过程控制工程知识点复习
控制工程必备知识点总结

控制工程必备知识点总结一、控制系统的基本概念1. 控制系统的定义和基本组成控制系统是一个通过对系统输入信号进行调节,使得系统输出信号满足特定要求的系统。
控制系统由输入、输出、反馈和控制器等基本组成部分构成。
2. 控制系统的分类控制系统根据其控制方式可以分为开环控制系统和闭环控制系统。
开环控制系统只能通过输入信号来控制系统输出,而闭环控制系统可以通过反馈信号来对系统进行调节。
3. 控制系统的性能指标控制系统的性能指标包括稳定性、灵敏度、鲁棒性、动态性能等,这些指标反映了控制系统对信号变化的响应能力和稳定性。
二、控制系统的建模与分析1. 控制系统的数学模型控制系统的数学模型是控制工程的核心,它描述了系统的输入输出关系以及系统内部的动力学特性。
控制系统的数学模型可以用微分方程、差分方程、状态方程等形式进行描述。
2. 控制系统的传递函数传递函数是控制系统数学模型的一种常用表示形式,它描述了系统输入和输出之间的传输特性。
控制系统的传递函数可以通过系统的输入输出数据进行辨识或通过系统的数学模型进行求解。
3. 控制系统的频域分析频域分析是控制系统分析的重要方法之一,它将控制系统的动态响应从时域转换到频域,通过频域特性来分析控制系统的稳定性、干扰抑制能力等。
4. 控制系统的状态空间分析状态空间分析是控制系统分析与设计的另一种常用方法,它描述了系统的状态变量与输入输出变量之间的关系,并可以用于分析控制系统的稳定性、可控性和可观测性等。
5. 控制系统的稳定性分析控制系统的稳定性分析是控制工程中的重要内容,它用于评估控制系统的稳定性,并设计满足稳定性要求的控制器。
三、控制系统的设计与实现1. 控制系统的控制器设计控制系统的控制器设计是控制工程的核心内容之一,它通过对系统数学模型的分析和综合,设计出满足性能指标要求的控制器。
2. 控制系统的闭环控制闭环控制系统通过对系统的反馈信号进行处理,实现对系统输出的精确控制,提高系统的鲁棒性和鲁棒性。
工业过程控制考试知识点总结

⼯业过程控制考试知识点总结第1章1. 系统动态性能的常⽤单项指标有哪些?这些指标那些分别属于稳定性、准确性和快速性?会计算给定值单位阶跃响应下的性能指标。
P8,9,10解:单项性能指标主要有:衰减⽐n 、超调量与最⼤动态偏差A 、静差C 、调节时间T S 、振荡频率w 、振荡周期T 和峰值时间T P 等。
稳定性:衰减⽐,最⼤动态偏差。
准确性:静差,最⼤动态偏差。
快速性:调节时间,振荡频率。
1y 为第⼀个波峰值,y 3为与1y 相邻的同向波峰值,y (∞)为最终稳态值,X 1为设定值。
n=1y :y 3;1100%()y y σ=?∞;A=最⾼峰-设定值;C=⼁X 1-y (∞)⼁;T 为相邻两个同向波峰之间的时间间隔。
2. 典型过程控制系统由哪⼏部分构成,并画出典型过程控制系统⽅框图?解:测量变送器、控制器、执⾏器和被控对象.第2章1. 热电偶的中间温度定律及中间导体定律?什么是热电偶冷端补偿?常⽤补偿⽅法的应⽤场合?补偿导线的作⽤?解:中间温度定律:E AB (t ,t o )=E AB (t ,t n )+E AB (t n ,t o )中间导体定律:在热电偶回路中接⼊中间导体后,只要中间导体两端的温度相同,则对热电偶的热电动势没有影响。
接⼊多种导体时亦然。
热电偶冷端补偿:实际应⽤时热电偶冷端温度波动较⼤给测量带来误差,为降低影响,通常⽤补偿导线作为热电偶的连接导线。
补偿导线的作⽤:将热电偶的冷端延长到距热源较远且温度⽐较稳定的地⽅。
常⽤补偿⽅法的应⽤场合:(1)查表法。
只能⽤于临时测温。
(2)仪表零点调整法。
适宜冷端温度稳定的场合。
(3)冰浴法。
⼀般⽤于热电偶的检定。
(4)补偿电桥法。
⼴泛⽤于热电偶变送电路中。
(5)半导体PN结补偿法。
2.常⽤热电偶分度号有那些,每种热电偶主要的优缺点是什么?解:3.什么是基本误差?精度的定义?从经济和实⽤的⾓度选择仪表的精度等级?解:基本误差:基本误差⼜称引⽤误差或相对百分误差,是⼀种简化的相对误差。
过程控制系统知识点大全

绪论一、过程控制工程课设置的目的和任务Process control(过程控制)课,是培养从事过程控制系统的方案设计,及其在工程上予以实施的能力。
控制方案的形成有两个来源:一是来自控制原理的进展,讨论的核心问题是在保证系统稳定的基础上,如何提高系统的品质;而另一来源是为了满足工艺的特殊要求而开发出来的控制方案。
本课的基础涉及到化工原理、控制原理和仪表计算机技术等学科知识。
二、过程控制的发展简史1、硬件第一阶段:30-40年代,基地式仪表,就地控制第二阶段:40-50年代,电气动单元组合仪表,车间、工段或全厂集中控制第三阶段:60年代后,由于计算机的出现,全厂性、企管性控制2、过程控制手段40年代初:“黑箱子”时期50年代末:“灰箱子”时期,用反馈控制理论于生产过程50年代初、中:①对生产过程的模型的建立导致化工动态学的发展②用实验方法来探讨模型、系统辩识60年代:现代控制理论发展,我国75年后计算机控制较普遍,发展快三、过程控制设计1、从局部的设计到总体的设计,从单回路到多回路再到大系统2、从定值控制到浮动控制3、事故出现硬停车到软保护控制4、从离散控制(模拟仪表)到计算机控制四、学习方法及基本要求本课程上本专业的一门只要专业课,要求学生能综合运用所学的基础课、专业基础课及其他专业课知识,进一步掌握过程控制工程理论和实践知识,培养学生具有解决过程控制系统的分析、设计及投运的能力。
本课程包括课堂教训、实验教学、课程设计、生产实习四个环节。
学习本课程应注意自己的工程实际能力的培养。
五、参考文献1、《化工过程控制工程》祝和运(浙江大学)化学工业出版社2、《过程控制系统及工程》翁维勤化学工业出版社3、《过程控制工程》庄兴稼华中理工大学出版社4、《过程控制系统》F.G.shinskeg 方崇智译化工出版社5、《化工过程控制理论与工程》stephanopoluos G. 关惕华译化学工业出版社六、学时安排课堂教学40学时;实验教学8学时。
过程控制与自动化仪表知识点

1.过程控制系统由被控过程和自动化仪表两部分组成。
2.自动化仪表按能源形式分为:液动、气动和电动。
按信号类型分为:模拟式和数字式。
3.模拟仪表的信号可分为气动仪表的模拟信号与电动仪表的模拟信号。
4.气动仪表的输入/输出模拟信号统一使用0.02~0.1MPa 的模拟气压信号。
5.按照国际电工委员会规定,过程控制系统的模拟直流电流信号为4~20mA DC ,负载电阻为250Ω;模拟直流电压信号为1~5V DC 。
DDZ-Ⅲ型电动单元组合仪表就是这种信号标准。
6.气动仪表与电动仪表的能量供给分别来自于气源和电源。
1.过程参数检测仪表通常由传感器和变送器组成。
2.引用误差计算公式:%100x x minmax ⨯-∆=γ(其中△为最大绝对误差,等于实测值x 减真值a x 的最大差值,即a1x x -=∆,min max x x 与为测量表的上下限值)3.精确度及其等级:最大引用误差去掉“±”与“%”。
例:±5%的精度等级为0.5。
4.热电阻在500℃以下的中、低温度适合作测温元件(理解公式()()[]00t t 1t -+=αR R ,其中R(t)为被测温度t 时的电阻值;R 0为参考温度t 0时的电阻值,通常t 0=0℃,α为正温度系数);金属热电阻适用于-200℃~500℃;热敏电阻为-50~300℃。
5.热电阻接线有二线制、三线制、四线制三种接法,其中三线制可利用电桥平衡原理消去导线电阻。
6.热敏电阻由于互换性较差,非线性严重,且测温范围在-50~300℃左右,所以通常较多用于家电和汽车的温度检测和控制。
7.由于热电偶具有测温精度高、在小范围内线性度与稳定性好、测温范围宽、响应时间快等优点,因此在工业生产过程中应用广泛。
当温度高于2000℃时热电偶不能长期工作,需采用非接触式测温方法。
8.当被测为运动物体时,采用非接触式测温方法。
体积流量表示瞬时流量与累积流量:瞬时:A A A υυ==⎰d q v 累积:⎰=t 0v v dt q Q 质量流量表示瞬时流量与累积流量:瞬时:v m q q ρ= 累积:v m Q Q ρ=(ρ为流量密度)标准状态下的体积流量:n v n m vn /q /q q ρρρ==(n ρ为标准状态下气体密度)9.典型流量检测仪表有容积式流量计、速度式流量计、直接式质量流量计。
山西省考研控制科学与工程复习资料控制理论与控制工程重点解析

山西省考研控制科学与工程复习资料控制理论与控制工程重点解析控制理论与控制工程是控制科学与工程领域的重要内容,也是山西省考研控制科学与工程专业的一项重点科目。
在考研复习过程中,掌握控制理论与控制工程的知识点和重点是十分关键的。
本文将为大家详细解析山西省考研控制科学与工程复习资料中的控制理论与控制工程的重点内容。
一、控制理论的基本概念与原理控制理论是研究如何通过采取一定的控制手段,使得被控对象按照预定要求进行运动或变化的理论。
在控制理论中,存在着一些基本的概念与原理,包括控制系统的基本结构、闭环控制与开环控制、反馈与前馈、稳定性分析等。
掌握这些基本概念与原理,是理解控制理论的关键。
1.1 控制系统的基本结构控制系统是指通过输入信号对被控对象进行控制的系统。
它由四要素组成,即输入信号、被控对象、传递函数和输出信号。
传递函数是描述系统特性的数学模型,通常使用拉普拉斯变换进行分析和计算。
1.2 闭环控制与开环控制闭环控制是指将输出信号作为反馈信号,与输入信号相比较后进行控制的方式。
开环控制则直接将输入信号作为控制器的输出,不进行反馈比较。
闭环控制具有较好的稳定性和准确性,但也容易出现振荡和超调等问题。
1.3 反馈与前馈反馈是指将系统输出信号作为控制信号的一部分进行反馈,用于修正系统误差。
前馈则是根据已知的被控对象的特性,提前预测系统输出并加以修正。
反馈与前馈在控制系统中起到重要的作用,可以有效提高系统的响应速度和稳定性。
1.4 稳定性分析稳定性是评价控制系统性能的一个重要指标。
稳定性分析主要通过判断控制系统的极点位置来进行,其中极点是指系统传递函数的根。
一般来说,极点在左半平面内,系统具有稳定性,而在右半平面内则会导致系统不稳定。
二、控制工程的应用与方法控制工程是指将控制理论应用于工程实践的一门学科,它涉及到了多个领域和技术方法。
在山西省考研控制科学与工程复习资料中,控制工程的应用与方法也是重点内容。
2.1 自动控制系统自动控制系统是控制工程中应用广泛的一种系统,它能够根据系统输入和输出之间的特定关系,通过自动调节来实现对被控对象的控制。
控制工程基础应掌握的重要知识点

控制工程基础应掌握的重要知识点控制工程是一门研究控制系统及其应用的理论和方法的学科。
其核心任务是通过对被控对象以及环境的监测和测量,对系统进行控制和调节,以达到预期的控制效果。
以下是控制工程基础中应掌握的重要知识点:1.连续系统与离散系统:控制系统可以分为连续系统和离散系统。
连续系统是指系统变量是连续变化的,通常使用微分方程描述。
离散系统是指系统变量是离散变化的,通常使用差分方程描述。
掌握连续系统与离散系统的建模与分析方法是控制工程的基础。
2.传递函数与状态空间模型:传递函数描述了系统输入与输出之间的关系,是一个复频域函数。
状态空间模型则是通过描述系统的状态量对时间的导数来建模。
掌握传递函数的提取与描述以及状态空间模型的建立与分析方法是进行系统分析与控制设计的基础。
3.控制系统的基本性能指标:控制系统的基本性能指标包括稳定性、快速性、精确性和抗干扰性。
稳定性是系统在受到干扰或参数变化时保持状态有界的能力;快速性是系统输出快速收敛到期望值的能力;精确性是系统输出与期望值之间的偏差大小;抗干扰性是系统对干扰的敏感性。
掌握这些性能指标的衡量方法是控制系统设计的基础。
4.反馈控制原理:反馈控制是一种常用的控制方式,通过对系统输出进行测量并与期望输出进行比较,根据差值来修正输入以调节系统行为。
掌握反馈控制的原理,包括比例控制、积分控制和微分控制的组合应用是进行控制系统设计和分析的关键。
5.PID控制器:PID控制器是一种基于比例、积分和微分操作的控制器。
它能够通过调整三个参数来适应不同的系统需要,并具有较好的稳定性和快速性能。
掌握PID控制器的设计和调节方法是控制工程的重要内容。
6.控制系统的稳定性分析与设计:稳定性是控制系统的基本要求。
控制系统的稳定性分析包括对开环传递函数的极点位置、稳定裕量、相角裕量等指标的评估。
稳定性设计则是通过修改系统参数或者设计合适的控制器来保证系统的稳定性。
掌握稳定性分析与设计的方法是进行控制系统设计的重要基础。
控制工程基础复习提纲

G (j) (jK ) ( v 1 ( 1 jjT 1 ) 1 ) 1 1 ( ( jjT 2 ) 2 ) ( 1 ( 1 jjT m n ) v )( n m )
依据积分环节个数,判断系统类型
0型系统(v = 0)
Im
=
0
n=1 n=2 n=3 n=4
j
2 1
-3 -2 -1-1 0 1 2 3
-2 G(s)= s+2
(s+3)(s2+2s+2) 的零极点分布图
最小象位系统:s平面右半面没有零点和极点(判断)
知识点3——L反变换(三种情况) (2)case1-不同实数极点
标准形式
F(s)B(s) n Ai A(s) i1 spi
待定系数 A i F ( s ) ( s p i) s p i
1 2
)
阻尼振荡频率 d n 12
(3)二阶系统指标计算 (6个公式背下来)必考
①上升时间 ②峰值时间 ③超调值 ④调整时间
tr
arccos n 1 2
tp
d
n
12
Mp%e 12100%
(ln M p )2
2 (ln M p )2
ts 4n, 0 .0 2 ; ts 3n, 0 .0 5
氏
变5 换6 表7
13
14
f t
t I t
t
e a t
t eat
sin t cos t eat sint eat cost
F s
1
1
s 1 s2 1
s a
1
s a 2
s2 2
s s2 2
s a2 2
sa
过程控制知识点

第一章过程控制定义:用数字或模拟控制方式对生产过程的某一或某些物理参数进行的自动控制称为过程控制。
过程控制特点:连续生产自动控制过程控制系统由过程检测控制仪表组成被近期过程是多种多样的、非电量的过程控制的控制过程多属慢过程而且多半参量控制定值控制是过程控制的一种常用形式。
过程控制组成:由测量元件、变送器、调节器、调节阀和被控过程等环节。
分类:结构特点:反馈控制系统、前馈控制系统、前馈-反馈控制系统。
定值信号特点:定值控制系统、程序控制系统、随动控制系统。
第二章2-22利用热电偶温度计测温时为什么要使用补偿导线及其对冷端温度进行补偿?利用热电阻温度计测温时,为什么要采用三线制接法?测量低温时通常为什么采用热电阻温度计,而不采用热电偶温度计?答:(1)由热电偶测温原理可知,只有当它的冷端温度不变时,热电动势是被测温度的单值函数,所以在测温过程中必须保持冷端温度恒定,为了使它的冷端温度恒定,采取补偿导线法为了消除冷端温度变化对测温精度的影响,采用冷端温度补偿(2)在使用热电阻测温时,为了提高精度,采用三线制接法(3)原因有两点:在中低温区热电偶输出的热电势很小对测量仪表放大器和抗干扰要求很高由于冷端温度化不易得到完全补偿在较低温度区内引起的相对误差就很突出2-27 DDF-3型温度变送器具有哪些主要功能?什么是变送器的零点、零点迁移和量程调节?为什么要进行零点迁移和量程调节?3型温度变送器是怎样进行零点迁移和量程调节的?答:1.DDz-3具有热电偶冷端温度补偿,零点调整、零点迁移。
量程调节以及线性化等重要功能。
2零点:输入为零点时输出为4mm的点,零点迁移:即把测量起始点由零迁移到某一正值或负值。
量程调节:相当于改变变送器的输入输出特性的斜率3零点迁移的目的是使其输出信号的下限Ymin与测量范围的下限值Xmin相对应。
零点迁移之后,其量程不变,即斜率不变,却可提高灵敏度。
量程调节的目的是变送器的输出信号的上限值Ymax与测量范围的上限值相对应4调零点调量程方法:RP1为调零电位器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制工程知识点复习
过程控制工程知识点复习
一.过程控制系统及其分类
1.过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入
单输出的定值控制系统的分析和综合问题。
2.过程控制有三种图表示分别是系统框图控制流程图工艺流程图我们应当学会识
别。
控制流程图
系统框图
工艺流程图
3.过程控制系统的分类
按结构特点分为反馈控制系统(闭环)前馈控制系统(开环)前馈-反馈控制系
统(复合控制系统)复合控制系统
按信号特点分定值控制系统(给出给定值)程序控制系统(按一定规律变化如空调温度随时间变化定值变化11:00给25°c 12:00给28°c)随动控制系统(如比值控制)
二.过程建模
被控过程是指正在运行的多种被控制的生产工艺设备,如锅炉,精馏塔,化学反应器等等,被控过程的数学模型(动态特性)是指过程在各输入量(控制量与扰动)作用下相应输出量变化函数关系的数学表达式。
过程的数学模型有两种
1.非参数模型,如阶跃响应曲线脉冲响应曲线频率特性曲线是用曲线表示的
2.参数模型,如微分方程传递函数脉冲响应函数状态方程差分方程是用数学
方程式表示的。
机理法建模
机理法建模又称为数学分析法建模或理论建模。
自平衡能力:即过程在输入量的作用下其平衡状态被破坏后无需人或仪器的干
预,依靠过程自身能力逐渐恢复达到另一新的平衡状态
试验法建模
试验法建模是在实际的生产过程中,根据过程输入,输出实验数据,通过过程辨
识与参数估计的方法建立被控过程的数学模型。
特点是不需要深入了解过程机理
但必须设计合理实验。
三.过程测量及变送
测量误差
测量误差是指测量结果与被测量的真值之差,测量误差反应了测量结果的可靠度。
绝对误差:绝对误差是指仪表指示值与被测变量的真值之差,在工程上,通常把高一等级精度的标准仪器测得的值作为真值(实际值)此时的绝对误差是指用标准仪表(高精度)与测量仪表(低精度)同时测量同一值是,所得两个结果之差。
相对误差:相对误差是指绝对误差与被测量的真值之比的百分数,它比绝对误差更具有说明测量结果的精度。
相对误差分为实际相对误差和标称相对误差和引用相对误差
引用相对误差δ=((绝对误差)/(仪表量程))*100%=((x-x0)/(a-b))*100% x仪表测量值x0仪表测量真值a仪表上限b仪表下限
实际相对误差为绝对误差与真值之比的百分数标称相对误差为绝对误差与仪表指示值之比的百分数
四.简单过程控制系统
对过程控制设计的一般要求1.安全性2.稳定性3.经济性
(单回路)过程控制系统的设计步骤
1.根据工艺参数合理选择性能指标
2.选择合理的控制参数和被控参数
3.合理的选择和设计控制器
4.兼顾被控参数的测量与变送器执行器的选择
控制方案设计
1.合理选择被控参数Y(s)
2.合理选择被控参数Q(s)
3.合理设计(选择)控制(调节)规律Wc(s)
4.被控过程参数的测量与变送Wm(s)
5.控制执行器的选择Wv(s)
过程控制系统在运行中有两种状态,一种是稳态,一种是动态
阶跃响应的性能指标
1.余差(静态偏差)C 过渡过程后给定值与被控参数稳态值之差
2.衰减率衡量系统过渡过程稳定性的一个动态指标
ψ=(B1-B2)/B1=1-B2/B1 为保持系统足够的稳定度,一般取ψ=0.75-0.9
3.最大偏差A(超调量σ)
最大偏差是指被控参数第一个波的峰值与给定值的差
σ=(y(tp)-y(∞))/ y(∞)*100% 这个值表示被控参数偏离给定值的程度,衡量性能的重要指标
4.过渡时间ts
从受扰动开始到进入新的稳态值+-5%范围内的时间,衡量快速性的指标,该值约小
越好。
被控参数的选择
两种方法直接参数法简接参数法应该知道,直接参数或间接参数得到选择并不是唯一的,要通过对过程特性的深入分析做出选择。
选取被控参数的一般原则
1.选择对产品的产量和质量,安全生产,经济运行和环境保护具
有决定性的作用,可
直接测量的工艺参数作为被控参数。
2.当不能用直接参数作为被控参数时,应选择一个与直接参数有单值函数关系的间接
参数作为被控参数
3.被控参数必须具有足够高的灵敏度
4.被控参数的选取必须考虑工艺过程的合理性和所用仪表的性能。
控制通道动态特性对控制系统的影响
控制通道的容量滞后τc同样会造成控制不及时,控制质量下降,但τc的影响比纯滞后τ0的影响缓和,若引入微分控制对控制质量有显著效果。
结论:选择时间常数小纯滞后小的通道作为控制通道。
时间常数的分配
在选择控制通道时,使开环传递函数中的几个时间常数值错开,减小中间时间常数可以提高系统工作频率,减小过渡时间和最大偏差可改善控制质量。
选择控制参数的一般原则
1.控制通道的放大系数K0要适当大一些,时间常数T0要适当小一些,纯滞后τ0越小
越好,在有纯滞后τ0的情况下,τ0和T0之比应小一些(小于1),若比值过大,不利于控制
2.扰动通道的放大系数Kf应尽可能小,时间常数Tf要大,扰动引入的系统的位置要靠
近调节阀。
3.当过程本身存在多个时间常数,在选择控制参数时,应尽量设法把几个时间常数错
开,使其中一个时间常数比其他时间常数大得多,同时注意减小第二第三时间常
数,这一原则同样适用于控制器调节阀测量变送器的时间常数选择。
控制器调节阀和测量变送器的时间常数应远小于被控过程中最大的时间常数。
检测.变送器选择
1.误差小
2.响应快
3.正确使用微分超前补偿
4.合理选择测量点位置与正确安装
5.对测量信号做必要处理(校正,噪声抑制,线性化)
执行器(调节阀)的选择
1.选择合适的工作区间
2.合适的流量特性
3.气开气关形式的确定
控制器的选择
1.根据控制规律选择
2.按过程特性选取
确定控制器的正反作用方式
1.气开调节阀Kv﹥0 气关调节阀Kv﹤0
2.正作用调节器即测量值增加调节器输出也增加Kc﹤0 反作用调节器即测量值增加
调节器输出减小Kc﹥0
3.正作用被控过程被控过程的输入(调节阀调节的被控制量例如水流量,燃料量)
增加,其输出(被控参数例如水位,温度)也增加比如水流量与液位的关系。
此
时K0﹥0 反作用被控过程K0﹤0 比如水流量与温度的关系。
4.Km﹥0 Km=Kv*K0*Kc Km系统的开环传递函数各环节的静态放大系数极性相
乘必大于0
5.所以确定调节器的正反作用次序为,先根据生产工艺安全等原则确定调节阀的开关
形式Kv,然后按被控过程的特性,确定其正反作用K0。
然后根据Km=Kv*K0*Kc 确定出Kc的正反作用。
控制器的参数整定
分为两大类1.理论整定法2.工程整定法工程整定法在实际工程中被广泛采用,但理论是它的基础,理论计算有助于人们深入了解问题的实质,减少整定工作中的盲目性,在复杂控制中理论计算更是不可缺少,理论计算推导得结果正是工程整定法的理论依据。
几种常用的工程整定法
1.动态特性参数法(用传递函数来判断)
2.稳定边界法(临界比例度法)1:1
3.阻尼振荡法(衰减曲线法)4:1 10:1
4.现场整定法(凑试法)
五.复杂控制系统
串级控制系统的特点
1.改善了被控过程的动态特性
2.大大增强了二次扰动的克服能力
3.对一次扰动有较好的克服能力
4.对副回路参数变化具有一定的自适应能力
串级控制系统的设计
1.副回路应该包含更多,更剧烈,频繁的扰动
2.主副过程时间常数之比应该在3-10,如果过于接近会产生共振。
3.主调节规律为PI PID (无余差)副调节器为P 一般无I因为会减速也不用D因
为副回路本身就起着快速的作用,加入D会使调节阀动作过大,对控制不利。
4.主副调节器的参数整定法有两步整定法与逐步逼近法(时间常数相差不大)
串级控制系统的工业应用
1.用于克服较大的容量滞后
2.用于克服被控过程中的纯滞后
3.用于抑制剧烈而幅度大得扰动
4.用于克服被控过程的非线性
前馈控制系统
在讲前馈控制之前我们先看看反馈控制,以便于了解两者的差别。
反馈控制
1.反馈控制的本质是基于偏差消除偏差
2.动作落后于扰动是一种“不及时”的控制
3.是闭环控制系统,所以扰动均在闭环内
4.控制规律为P I D
前馈控制
1.前馈控制是基于扰动来消除扰动时被控量的影响,故又称为扰动补偿。
2.扰动发生后,前馈控制器及时动作,对于由扰动引起的动静态偏差比较有效
3.是开环控制
4.只适用于可测不可控的扰动
5.控制规律比较复杂
前馈控制的局限性
1.完全补偿难以实现
2.只能克服可测不可控的扰动
比值控制系统
单闭环控制系统即主动量Q1开环,无自调节能力,波动。
Q2闭环跟随Q1成比值
双闭环控制系统即主动量Q1从量Q2都为闭环,能实现主动量的抗扰动,定值控制,要指出双闭环比值控制系统中的两个控制回路是通过比值器发生联系的。
双闭环比值控制系统在使用时应当防止发生共振。