多功能列车通讯总线MVB简介[学习内容]
CAN总线概述和MVB总线

CAN总线概述1.CAN总线的产生与发展控制器局部网(CAN—CONTROLLERAREANETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑'环境控制等众多部门。
控制器局部网将在我国迅速普及推广。
随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。
由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。
分散式工业控制系统就是为适应这种需要而发展起来的。
这类系统是以微型机为核心,将5C技术--COMPUTER(计算机技术)'CONTROL(自动控制技术)'COMMUNICATION(通信技术)'CRT (显示技术)和CHANGE(转换技术)紧密结合的产物。
它在适应范围'可扩展性'可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。
典型的分散式控制系统由现场设备'接口与计算设备以及通信设备组成。
现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。
现场总线的研究与应用已成为工业数据总线领域的热点。
尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。
同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。
控制器局部网CAN(CONTROLLERAERANETWORK)正是在这种背景下应运而生的。
由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。
为此,1991年9月PHILIPSSEMICONDUCTORS制订并发布了CAN技术规范(VERSION)。
mvb总线 阻抗

mvb总线阻抗摘要:1.mvb 总线简介2.mvb 总线阻抗的概念3.mvb 总线阻抗的影响因素4.mvb 总线阻抗的测量方法5.mvb 总线阻抗的调整与优化6.总结正文:mvb 总线(Multifunction Vehicle Bus,多功能车辆总线)是一种用于车辆电子系统的通信总线,它可以实现多种不同功能模块之间的数据交换与通信。
在mvb 总线的应用中,阻抗是一个重要的性能参数。
mvb 总线阻抗是指在mvb 总线上传输数据时,信号在传输线上产生的电压降。
阻抗会影响mvb 总线的传输性能,进而影响车辆电子系统的正常工作。
一般来说,mvb 总线阻抗越小,传输性能越好。
mvb 总线阻抗主要受以下因素影响:1.传输线的材质和长度:不同的传输线材质和长度会对阻抗产生不同的影响。
通常,传输线材质越优良、长度越短,阻抗越小。
2.连接器的质量和性能:连接器是mvb 总线上信号传输的重要环节,连接器的质量和性能直接影响阻抗的大小。
3.环境温度:环境温度对传输线和连接器的性能产生影响,从而影响阻抗。
一般来说,环境温度越高,阻抗越大。
4.电源电压:电源电压的稳定性直接关系到mvb 总线的正常工作,电源电压的波动会导致阻抗的变化。
测量mvb 总线阻抗的方法有多种,常见的有示波器法和人工测量法。
示波器法是通过示波器测量信号的波形,从而计算出阻抗。
人工测量法是通过万用表测量信号在传输线上的电压降,从而得出阻抗值。
当mvb 总线阻抗过大时,可以通过调整和优化来提高传输性能。
具体方法包括:选择优质的传输线和连接器,降低环境温度,保证电源电压的稳定性等。
MVB总线在地铁车辆控制系统中的应用

MVB总线在地铁车辆控制系统中的应用摘要:本文针对地铁MVB网络进行了介绍,并且根据网络实时模型简要说明在地铁车辆控制系统中MVB总线在其中的一种应用。
关键词:MVB总线;地铁车辆控制系统一、地铁MVB网络介绍(一)MVB 网络拓扑因为传统的地铁设计结构中,在司机的操作台上会固定有IDU,所以,IDU 这个节点在网络架构设计中一直都有所保留。
因此,中央控制单元,传动控制单元1、2,智能显示单元,逻辑控制单元1、2,安全监测单元都是在地铁车辆级总线MVB中所存在的几个节点。
(二)网络各单元功能划分在地铁网络上的每个节点都有着不同的作用。
MVB通信的检测和管理,牵引、制动特性控制以及一些辅助功能是由中央控制单元进行负责的。
转向架的传动主要是由传动控制单元进行的负责的;数字量、模拟量信号的采集以及地铁信号的逻辑运算是由逻辑控制单元进行主要负责的;地铁状态的显示、地铁故障信息的现实和诊断以及一些地铁参数的设置都是由智能显示单元进行负责的;MVB网络中,安全监测单元所起到的作用是尤为重要的,主要执行以下功能:1、与MVB 各节点进行通讯,记录各节点的全部状态信息;2、实现MVB 总线上的故障信息记录;3、与上位机实现串口通讯。
(三)SDU 设计介绍MVB网络中,节点机箱SDU以及上位机两部分是组成安全监测系统的主要因素。
SDU的实现要能够很好地联系MVB总线上的各节点,并且还要能够与上位机有串口通讯的实现。
将管理信息系统建立在上位机系统上,通过串口通讯对下位机发送过来的信息进行接受,有合格的校验之后,将地铁的状态记录在上位机上,并且要参照需求,在数据库中存储信息,这样的话,数据的安全性就会很高。
SDU 机箱主要由具有嵌入式系统的C P U 板组成以实现系统功能。
C P U 板采用以A R M 7 为内核的32 bit 嵌入式计算机,操作系统采用嵌入式多任务实时操作系统N U C L E U S ,并将M V B 协议控制器芯片成功地嵌入在计算机系统中,形成了完整的嵌入式CPU 系统。
铁路列车之间的通信协议(多功能车辆总线MVB协议)

铁路列车之间的通信协议(多功能车辆总线MVB协议)2016-10-25致远电子随着铁路的快速发展,多功能车辆总线MVB协议已经成为高速电力列车控制系统的关键技术,可用于列车状态检测、故障诊断以及车载设备开发和调试等操作。
今天我们一起来深扒MVB协议。
一、MVB介绍TCN是铁路列车车辆之间和车辆内部可编程设备互联传送控制、检测与诊断信息的数据通信网络。
MVB为多功能车辆总线,它是列车通信网TCN的一部分,TCN网络由WTB+MVB构成。
MVB 是一种主要用于对有互操作性和互换性要求的互连设备之间的串行数据通信总线,它将位于同一车辆,或不同车辆中的标准设备连接到列车通信。
其固定传输速率为1.5Mbit/s。
图1 列车通信网络列车通信网络通常采用分层结构,根据列车控制的特点分为上下两层,每一层根据不同的特性要求相应有不同适用局部网络,包括列车总线层(WTB)和多功能车辆总线层(MVB)。
车辆总线负责同一车厢内部各种可编程终端装置的连接,列车总线负责不同车辆单元中的网络节点连接。
WTB和MVB是两个独立的通信子网。
图2 列车MVB物理层提供三种不同的介质,它们以相同速率运行:ESD:电气短距离传送(≤20米),标准的RS-485收发器,支持32个设备,适用于封闭小室内;EMD:电器中距离传送(≤200米),支持32个设备,屏蔽双绞线,变压器耦合;OGF:远距离光学玻璃纤维介质(≤2000米)。
随着MVB技术的不断发展,MVB物理层介质主要以EMD为主。
MVB各个总线段必需经由连接不同介质的中继器将光纤汇入总线的星耦器两种类型之一的耦合器相互连接。
二、MVB的数据帧结构MVB的一次传输包括两种类型帧:主帧+从帧,主帧的长度固定为33位,从帧的数据长度有5种:33、49、81、153和297,具体的数据帧结构如下图3所示。
图3 MVB拓扑结构MSD:帧起始分界符,MVB的信号编码采用G.E.Thomas Andrew S.Tanenbaum的曼彻斯特编码(从低到高为“0”,从高到低为“1”)传输数据。
多功能列车通讯总线MVB简介

bits)
F = F_code (4 bits)
data
CS
SSD
data
SSD
CS
data
SSD
CS
9
64 bits
8
data
SSD
CS
128
(153)
9
64 bits
8
data
SSD
CS
256
(297)
64 bits
data
8
CS
data
(390 )
terminator/
biasing
segment length
RxS
TxS
RxS
TxS
RxS
TxS
• • •
equipotential line
Ru
(390)
Rm
(150 )
Rd
(390 )
+ 5 V
特点:采用标准RS485,每段32个设备,每段距离<20m,采用隔离方式可延长距离,菊花链拓扑
在高压差场合,屏蔽可以不连贯,但需要注意EMC防护措施
EMD桩线要求
注意:Stub小于10cm
EMD连接器和端接
7
6
9
8
端接连接器
EMD设备电气参数要求
插入损耗:<0.15dB
EMD信号波形定义
高电平:Data_P – Data_N为正,TxS和Rxs为高 低电平:Data_P – Data_N为负,TxS和Rxs为低
CLASS 4 :设备状态、过程数据、消息数据、总线管理、用户可编程(可选)
MVB多功能线

MVB总线简介列车通信网(Train Communication Network,简称TCN)是一个集整列列车内部测控任务和信息处理任务于一体的列车数据通讯的IEC国际标准(IEC-61375-1), 它包括两种总线类型绞线式列车总线(WTB)和多功能车厢总线(MVB)。
TCN在列车控制系统中的地位相当与CAN总线在汽车电子中的地位。
多功能车辆总线MVB是用于在列车上设备之间传送和交换数据的标准通信介质。
附加在总线上的设备可能在功能、大小、性能上互不相同,但是它们都和MVB总线相连,通过MVB总线来交换信息,形成一个完整的通信网络。
在MVB系统中,根据IEC-61375-1列车通信网标准, MVB总线有如下的一些特点:拓扑结构:MVB总线的结构遵循OSI模式,吸取了ISO的标准。
支持最多4095个设备,由一个中心总线管理器控制。
简单的传感器和智能站共存于同一总线上。
数据类型:MVB总线支持三种数据类型:a.过程数据:过程变量表示列车的状态,如速度、电机电流、操作员的命令。
过程变量的值叫过程数据。
它们的传输时间是确定的和有界的。
为保证这一延迟时间,这些数据被周期性地传送。
b.消息数据:消息被分成小的包,这些包分别被编号并由目的站确认。
消息包及与之相关的控制数据形成消息数据。
消息数据以命令方式传输。
功能消息被应用层所使用;服务消息用于列车通信系统自身的管理等。
c.监视数据:是短的帧,主设备用它作同一总线内设备的状态校验、联机设备的检测、主权传输、列车初运行和其它管理功能。
介质访问形式:MVB总线支持RS485铜介质和光纤。
其物理层的数据格式为1.5Mbps串行曼彻斯特编码数据。
MVB的介质访问是由总线管理器BA进行管理的,总线管理器BA是唯一的总线主设备,所有其它设备都是从设备。
主设备按照某种预定的顺序对端口进行周期性轮询,在周期的间隔中,主设备转而处理偶发性请求。
可靠性措施:MVB容错措施包括发送的完整性:链路层有扩充的检错机制,该机制提供的汉明码距为8,可检测位、帧和同步错误。
MVB现场总线的智能列车通信系统系统应用方案-金升阳

MVB现场总线的智能列车通信系统系统应用方案1、应用概述MVB现场总线的智能列车通信系统主要功能是通过现场总线技术,采用列车通信网络,利用网络实现对车载设备集散式监视、控制和管理,逐步实现了列车控制系统的智能化、网络化和信息化,WTB/MVB总线系统成为列车通信网络的主流,WTB作为列车通信网络,MVB作为车辆总线一起使用。
2、MVB现场总线的智能列车通信系统应用方案框图列车总线WTB通过WTB网关内容的MVB网卡(MVB-OGF)与制动控制单元(BCU)、酒吧车主控拖车计算机(IDU)、MVB-EMD与轴温报警器(AXT)、供电控制器(SUPPLY)、空调控制器(AIR)、逆变器(INV)、充电器(CHARGE)进行信息交换。
车门控制器(DOOR)、集中控制器(CONTROL)分别通过RS485与VCU直接连接。
制动控制单元(BCU)通过通讯口(RS232)与防滑器(SLIDP)连接;VTCU通过I/O接口与烟火报警装置连接。
图1MVB现场总线的智能列车通信系统构成框图系统硬件主要包括车辆控制器VTCU 、总线连接器、输入输出单元、通讯连接器COMC 、人机显示器MMI 及相关子系统。
车辆控制器VTCU 即总线控制器,每个3节车单元各一个,共由7块板组成,自带插槽和电源,是标准的模块化系统。
车辆控制单元由网关(VTCU-GW),VCUT ,VCUA 及VTCU 的电源组成。
网关控制列车总线(WTB)和车辆总线(MVB),并在两个总线系统间转换过程和信息数据。
列车诊断板VCUT 上有板载数据库(ODBS),可通过RS422接口控制人机界面。
VTCU 的电源提供110V 直流电源,并与供电系统的电势隔离。
图2系统供电框图3、电源解决方案该电源解决方案是直接从机车电源上直接获取输入电压,并通过URB2405LD-20WR3系列电源模块将其转换成5VDC 的电源给后面各控制模块进行供电(如应用框图上各个模块)。
MVB多功能车辆总线仿真与检测系统的设计及应用

计算机应用轨道交通装备与技术第2期2021年3月文章编号:2095 -5251(2021)02 - 0059 -03MVB多功能车柄总线仿真与检测糸蜣的设计及启用王健(上海地铁电子科技有限公司上海200237)摘要:通过对T C N标准(IEC61375 - 1)中多功能车辆总线M V B通信协议的研究,利用通用逻辑芯片F P G A技术、USB通讯技术、嵌入式Linux系统及Python语言开发技术等,设计了 M V B仿真与检测系统。
该系统通过M V B通信协议的编码和解码功能,实现了对M V B多功能车辆总线的仿真;通过对总线波形的实时采集和数据分析,实现了对M V B多功能车辆总线的检测。
关键词:MVB;仿真;通信检测;主帧;端口中图分类号:U285.4M 文献标识码:BDOI:10. 13711/j. cnki. cn32 - 1836/u. 2021.02.020〇引言MVB(多功能车辆总线)作为列车通信网络(TCN)的一部分,负责一个车厢内设备或者一个固 定的车辆组内设备的数据通信。
具有实时性强、可靠性高、传输数据快和传输距离远等优点,目前在高 铁和地铁中的应用非常广泛m。
为了实现对多功能列车总线的状态监测、故障 诊断和一致性测试,以及在车载设备的研发和调试 过程中,模拟多功能列车总线的数据传输过程,设计 了一套系统,主要实现了以下功能:(1)MVB仿真发 送功能;(2)总线波形实时采集功能;(3)数据分析 功能;(4) Linux系统下Python控制程序设计。
1整体设计在MVB数据通信中,具有以下特征:通信传送 方式采用主从帧应答,帧发送方式采用周期性广播,帧标识符具有帧头和帧尾标识以识别帧的开始和结 束,帧编码采用曼彻斯特编码,数据传输速率为1.5 Mbit/s。
为了仿真MVB总线通信,需要仿真主站发 送主帧数据,仿真从站发送从帧数据,仿真接收主帧 数据和从帧数据。
通过对MVB通信总线波形的实收稿日期:2020 -05 -13作者简介:王健(1982 -),男.硕士研究生学历,高级工程师,从事 列车网络通信技术研究T.作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特选内容
22
MVB编码方式
data clock frame
110 100010 111110 1
signal
0 123 45 67 8
9-bit Start Delimiter
frame data
8-bit check sequence
OGF(光纤)
wired-or electrical media
op to-el ectri cal tra ns cei ver
to other device or star coupler
fibre pair
to other device or star coupler
Rack
ESD segment
3 8
9
4 B1. Data_ P
Li ne_B
5 B1.Data_N
shields contacts case
9
5 B1.Data_N Li ne_B
8
4 B1. Data_ P
3 7
6
2 A1. Data_ N
Li ne_A
1 A1. Data_ P
femal e Conn ector_1 (femal e)
特选内容
1
列车通信网络(TCN)拓扑
两级拓扑: (1)列车总线:WTB,ETB (2)车辆总线:MVB,CAN open,ECN
特选内容
2
TCN分层结构
对应两类通信数据: (1)过程数据:短 小、周期性、实时 性要求高 (2)消息:较长、 突发性、实时性要 求不高
特选内容
3
TCN通信介质分配
总线为半双工通信方式,通信时间划分为基本周期
(1)CLASS 0 :星耦器、中继器 (2)CLASS 1 :设备状态、过程数据 (3)CLASS 2 :设备状态、过程数据、消息数据 (4)CLASS 3 :设备状态、过程数据、消息数据、 用户可编程
(5)CLASS 4 :设备状态、过程数据、消息数据、 总线管理、用户可编程(可选)
(6)CLASS 5 :设备状态、过程数据、消息数据、 总线管理、TCN网关
特选内容
6
M V B 拓 扑 结 构
特选内容
7
ESD(电短距离)
device 1
device 2.. n-1
device N
terminator/ biasing
+5V
Ru (390)
TxS RxS
Data_N
Rm (150 )
TxS RxS •••
TxS RxS
Rd (390 )
GND
Data_P
A.Data_P A.Data_N
B.Data_P B.Data_N
A1
B1
Connector_1
1
1
B2
A2
Connector_2
1
Line_A Line_B
A1. Data_P A1. Data_N
B1. Data_P B1. Data_N
B2. Data_N B2. Data_P
A1. Data_N A1. Data_P
特选内容
4
过程数据通信方式
(1)分布式数据库 (2)发行者、总线、用户 (3)源址广播 (3)端口
特选内容
5
MVB物理层
(1)ESD:双绞线或者背板总线+有或者没有隔离,20M
(2)EMD:屏蔽双绞线+变压器隔离,200M
(3)OGF:光纤,2000M
(4)通信速率均为1.5Mbps
(5)不同介质的通信段通过中继器( Repeater )互连
(4)短路:短路不能引起设备损坏,电流<1A
特选内容
19
EMD设备发送帧尾波形
特选内容
20
EMD接收信号波形
(1)高电平:Up - Un 大于+0.2V
(2)低电平:Up – Un小于-0.2V
(3)滞回电压:50mV~0.25V之间
(4)高电磁干扰场合,幅度可特选适内容当放宽
21
MVB设备分类
device device
de vi ce
device device device
特点:每段<2000m,点对点拓扑,采用星耦
器
特选内容
9
EMD(电中距离)
device
bu s con trol le r
tra ns cei ver
tra ns form er
s h iel d
bus section 1
bus section 2
特点:
(1)采用隔离变压器 (2)每段32个设备,每段距离<200m (3)特性阻抗120欧、屏蔽双绞线缆互连 (4)2个DB9连接器,一入一出,构成菊花链拓扑
特选内容
10
EMD双线冗余
device
Bus_Controller
transceiver A
transceiver B
Line_A Line_B
(1)两对线(wire)在同一股电缆(cable)中
(2)可应对单一故障:线路断裂、PIN脚接触故障、收发器故障。无法应对线缆
故障以及连接器未插好。
特选内容
11
EMD线缆屏蔽措施
(1)设备端屏蔽需要接大地 (2)在不存在高压差的情况下,线缆屏蔽需要保持连贯 (3)在高压差场合,屏蔽可以不连贯,但需要注
4 8
3 7
2 6
1
端接连接器
14
EMD设备电气参数要求
(1)插入损耗:<0.15dB
测试步骤:
STEP1:不接设备,调节信号发生器幅度,使得接收端测量值为4Vpp STEP2:接上设备,记录设备上电和断电时接收端的信号幅值
(2)端接电阻:120欧±2%,相位角<0.087
特选内容
15
特选内容
12
EMD桩线要求
注意:Stub小于10cm
特选内容
13
EMD连接器和端接
Line_A
Zt.A
A.Term_P A.Term_N
Line_B
B.Term_N B.Term_P
Zt.B
male
Conn ector_1 (male)
cable
6
1 A1. Data_ P Li ne_A
7
2 A1. Data_ N
EMD信号波形定义
(1)高电平:Data_P – Data_N为正,TxS和Rxs为高
(2)低电平:Data_P – Data_N为负,TxS和Rxs为低
特选内容
16
EMD设备发送信号波形1
特选内容
17
EMD设备发送信号波形2
特选内容
18
EMD设备发送信号波形测试
(1)轻载 (2)重载 (3)空载
equipotential line
Bus_GND
segment length
terminator/ biasing
+5V
Ru (390)
Rm (150 )
Rd (390 )
特点:采用标准RS485,每段32个设备,每段距离<20m,采用隔离方式可延长距 离,菊花链拓扑
特选内容
8
Star Coupler