发电机轴电压产生的原因、危害及处理措施示范文本
汽轮发电机轴电压分布异常原因分析及处理

汽轮发电机轴电压分布异常原因分析及处理
1. 发电机绕组短路导致
在汽轮发电机运行过程中,由于受到外界或内部因素的影响,可能会导致发电机绕组
短路。
如果发电机绕组中存在短路,那么就会造成轴线上电势分布不均匀,进而导致轴电
压分布异常。
2. 发电机转子不平衡导致
发电机转子的不平衡也是导致轴电压分布异常的原因之一。
当转子不平衡时,会导致
转子在转动过程中产生偏心力,进而使得轴线上的电势分布不均匀,导致轴电压分布出现
异常。
3. 发电机轴承故障导致
发电机轴承故障也会导致轴电压分布异常。
发电机轴承如果受到过大的负荷或长时间
的磨损,就会出现故障。
当发电机轴承故障时,轴线在转动过程中就会出现异常,进而使
得轴电压分布不均匀。
1. 发电机的定期检修
针对发电机运行过程中可能出现的绕组短路、转子不平衡以及轴承故障的问题,可以
定期对汽轮发电机进行检修。
通过对发电机的检修,可以及时发现和处理潜在的故障问题,从而避免轴电压分布异常的出现。
2. 发电机的监测和维护
发电机在运行过程中,应该做好监测和维护工作。
定期对发电机运行状态进行监测,
及时发现可能存在的问题,并做好相应的维护工作,从而保证发电机运行的正常。
3. 发电机的配重
针对发电机转子不平衡的问题,可以采用发电机的配重来解决。
通过对发电机转子进
行动平衡或者加装质量块的方式来纠正转子不平衡,进而保证发电机运行的平稳和高效。
汽轮发电机轴电压分布异常原因分析及处理

汽轮发电机轴电压分布异常原因分析及处理1. 引言1.1 研究背景汽轮发电机轴电压分布异常是电力系统中常见的问题,对电力设备的安全稳定运行产生了严重影响。
随着电力需求的不断增长,汽轮发电机轴电压异常问题日益突出,迫切需要对其进行深入研究和分析。
在汽轮发电机轴电压分布异常背景下,电力系统运行中的稳态和暂态特性变得更加重要。
电力系统运行过程中,汽轮发电机轴电压分布的异常可能会导致电力系统的不稳定甚至故障,严重影响电网安全运行。
对汽轮发电机轴电压分布异常进行深入研究,找出其原因并提出有效的处理方法,对于提高电力系统的稳定性和可靠性具有重要意义。
本文旨在对汽轮发电机轴电压分布异常进行分析,探讨其原因及处理方法,借助案例分析和实验验证,总结问题,并展望未来的研究方向,为电力系统的安全稳定运行提供理论支持和技术参考。
1.2 研究意义汽轮发电机在电力系统中扮演着重要的角色,其正常运行与电压分布稳定密切相关。
研究汽轮发电机轴电压分布异常的原因和处理方法具有重要的意义。
发电机轴电压分布异常可能导致电力系统中其他设备和设施的损坏,甚至影响整个电网的安全运行。
及时发现和解决发电机轴电压分布异常问题,可以提高发电机的运行效率和可靠性,减少停机维修的时间和成本。
深入研究发电机轴电压分布异常的原因,可以为电力系统的安全稳定运行提供重要的参考和指导,推动电力行业的发展和进步。
研究汽轮发电机轴电压分布异常的原因和处理方法具有重要的实际意义和应用价值。
通过深入分析和探讨,可以不仅提高发电机运行的效率和可靠性,减少故障发生的可能性,还可以为电力系统的安全稳定运行提供技术支持和保障。
本文旨在对汽轮发电机轴电压分布异常进行深入研究,探讨其原因及处理方法,为电力系统的安全稳定运行提供理论支持和技术指导。
1.3 研究目的研究目的是为了深入分析汽轮发电机轴电压分布异常的原因,找出影响轴电压分布的关键因素,并提出有效的处理方法。
通过研究,可以及时解决轴电压异常问题,提高汽轮发电机的稳定性和可靠性,避免发生故障对电网运行造成的影响。
大型发电机轴电压产生原因及测量注意事项

大型发电机轴电压产生原因及测量注意事项一、发电机轴电压测量目的:发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。
所以在安装和运行中,测量检查发电机组的轴及轴承间的电压是十分必要的。
二、产生轴电压的原因1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。
磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。
2.高速蒸汽产生的静电由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。
这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。
轴电压一般不高,根据实践经验,600MW发电机轴电压通常不超过10伏,我厂4台1000MW发电机轴电压在15V左右,相对600MW发电机较高。
为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。
使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
三、发电机结构特点我厂1000MW发电机由上海发电机厂生产,西门子技术。
发电机冷却方式为水氢氢。
为了防止轴电压,在励磁端的轴承环和用来阻止氢泄漏的油密封装置处,利用聚脂玻璃叠片做成绝缘板,绝缘板有绝缘电阻测量引线引出机外,为日后测量绝缘板好坏提供了方便,这是该机组的一大特点。
在发电机励端轴瓦解体检修后装复时,要进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。
四、轴电压的测量根据发电机结构,可以很方便地画出轴承绝缘示意图:图中:U1:汽端轴对地电压U2:大轴电压U3:励端轴对地电压U4:轴承绝缘板对大轴电压U5:轴承绝缘板对机座电压U6:油密封装置绝缘板对大轴电压U7:油密封装置绝缘板对机座电压轴电压测量,用电压表交流电压档,使用轴电压测量碳刷,注意测量回路是否接触良好。
发电机轴电压产生的原因、危害及处理措施

发电机轴电压产生的原因、危害及处理措施随着电源建设的迅猛发展,单机容量的逐渐增大,轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。
研究轴电压、轴电流有着很重要的意义。
轴电压的波形具有复杂的谐波脉冲分量,对油膜绝缘特别有害当轴电压未超过油膜的破坏值时,轴电流非常小。
若轴电压超过轴承油层击穿电压,则在轴承上形成很大的轴电流,即所谓电火花加工电流,将烧蚀轴承部件,造成很大危害。
磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。
【文献2】轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。
在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。
但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。
轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。
被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。
最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。
【文献12】发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
1、发电机轴电压产生的原因(1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。
由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和基础台板在内的交变磁链回路。
由此在发电机大轴两端产生电压差。
每一种磁不对称都会引起相应幅值和频率的轴电压分量,各个轴电压分量叠加在一起,使这种轴电压的频率成分很复杂,其中基波分量的幅值最大,3次和5次谐波幅值稍小,更高次谐波分量幅值很小。
汽轮发电机组轴电压异常原因分析

汽轮发电机组轴电压异常原因分析本文阐述了汽轮发电机组轴电压异常的原因、预防措施、处理方法。
同时介绍了现场工作中遇到的转子轴电压测量数据异常及处理的过程。
标签:轴电压;轴电流;轴承绝缘;预防措施1 引言燃煤汽轮发电机组由于在安装或运行期间采取的防范措施不足或不当,没能有效地将由电磁、蒸汽静电等多种因素形成的轴电压进行释放。
当该电压升高到一定值时就会击穿大轴与轴承间的润滑油膜,发生击穿放电现象,使润滑油质逐渐劣化,严重者会使轴瓦烧坏,造成被迫停机事故的发生。
2 产生轴电压的原因轴电压是指发电机在全速旋转时在其转子大轴两端期间之间或转轴与轴承座之间所产生的电压。
产生轴电压大致有以下原因:(1)由于发电机的定子铁芯材质导磁率及安装工艺、转子同心度等方面原因致使磁路不平衡,在转子大轴上产生感应电势,并在转子汽励两侧大轴端产生电压差,形成轴电压。
该电压一般为十伏以下,如果没有采取响应的有效措施,就会使大轴、轴承和基础台板之间中形成的交变电磁链通路且产生较大的轴电流。
这个轴电流会造成润滑油质迅速劣化,导致设备转轴表面的电蚀以及轴承钨金的磨损,进而会加速轴承的机械磨损、严重的会造成轴瓦烧损的重大设备损坏事故。
(2)高速蒸汽产生的静电。
高温高压的水蒸气从管道高速喷射出时,汽流中往往带有大量的静电荷,静电荷在转轴上聚集产生感应电势形成轴电压。
这种轴电压如不采取措施将该静电电荷导入大地,它在汽机侧油膜上聚集也有可能发生放电现象破坏油膜和轴瓦。
(3)静态励磁系统产生的轴电压。
由于励磁装置电压源或转子绕组不对称等因素作用在转子绕组上的外部电压使轴产生电动势。
(4)剩磁引起的轴电压。
当发电机运行中发生转子绕组不对称匝间短路时,造成磁路不对称,使得在转轴上剩磁形成的单极电势急剧增大、大轴上的轴电压升高,形成很大的轴电流,造成大轴、轴瓦的烧损和转子等部件的严重磁化。
3 轴电压的危害(1)接地电刷接触不良时,不能有效地抑制或消除轴电压及轴电流危害,进而会导致润滑油质老化、轴颈表面电蚀和轴瓦磨损现象的发生。
汽轮发电机轴电压产生原因

汽轮发电机轴电压产生原因摘要:为最大限度抑制轴电压的产生和危害。
本文在概述轴电压以及轴电压的危害的基础上,对汽轮发电机轴电压产生的原因进行分析,并提出相应的处理方法,以供相关的工作人员参考借鉴,关键词:汽轮发电机;轴电压;原因;处理方法1轴电压轴电压是指由于发电机磁场不对称,发电机大轴被磁化,静电充电等原因在发电机轴上感应出的电压。
为了监视轴绝缘的完好与否,需定期测量轴两端的电压和轴与机身之间的电压。
2轴电压危害轴电压是发电机运行过程中在转轴两端、转轴局部以及转轴对地的电位差。
轴电压是发电机运行过程中普遍存在的一种电气现象,大型、高速发电机尤为严重。
轴电压较低时,由于油膜的绝缘作用,放电是不容易发生的。
然而,当轴电压较高,轴瓦表面有缺陷,润滑油油质或流量不达标以及发电机异常振动等可能会造成油膜击穿,导致轴与轴瓦形成金属性接触,形成相当大的轴电流,可达到几百安甚至上千安,它足以烧损轴颈和轴瓦。
轴电压造成轴承腐蚀是一个加速过程,一次放电就可能使轴瓦表面金属局部融化,在油膜内形成金属颗粒并破坏油膜绝缘,使得放电更易发生,形成连锁反应,引发机组振动加剧,直至被迫退出运行,给现场安全生产带来隐患。
轴承损坏带来的直接和间接经济损失十分严重。
例如在20世纪70年代,我国一台QFSS-200-2型200MW汽轮发电机发生一起励磁回路两点接地故障,造成轴承绝缘击穿产生强大的轴电流、引起轴系和汽轮机磁化事故,使发电机、转子、隔板、缸体、曲瓦等部件发生了严重磁化,并导致部分轴瓦烧坏,30级隔板与隔板套摩擦和烧伤。
揭缸检查发现许多部位剩磁达几十至几百高斯,需要停机检修一个月左右,对整个机组进行退磁和修理。
根据统计,由于轴承破坏而造成的发电机故障约为故障总数的20%,而其中由轴电流引起的轴承故障又占30%,是发电机损坏的重要原因。
3汽轮发电机轴电压产生原因3.1静止励磁系统引发轴电压大部分汽轮发电机是用静止励磁系统作为励磁方式,但静止励磁系统内部的晶闸管会因换弧而产生轴电压。
发电机轴电压产生的原因、危害及处理措施

发电机轴电压产生的原因、危害及处理措施随着单机容量的逐渐增大,轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。
轴电压的波形具有复杂的谐波脉冲分量,对油膜绝缘特别有害。
当轴电压未超过油膜的破坏值时,轴电流非常小。
若轴电压超过轴承油层击穿电压,则在轴承上形成很大的轴电流,即所谓电火花加工电流,将烧蚀轴承部件,造成很大危害。
磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。
轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。
在正常情况下,轴电压较低时,发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。
但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。
轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。
被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。
最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。
发电机轴电压一直是存在的,但一般不高,通常为几伏至十几伏。
但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
1、发电机轴电压产生的原因(1)磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。
由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和基础台板在内的交变磁链回路。
由此在发电机大轴两端产生电压差。
每一种磁不对称都会引起相应幅值和频率的轴电压分量,各个轴电压分量叠加在一起,使这种轴电压的频率成分很复杂,其中基波分量的幅值最大,3次和5次谐波幅值稍小,更高次谐波分量幅值很小。
汽轮发电机轴电压分布异常原因分析及处理

汽轮发电机轴电压分布异常原因分析及处理
在汽轮发电机运行过程中,如果发现轴电压分布异常,需要及时进行处理,以确保设
备安全运行。
本文将对汽轮发电机轴电压分布异常的原因进行分析,并提出相应的处理方法。
1. 制造工艺问题
汽轮发电机制造过程中可能存在制造工艺不合理或者出现了不合格件的情况,这些都
可能导致轴电压分布异常。
解决方法:在购买设备前,需要对生产厂家的资质和生产工艺进行审查,以确保设备
的质量。
如果发现制造过程中存在问题,应及时联系厂家进行处理。
2. 绝缘材料老化
汽轮发电机长时间运行后,绝缘材料可能会老化,导致轴电压分布异常。
解决方法:定期对发电机进行绝缘材料的检查和测试,如果发现老化严重,则需要及
时更换绝缘材料。
3. 绕组短路
汽轮发电机绕组短路也是导致轴电压分布异常的原因之一。
绕组短路会导致电流不平衡,从而影响轴电压分布。
解决方法:在设备运行过程中,如果发现电流不平衡或者轴电压分布异常,需要及时
进行检查和修复。
如果绕组短路情况严重,需要更换受损的绕组。
4. 接地问题
汽轮发电机接地不良或者接地电阻过大,也可能导致轴电压分布异常。
解决方法:对发电机进行接地检查,确保接地良好并符合标准要求。
5. 滑环故障
解决方法:定期对滑环进行检查和测试,并及时更换受损的滑环。
总之,如果发现汽轮发电机轴电压分布异常,需要及时进行处理,确保设备安全运行。
处理方法包括:审查生产厂家的资质和生产工艺、定期检查和更换绝缘材料、检查和修复
绕组、确保接地良好并符合标准要求、定期检查和测试滑环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机轴电压产生的原因、危害及处理措施示范文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月发电机轴电压产生的原因、危害及处理措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。
随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。
研究轴电压、轴电流有着很重要的意义。
轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。
若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。
磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。
【文献2】轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。
在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。
但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。
轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。
被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。
最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。
【文献12】发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。
1、发电机轴电压产生的原因(1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。
由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和基础台板在内的交变磁链回路。
由此在发电机大轴两端产生电压差。
每一种磁不对称都会引起相应幅值和频率的轴电压分量,各个轴电压分量叠加在一起,使这种轴电压的频率成分很复杂,其中基波分量的幅值最大,3 次和5 次谐波幅值稍小,更高次谐波分量幅值很小。
这种交流轴电压一般为1~10 V ,它具有较大的能量。
如果不采取有效措施,此种轴电压经过轴———轴承———基础台板等处形成一个回路,产生一个很大的轴电流。
轴电流引起的电弧加在轴承和轴表面之间,其主要后果是引起轴承上的钨金和轴表面的磨损,并使润滑油迅速劣化。
由此会加速轴承的机械磨损,严重者会使轴瓦烧坏。
【文献12】(2)、静电电荷引起的轴电压这种出现在轴和接地台板之间的直流型电压,是在一定条件下高速流动的湿蒸汽与汽轮机低压缸叶片摩擦出的静电电荷产生的。
这种静电效应仅仅偶然在某种蒸汽条件下才能出现,并非经常存在。
随着运行工况的不同,这种性质的轴电压有时会很高,电位达到上百伏,当人触及时会感到麻手。
它不易传导至励磁机侧,但如果不采取措施将该静电电荷导入大地,它将在发电机汽机侧轴承油膜上聚集并且最终在油膜上放电而导致轴承损坏。
(3)、静态励磁系统引起的轴电压目前,大型汽轮发电机组普遍采用静态励磁系统。
静态励磁系统因可控硅换弧的影响,引入了一个新的轴电压源。
静态励磁系统将交流电压通过静态可控硅整流输出直流电压供给发电机励磁绕组,此直流电压为脉动型电压。
对于采用三相全控桥的静态励磁系统,其励磁输出电压的波形在1 个周期内有6 个脉冲。
这个快速变化的脉动电压通过发电机的励磁绕组和转子本体之间的电容耦合在轴对地之间产生交流电压。
此种轴电压呈脉动尖峰状,其频率为300 Hz (当励磁系统交流侧电压频率为50Hz 时) ,它叠加到磁不对称引起的轴电压上,从而使油膜承受更高的尖峰电压。
在增大到一定程度时,击穿油膜,形成电流而造成机械部件的灼伤和损坏。
【文献13】(4)、剩磁引起的轴电压当发电机严重短路或其他异常工况下,经常会使大轴、轴瓦、机壳等部件磁化并保留一定的剩磁。
磁力线在轴瓦处产生纵向支路,当机组大轴转动时,就会产生电势,称为单极电势。
正常情况下,微弱的剩磁所产生的单极电势仅为毫伏级。
但在转子绕组匝间短路或两点接地时,单极电势将达到几伏至十几伏,会产生很大的轴电流,沿轴向经轴、轴承和基础台板回路流通,不仅烧损大轴、轴瓦等部件,而且会使这些部件严重磁化,给机组检修工作带来困难。
2、发电机轴电压造成的危害轴电压大小随各机组情况的不同而不同,一般说来机组容量越大,其气隙磁通和结构的不对称性也越大。
而磁场中谐波分量和铁芯饱和程度以及定子的不平整度也越大,轴电压峰值就越高,轴电压的波形具有复杂的谐波分量,采用静止可控整流励磁的机组,其轴电压波形中有很高的脉冲分量,对油膜绝缘特别有害,当轴电压达到一定值后,如不采取适当措施,油膜会被击穿而产生轴电流。
若汽轮发电机组的轴电流很大,则轴电流通过的轴颈、轴瓦等有关部件将烧坏,汽轮机主油泵的传动蜗杆和蜗轮将损坏,轴电流引起的电弧会烧蚀轴承部件并使轴承的润滑油老化,从而加速轴承的机械磨损,轴电流会使汽轮机部件、发电机端盖、轴承和环绕轴的其他部件强烈磁化,并在轴颈和叶轮处产生单极电势。
过高的轴电压足以击穿轴与轴承间的油膜时,发生放电,其放电回路为发电机大轴-------轴颈------轴瓦-----轴承支架-----机组底座。
虽然,轴电压不高,通常50∽300MW为4V→6V,但回路电阻很小,因此,产生的轴电流可能很大,有时达数百安。
轴电流会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。
所以在安装和运行中,测量检查发电机组的轴及轴承间的电压。
【文献15】3、发电机轴电压的防范及消除措施通常采用下列几种防范措施(1)、设计安装时,通常在位于发电机励磁端的轴承支架与底座之间加装绝缘垫,同时将所有油管、螺杆、螺钉等采取绝缘措施。
(2)、设计有发电机汽机侧大轴的接地电刷,用于释放汽轮机低压段的静电电荷,保证轴与地的电势相同。
除消除大轴电压外,大轴接地碳刷同时有以下作用,用以保护电机:1. 测量转子正负对地电压。
2. 作为转子一点接地的保护。
(3)、为了降低汽轮发电机组由于磁路不对称引起的轴电压,设计发电机时考虑了消除或减少轴电压中的三次或五次谐波分量的措施,采用全新的发电机结构,安装时严格按照厂家工艺、设计要求,防止转子偏心。
(4)、为防止转子绕组一点接地短路而产生轴电压,运行时投入励磁回路两点接地保护装置。
(5)、为切断轴电流,在励磁机侧包括发电机轴承、氢冷发电机的油密封,水内冷发电机转子的进出水支座和进出水管法兰,励磁机和副励磁机轴承与机座的底板之间加装绝缘垫。
轴承座的紧固件和连接到轴承座的油管也要与轴承绝缘可采用双层绝缘措施。
【文献11】(6)、在电机设计时,避免产生磁路不对称。
(7)、电机设计、制造和运行时,避免产生轴向磁通。
(8)、将轴承座对地绝缘。
(9)、在轴上装设接地电刷。
(10)、采用非磁性轴承座或附加线圈。
(11)、在直流电机的电枢出线端加设一个对地的旁路电容。
【文献10】4、轴电压的测量转子接地碳刷和轴承的绝缘对防护轴电压对发电机安全运行的作用是非常重要的。
在实际的运行中, 由于安装、运行环境的恶化、磨损等, 会使得转子接地不好或轴承绝缘下降, 导致轴电压上升, 轴电流增大, 最终可能损坏发电机。
因此, 定期测量轴电压, 对改善发电机运行情况, 是十分必要的。
下面, 笔者推荐较为简单的测量方法:图1如图1所示其中:U1:发电机转子两端轴电压差, 正常情况下主要由转子磁不对称导致的轴电压, 一般厂家能提供经验数据, 建议在每次小修后测量并与历史数据进行比较。
U2:发电机后端轴对地电压。
U3:发电机后端轴承对地绝缘板层间金属板对地电压。
A:发电机前端接地碳刷的接地引下线上测得的电流。
建议定期测量U2、U3和A。
从数据的变化可以判断发电机的状况。
1、U1应在厂家提供的范围内, 且与历史数据比较不应有较大变化, 否则应检查发电机定转子的情况, 查明原因。
2、U2≈U3(正常值)。
如U2大于U3(正常值),则需检查轴接地碳刷接地情况是否良好,在运行中可在前端轴上短时外接接地线接地,再测量U2进行比较。
3、U3应接近U2。
由于U2与U3的差值表示加在轴承油膜上的电压, 若该电压过大, 将可能导致油膜击穿, 建议该差值不大于4V, 或U3不小于U2的70%。
否则应检查轴承对地的绝缘材料运行情况,如表面脏污、绝缘老化等。
4、一般情况下, 轴接地碳刷上流过的电流A为几毫安到几百毫安, 若该值明显增加, 应结合轴电压的测量情况, 检查轴承绝缘情况。
【文献11】5、总结汽轮发电机组在向高效率、高可控性、高利用率、高可靠性和低维修率方向发展。
汽轮发电机组轴承良好的工作状态为提高其利用率和可靠性提供了有力保证。
发电机的轴电压过高对发电机正常运行有着很大的影响,所以应定期进行测量,对于一些大型发电机组,必要安装在线保护装置,时常监测发电机是否处于正常运行状态。
我国电力工业正处于大电网和大机组发展时期,随着发电机组单机容量的增大和静态励磁系统的广泛采用,采取有效防护措施抑制轴电压及有害轴电流的产生,是非常重要的。
6、参考文献(1)、汽轮发电机轴电压分析及一例故障处理高志强,郝晓光,杨子林,赵洋.河北电力技术20xx年06期(2)、大型发电机轴电压研究现状及展望王成亮,王宏华(3)、汽轮发电机轴电压分析及一例故障处理高志强,郝晓光,杨子林,赵洋河北电力技术2004 年第6期第23 卷(4)、电机学(第四版)、李发海朱东起主编科学出版社(5)、电力系统稳态分析(第三版)、陈衍中国电力出版社(6)、电力系统暂态分析(第三版)李光琦中国电力出版社(7)、电力系统继电保护张保会尹项根主编中国电力出版社(8)、电力系统自动装置原理(第四版)杨冠成主编中国电力出版社(9)、逆变器驱动电机的共模电压和轴电压的抑制钟玉林,赵争鸣,袁立强清华大学学报(自然科学版) 2009 年第49 卷第1 期(10)、大电机轴电压研究胡高举, 郑才刚, 韦云隆机械2001 年第28 卷第3 期(11)、关于发电机轴电压的测量与保护程芳林江苏电器2002 NO.4(12)、燃气发电机轴电压异常分析周侣,邵建强,许龙虎,张冬华东电力第37卷第2期20xx年2月(13)、汽轮发电机故障检查分析及预防杨伟清主编中国电力出版社(14)、大电机轴电压研究冶金设备室胡高举郑才刚韦云隆钢铁技术20xx年第1期(15)、汽轮发电机组轴电压产生的原因、危害及防范措施高旭峰电力建设第25卷第10期20xx年10月请在此位置输入品牌名/标语/sloganPlease Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion。