IGBT串联谐振

合集下载

脉冲电源中IGBT_模块功耗及内部瞬时结温升研究

脉冲电源中IGBT_模块功耗及内部瞬时结温升研究

脉冲宽度、输出电压、输出电流、峰值功率以及脉冲重复频率是脉冲电源常用的几个重要技术指标,不同的应用场合对技术指标的要求不同。

脉冲电源在电除尘领域应用已有很长的历史。

在国外,丹麦FLSmidth 公司长期以来都将脉冲电源应用在电除尘领域。

在国内,随着超低排放标准实施,脉冲电源凭借其突出的节能提效优势在电除尘领域迅速推广,从2014年开始,该文提到的脉冲电源在国内应用已超过1 000台,广泛应用于电力、冶金以及建材等工业领域[1]。

开关器件是脉冲电源的核心器件,同时也是制约脉冲电源性能提高的瓶颈。

除尘用脉冲电源为了满足工业现场自动控制的需求,通常采用晶闸管或IGBT 等可控半导体器件作为开关。

在脉冲产生的过程中,开关器件在短时间内需要承受极大的电流;而在脉冲电源工作的间隙时间内,即2个脉冲之间,开关器件处于关断状态。

而通常脉冲电源的占空比较低,要在开关电源通流能力的可靠性与经济性之间取得平衡,就需要准确计算开关器件的发热情况,即功耗计算和热阻计算,这样既可以保证芯片结温不超过规格书规定的上限,也可以合理对器件载流能力进行选型,避免成本增加。

1 IGBT 模块功耗计算如果需要计算开关器件在单次脉冲输出过程中的功耗,就需要确定开关器件的电流以及其开通时间。

1.1 电路拓扑及峰值电流计算除尘用脉冲电源主回路原理如图1所示。

左半部分是脉冲发生单元(Pulse Unit ),负责产生80 kV 的负高压脉冲;右半部分是直流负高压输出单元(DC Unit ),产生60 kV 的基础直流负高压。

负载为电除尘器,其内部物理结构为板线式。

当计算脉冲电源参数时,可以将其简化等效为1个等效电容,其容量通常为100 nF ,该文中提到的脉冲电源的额定负载为115 nF 。

各主器件功能分别如下:扼流圈(Choke ),用于抑制一次侧直流母线电压向谐振电容C p 充电的电流;一次侧谐振电容(C p ),提供单次脉冲输出所需的能量;隔脉冲电源中IGBT模块功耗及内部瞬时结温升研究卢裕明(福建龙净环保股份有限公司,福建 龙岩 364000)摘 要:绝缘栅双极晶体管(IGBT)的结温升是考察电源的重要参数,其指标直接影响系统的可靠性。

IGBT超音频串联移相调功感应加热电源的研究

IGBT超音频串联移相调功感应加热电源的研究

e = −N
dϕ dt
(1-1)
式中 N 是线圈匝数,假如 ϕ 是按正弦规律变化的,则有:
ϕ = φ m sin ωt
(1-2)
那么可得到感应电动势为:
e = − Nφ mω cos ωt
(1-3)
2
第 1 章 绪论
因此感应电动势的有效值为:
感应加热技术是 20 世纪初才开始应用于工业部门的,它是通过电磁感应原 理和利用涡流对工件进行加热,是制造业和材料加工中的一种重要手段[1]。 目前半导体固态感应加热电源的频率划分如下: 200Hz 以下为低频, 0.2~ 10kHz 为中频,10~100kHz 为超音频,100kHz 以上称为高频,它们具有不同的 应用范围[2]。本文所设计的超音频感应加热特别适合表面淬火和感应钎焊等。 上世纪八十年代以前,超音频感应加热电源十分缺乏,电子管振荡器电源和 晶闸管感应加热电源性能不好。电子管振荡器加热电源设备体积大、耗材多、电 压高、电磁污染和效率太低。晶闸管感应加热电源由于晶闸管本身开关特性等参 数的限制,频率很难提高。 上世纪八十年代以后,随着新型大功率半导体开关器件的相继出现,促进了 以 GTR 、 IGBT 、 SIT 、 SITH 、 MCT 构成的感应加热电源的发展,各国竞相研 制。目前主要以 IGBT 为主,并逐渐占据主导地位 。 其主要优点为: (1)体积小、重量轻、安装便捷; (2)IGBT 导通损耗小,通态压降为几伏,效率高,能耗小,冷却水流量小; (3)通过合理设计,工作频率自动跟踪负载特性的变化; (4)优良的控制性能,便于实现自动化操作。 国外串联超音频感应加热电源技术比较成熟[3]。从市场上看,国内小功率串 联感应加热电源开始大量出现,主要问题是产品缺乏应有的频率自动跟踪功能。 此外国内正在研究和生产超音频串联感应加热电源企业还没形成生产规模[3]。 因此为了改变上述局面,缩小与国外感应加热电源技术水平的差距,研制新 型 IGBT 超音频感应加热电源就显得十分必要。

基于IGBT的超音频感应加热系统设计

基于IGBT的超音频感应加热系统设计

基于IGBT的超音频感应加热系统设计洪武;陈迪峰;陆春【摘要】对串联谐振半桥感应加热电源进行了研究,使用SG3525芯片和EXB841芯片设计控制驱动电路,具有过流保护功能.在研究的基础上,设计并制作了20kHz 的串联谐振感应加热设备样机,它能在实验工况下安全可靠地运行.【期刊名称】《漯河职业技术学院学报》【年(卷),期】2015(014)002【总页数】3页(P39-41)【关键词】IGBT;感应加热;串联谐振【作者】洪武;陈迪峰;陆春【作者单位】台州职业技术学院电气信息学院,浙江台州318000;台州职业技术学院电气信息学院,浙江台州318000;台州职业技术学院电气信息学院,浙江台州318000【正文语种】中文【中图分类】TM924.70 引言感应加热技术具有效率高、容易控制、加热速度快、工作环境中烟尘和噪声少等优点,在工业加热中得到了广泛应用。

从早期的工频感应加热电源渐渐发展到使用晶闸管实现的中频感应加热电源,再到使用IGBT实现的超音频感应加热电源以及使用MOSFET实现的高频感应加热电源,感应加热电源在工业加热行业中起到了极其重要的作用。

MOSFET全控型半导体器件的研发生产,促进了电力电子技术的发展,使得感应加热技术也有了较大的进步。

如今,感应加热技术在企业中的应用意义重大,有助于提高企业的行业竞争力。

1 系统整体设计以一台2KW应用于吸塑机料筒的超音频感应加热电源为对象,讨论适用于频繁起动的超音频感应加热系统的设计。

首先,在输入直流电源的选择上,本文选择实现较为方便的电压源型逆变电路;为了使主电路简单化、工作电压更低,逆变电路选用半桥式逆变器,属于串联谐振逆变器;在选择负载谐振工作方式时,考虑到电流源型全桥并联谐振逆变器起振较为困难、容易逆变颠覆的缺点,本文选用串联谐振方式,以保证启动性能,方便电路的控制和实现,提高系统的抗干扰能力。

本文提出的感应加热电源的主系统由不可控整流电路、电容滤波、稳压电路、半桥逆变电路、加热线圈负载电路以及相应的控制驱动和保护电路组成。

串联谐振

串联谐振

串联谐振、并联谐振对于直流高压电源来说,抗打火能力是电源的一个很重要的指标。

对于抗打火能力,除了保护功能强大及地线处理良好外,电源拓朴选择也至关重要。

如果电源自身具有抗短路功能,也就是说短路情况下电源完全可以正常工作,那么电源的抗打火能力将会更强。

电源可以工作在短路状态,一般都采用谐振式拓朴,而谐振式拓朴常使用的有两种,一种是串联谐振,一种是并联谐振。

这两种方式的好处是在开环情况下,由于电感与电容的谐振,输出是恒流源,完全可以工作在短路状态,并通过电压环控制,使恒流源变成稳压源。

串联谐振:串联谐振是使用电感、电容、变压器串联三者串联。

串联谐振分为DCM和CCM两种模式。

一般都选择DCM模式,即选择。

串联谐振的好处在于可以实现开关管的零电流关断,这是唯一一种能实现零电流关断的拓朴,是真正意义上的软关断,无关断损耗。

这对于IGBT来说有很大好处,可以不用去考虑IGBT的关断拖尾带来的关断损耗。

单个串联谐振电源可以采用PFM方式,这种方式实现2kW以内;也可以使用初级两组件并联移相方案,可以实现几十千瓦功率输出的高压电源。

典型电流波形如下图所示:串联谐振的缺点是电流峰值太大,使开关管承受较大压力,不利于电源的小型化。

并联谐振:这里的并联谐振真正意义上是并联负载的串联谐振。

并联谐振与串联谐振相比最大优势是峰值电流较小。

同时在短路情况下,整个回路就是对电感充放电,电流波形为三角波,因此可以在短路情况下很容易算出电感的值,再通过电感计算出电容的值,而且误差很小,对于设计来说这是至关重要的。

并联谐振工作在CCM区,电流波形基本上是正弦。

开关管是硬关断,零电压零电流开启,没有开启损耗。

对于关断损耗,可以在开关管DS(CE)两端并联电容,使电流与电压的交汇点变低,减小关断损耗。

并联谐振还有一个很重要的优势就是可以把变压器的漏感与分布电容完全利用,使变压器的设计轻松了许多,再加上各部分参数可以很容易的计算出来,因此设计并联谐振电源就变得简单很多。

串联谐振单相全桥逆变器常用的控制方法

串联谐振单相全桥逆变器常用的控制方法

详解串联谐振单相全桥逆变器常用的控制方法华天电力专业生产串联谐振设备,下面为大家介绍串联谐振单相全桥逆变器常用的控制方法。

引言随着可自关断电力电子器件的发展,串联谐振逆变电路获得越来越多的应用,各种适合于串联谐振逆变电路的控制方法不断出现,本文对常用的调幅控制、脉冲频率调制、脉冲密度调制以及谐振脉冲宽度调制等控制方法进行了讨论和比较,特别对脉宽加频率调制的控制方法进行了较详细的分析。

串联谐振逆变器基本结构串联谐振逆变器的基本原理图包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载,其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件,逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。

串联谐振逆变器的控制方法1、调幅控制(PAM)方法调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的,即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。

这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。

2、脉冲频率调制(PFM)方法脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。

图2PDM控制原理图图3谐振脉冲宽度调制图3、图4及图5中为避免桥臂直通,S1、S4及S2、S3管应遵循先关断后开通的原则,S1、S4及S2、S3门极触发脉冲应有死区时间,因本文重点讨论控制方法,故图中没有画出。

从串联谐振负载的阻抗特性可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化,对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然,脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的,但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态,2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。

igbt逆变器工作原理_igbt在逆变器中的作用

igbt逆变器工作原理_igbt在逆变器中的作用

igbt逆变器工作原理_igbt在逆变器中的作用IGBT(绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。

非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

目前国内缺乏高质量IGBT模块,几乎全部靠进口。

绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。

由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。

IGBT的工作原理和作用通俗易懂版:IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。

IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。

IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。

如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。

IGBT的工作原理和作用电路分析版:IGBT的等效电路如图1所示。

由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

IGBT串联谐振

IGBT串联谐振

IGBT串联谐振淬火、透热、熔炼资料《二》《IGBT串联半桥逆变器吸收电路计算》来自洛阳的感应加热逆变专家技术顾问王世鑫技术支持151电379话97787半桥结构串联谐振逆变电路原理图该电源采用半桥结构串联谐振逆变电路,主电路原理如图3所示。

在大功率IGBT 谐振式逆变电路中,主电路的结构设计十分重要,由于电路中存在引线寄生电感,IGBT开关动作时在电感上激起的浪涌尖峰电压Ldi/dt不可忽视,由于本电源采用的是半桥逆变电路,相对全桥电路来说,将产生比全桥电路更大的di/dt。

正确设计过压保护即缓冲电路,对IGBT的正常工作十分重要。

如果缓冲电路设计不当,将造成缓冲电路损耗增大,会导致电路发热严重,容易损坏元件,不利于长期工作。

过程是:当VT2开通时,随着电流的上升,在线路杂散电感Lm的作用下,使得Uab下降到Vcc-Ldi/dt,此时前一工作周期以被充电到Vcc的缓冲电容C1,通过VT1的反并联二极管VD1、VT2和缓冲电阻R2放电。

在缓冲电路中,流过反并联二极管VD1的瞬时导通电流ID1为流过线路杂散电感电流IL和流过缓冲电容C1的电流IC之和。

即ID1=IL +IC,因此IL和di/dt相对于无缓冲电路要小得多。

当VT1关断时,由于线路杂散电感Lm的作用,使Uce迅速上升,并大于母线电压Vcc,这时缓冲二极管VD1正向偏置,Lm中的储能(LmI2/2)向缓冲电路转移,缓冲电路吸收了贮能,不会造成Uce的明显上升。

缓冲元件的计算与选择式中:f—开关频率;Rtr—开关电流上升时间;IO—最大开关电流;Ucep—瞬态电压峰值。

在缓冲电路的元件选择中,电容要选择耐压较高的电容,二极管最好选择高性能的快恢复二极管,电阻要用无感电阻。

600kwIGBT串联谐振式节能中频电炉主电路的设计

600kwIGBT串联谐振式节能中频电炉主电路的设计

摘要就目前来说,中频感应加热的加热速度快并且控制起来十分方便,已经在诸多行业中得到了广泛的应用。

本文对600kwIGBT串联谐振式节能中频电炉主电路系统进行了设计,主要工作如下:一.高压10kV进线开关柜的设计,高压10kV系统为小电流接地系统,设计过电压和过电流保护,设计电压、电流和电能计量。

二.设计整流电路、滤波电路以及逆变电路,说明其原理。

三.说明元件工作原理和电路设计原理及依据,说明降低谐波和节能原理。

本设计阐述了串联谐振中频感应电炉的主电路整体结构,并且给予了基本电路的理论分析,推导了主电路的计算公式,阐述了经过整流桥和谐振负载改造后优点,完成了逆变电路、整流电路以及电抗器的设计。

目前为止,串联谐振中频电炉仍具有大量的使用空间,使得该课题具有其现实意义。

关键词:感应加热;串联谐振;晶闸管;逆变;整流AbstractFor now, the rate of heating of the medium frequency induction heating, fast and control is very convenient, has been widely used in many industries. This article 600KwIGBT series resonant energy-saving intermediate frequency electric furnace main circuit system design, the main work is as follows:One. The design of high voltage 10KV line switchgear, high voltage 10KV system for small current grounding system, the design of overvoltage and overcurrent protection, design voltage, current and power measurement.Two. The design phase into the 10KV six line rectifier transformer wiring, selection of the rated voltage and the voltage drop, low pressure outlet overvoltage and overcurrent protection, indicating that reducing the harmonic principle.Thire. Description of the components working principle and circuit design principles and basis of the lower harmonics and energy conservation principle.The design described the overall structure of the main circuit, the series resonant medium frequency induction furnace and give a theoretical analysis of the basic circuit, the main circuit is derived formula on the advantages of the transformation after the bridge rectifier and the resonant load inverter circuit is completed, design of the rectifier circuit, reactor, and the line inductance. So far, the series resonant intermediate frequency electric furnace still has a lot of use of space, the subject has its practical significance.Keywords: induction heating; series resonance; thyristor, inverter;rectifier目录摘要 (I)Abstract........................................................................................................................ I I 目录 ......................................................................................................................... I II 第一章概论 .......................................................................................................... - 1 -1.1 选择课题的背景及意义 ............................................................................ - 1 -1.2 串联谐振中频电炉主电路结构的设计 .................................................... - 2 -1.3 该课题的研究目标 .................................................................................... - 3 - 第二章中频电炉的工作原理 .............................................................................. - 4 -2.1 中频电炉的内部结构 ................................................................................ - 4 -2.2 电磁感应原理 ............................................................................................ - 4 -2.3 感应加热效应 ............................................................................................ - 5 -2.3.1集肤效应 ........................................................................................... - 6 -2.3.2邻近效应 ........................................................................................... - 7 -2.3.3端部效应 ........................................................................................... - 8 -2.3.4圆环效应 ........................................................................................... - 8 -2.4 中频电炉负载 ............................................................................................ - 9 -2.4.1负载磁场 ........................................................................................... - 9 -2.4.2负载电阻 ......................................................................................... - 10 -2.4.3负载参数 ......................................................................................... - 11 - 第三章中频电源和小电流接地系统 ................................................................ - 13 -3.1 中频电源系统 .......................................................................................... - 13 -3.2 小电流接地系统 ...................................................................................... - 15 -3.2.1 10kV进线开关柜的选择 ............................................................... - 15 -3.2.2 电压、电流和电能计量 ................................................................ - 17 -3.2.3 10kV线路过电压和过电流保护 ................................................... - 18 - 第四章整流电路 ................................................................................................ - 19 -4.1 中频电源整流电路的条件 ...................................................................... - 19 -4.2 整流电路原理分析 ................................................................................ - 20 -4.3 阻感负载时的工作情况 .......................................................................... - 20 -4.4 十二脉进线消除谐波 .............................................................................. - 22 -4.4.1 串联谐振主电路 ............................................................................ - 22 -4.4.2 谐波分析 ........................................................................................ - 23 -4.5 滤波电路原理分析 .................................................................................. - 23 - 第五章逆变电路 ................................................................................................ - 25 -5.1 中频电源逆变电路的条件 ...................................................................... - 25 -5.2 逆变电路原理分析 .................................................................................. - 25 -5.2.1 串联逆变器原理分析 .................................................................... - 25 -5.2.2 逆变器与谐振负载电路原理分析 ................................................ - 27 -5.3 逆变系统控制电路 .................................................................................. - 28 -5.3.1 调功电路 ........................................................................................ - 28 -5.3.2 压控振荡器 .................................................................................... - 29 - 第六章 IGBT串联谐振式节能中频电炉及其保护 ........................................... - 30 -6.1 IGBT简介................................................................................................. - 30 -6.1.1 IGBT的概念................................................................................... - 30 -6.1.2 IGBT与晶闸管............................................................................... - 30 -6.2 串联中频电炉的节能原理 ...................................................................... - 30 -6.2.1串联谐振与并联谐振的关系 .......................................................... - 30 -6.2.2节能原理 .......................................................................................... - 31 -6.3 中频电炉的保护系统 .............................................................................. - 31 -6.3.1过电流保护 ...................................................................................... - 31 -6.3.2过电压保护 ...................................................................................... - 32 -6.3.3晶闸管保护 ...................................................................................... - 32 - 结论 .................................................................................................................... - 35 - 参考文献 ................................................................................................................ - 36 - 致谢 .................................................................................................................... - 37 - 附录1:串联谐振式中频电炉主电路图 ............................................................. - 38 -附录2:串联谐振式中频电炉设计总图 ............................................................. - 39 -第一章概论1.1 选择课题的背景及意义目前,在先进技术的指引下,我国研制出了串联谐振式的中频感应电源,并且可以提供相当可观的容量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT串联谐振
淬火、透热、熔炼资料《四》
《半桥逆变和全桥逆变的区别》
来自洛阳的感应加热逆变专家
技术顾问:王世鑫
技术支持:151电379话97787
半桥电路与全桥电路的优缺点比较半桥逆变式功率转换主电路的形式如下图所示:
通过时序电路分析两个开关管交替通断时的开关管耐压和变压器原边电压,可知开关管所需耐压为V dc,变压器原边电压为±1/2V dc。

工作波形如下:
全桥逆变功率转换主电路与板桥电路的区别就是,用另外两个同样的开关管代替两只电容,即由4只开关管组成逆变开关电路,同样分析时序电路,可得开关管所需耐压为V dc,变压器原边电压为±V dc。

如下图所示:
了解了两种电路的特性和工作原理,就可以比较其优缺点了。

首先,从电路图上可以很方便的看出一点明显的区别,就是开关管的数量不同。

半桥式电路的开关管数量少,成本也就相应的低。

全桥式电路有4只开关管,需要两组相位相反的驱动脉冲分别控制两对开关管,那就难免导致驱动电路的复杂。

半桥式电路由于只有两只管子,没有同时通断地问题,且其抗不平衡能力强,也就是说对duty
的要求不是很高,所以驱动电路相对于全桥就简单很多。

说到抗不平衡能力,我们可以再看一下原理图,当半桥式电路工作在120VAC时,电容中间的开关闭合,此时主要靠隔直电容C b来解决不平衡的问题。

产生磁通不平衡时,线路中会出现一个直流偏流,当这个直流偏流大到一定程度时就会出现磁通饱和,加了这个隔直电容,就可以使直流电不能通过,以达到抗不平衡的目的。

从另一个方面来说,当没有隔直电容时,会产生磁通不平衡,也就是铁心中会有剩磁出现,磁通不能恢复到零,剩磁积累到一定程度导致铁心饱和。

而加了这个电容,当变压器线圈续流能量过多时,就会给C b充电(C1、C2两端电压一定,所以可吸收的能量也一定),使多余的能量不会储存在线圈里,形成剩磁,从而解决磁通不平衡的问题。

在这个时候,全桥与半桥的工作原理就很相似。

当半桥电路工作在220VAC状态时,就不需要隔直电容的存在了。

因为此时两个滤波电容中点的电压是浮动的,它可以自动对两边的电路进行调节,以达到平衡。

当在某一周期,电感续流给C2充电时,能量过多,C2两端电压就会偏高一点,本来会产生剩磁的能量就储存在电容内了,同时C1两端电压会相应偏低一点,下一个周期C2放电时,由于duty不变,就不会把多余的能量全部释放掉,也就是说,C2两端的电压仍会比正常值偏高一点,但已经没有高那么多了,接着是C1放电,由于它的电压比正常值偏低,释放的能量也会少一些,继续使C2两端电压降低,直至达到一个新的平衡。

简单的说就是两个电容把变压器内多余的能量自动进行分配,直至平衡,而不产生剩磁。

半桥和全桥电路的适用场合也不相同。

我们可以先看一下变压器原边的电压波形,半桥式电路变压器原边电压为±1/2V dc,而全桥式电路变压器原边电压为±V dc。

P=V原边*I输入,要想输出相同的功率,半桥式电路的输入电流就要是全桥式电路的2倍;换句话说,如果他们的开关电流一样,电源输入电压也相等,半桥式的输出功率将是全桥式的一半。

因此,半桥式电路不适用于大功率的逆变电路。

而且,由于其输入电压电流的不同,变压器的设计上也存在一定的区别,半桥式电路变压器原边线径要粗一些,全桥式电路的原边线圈匝数则要相对多一些。

半桥式电路和全桥式电路与其他电路相比还有一个共同的优点,就是他们都不需要泄放电阻,漏感中储存的能量会直接回馈给BUS。

电路的效率就相对较高。

以上是我们小组对半桥式电路和全桥式电路各方面差异点的比较,归纳起来,如下表所示,希望能够对您电路的选用有所帮助:项目半桥式电路全桥式电路
主开关管数量2个4个
驱动电路简单复杂
相同I c时P o一倍两倍
相同P o时I c两倍一倍
变压器原边线圈线径较粗圈数较多
抗不平衡能力强差
输入滤波电容2组1组
泄放回路不需泄放电阻。

相关文档
最新文档