数排成一列,它们的平均数是27分,前四个数的平均数是23,后三个数的平均数是34,第四个数是多少?8、大象、山羊、乌龟的平均寿命是68年,大象山羊的平均寿命是44年,山羊乌龟的平均寿命是67年,大象、山羊、乌龟的寿命各是多少?9、有四个少先队小组拾树种,*、乙、*三组平均每组拾24千克,乙、*、丁三组平均每组拾26千克,已知丁组拾28千克那么*组拾了多未完,继续阅读 >第8篇:奥数周期问题同步练习题1、在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?2、1992年的“六?一”儿童节是星期一,1993年的“六?一”儿童节是星期几?3、同学们在科技馆参加活动,谁最先参加游戏呢?同学们想了个好办法,大家排成一排1——2报数,报2的同学再1——2报数,这样依次进行下去,最后报2的这名同学先玩,如果这列一共有12人,最先玩的同学是这一列中的第几个?4、★★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星?5、桌子上摆了很多硬*,按一个一角,两个五角,三个一元的次序排列,一共19枚硬*.问:最后一个是多少钱的?第十四个是多少钱的?例[1]流水线上给小木球涂*的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红,4黄,3绿,2黑,1白……像这样继续下去,到第2003个小球该涂什么颜*?例[2]有一列数:7,0,2,5,3,7,0,2,5,3,…(1)第81个数是多少?(2)这81个数相加的和是多少?例[3]假设所有自然数排列起来如下图所示,55应排在哪个字母下面?248应排在哪个字母下面?abcd123456789101112............未完,继续阅读 >第9篇:周期问题奥数竞赛题及*周期问题奥数竞赛题1。
周期问题(第二届"小机灵杯"第三题)周期问题奥数竞赛题:按下面的规律摆三角形,第82个三角形是*。
在这种颜*的三角形中,它是第个?▲▲▲△△▲△▲▲▲△△▲△▲▲▲△△▲△▲▲▲△△▲△解答:每3+2+1=7个为一个周期82÷7=11……5(个)3×11+2=35【小结】每3+2+1+1=7个为一个周期(三黑、二白、一黑、一白),82÷7=11……5,可见第82个三角形是白*,每个周期中,白*的有3个,在这种颜*的三角形中,它是3×11+2=35个。
2。
巧求周长下图是由6个边长都是2厘米的正方形拼成的,你能算出这个图形的周长是多少厘米吗?解答:(4+2)×2=12(厘米)【小结】这个不规则的图形可以通过平移的方法变成规则的图形,具体*作如下:这样我们就发现,这个不规则图形就可以变成一个长方形。
此长方形的长是:4厘米,宽是2厘米。
周长是:(4+2)×2=12(厘米未完,继续阅读 >第10篇:有关周期问题的奥数题目1、50个7相乘所得积的末位数是多少?2、1991个1991相乘的积与1992个1992相乘的末位数字是多少?3、1992个13边乘的积,个位数字是多少?4、1×1+2×2+3×3+4×4+…1991×1991的末位数字是多少?5、观察1×2×3×4×5=120,积的尾部都有一个零,1×2×3×4×5…×50的积的尾部有多少连续的零?6、自然数3×3×3×…×3─1(有68个3连乘)的个位数字是多少?7、3×3的末位数字是9,3×3×3的末位数字是7,3×3×3×3的末位数字是1。