工业锅炉控制系统设计

合集下载

锅炉温度PID控制系统设计

锅炉温度PID控制系统设计

第1章绪论1.1课题背景根据国内实际情况和环保问题的考虑和要求,燃烧锅炉由于污染并效率不高,已经逐渐被淘汰;燃油和燃气锅炉也存在着燃料供应不方便和安全性等问题。

因些在人口密集的居民区、旅馆、医院和学校,电加热锅炉完全替代燃煤、燃油、燃气锅炉。

自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国内外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪表,并在各行广泛应用。

电加热锅炉采用全新加热方式,它具有许多优点,使其比其他形式的锅炉更具有吸引力:(1) 无污染。

不会排放出有害气体、飞尘、灰渣,完全符合环保方面的要求。

(2) 能量转化效率高。

加热元件直接与水接触,能量转换效率很高,可达95%以上。

(3) 锅炉本体结构简单,安全性好。

不需要布管路,没有燃烧室、烟道,不会出现燃煤、燃油、燃气的泄漏和爆炸危险。

(4) 结构简单、体积小、重量轻,占地面积小。

(5) 启动、停止速度快,运行负荷调节范围大,调节速度快,操作简单。

由于加热元件工作由外部电气开关控制,所以启停速度快。

(6) 可采用计算机监控,完全实现自动化。

其温度的控制都能通过微控制芯片完成,使锅炉的运行完全实现自动化,最大程度地将控制器应用于传统的锅炉行业。

本课题主要研究锅炉温度的过程控制。

新型锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。

加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。

电热锅炉目前主要用于供暖和提供生活用水。

主要是控制水的温度,保证恒温供水。

随着计算机和信息技术的高速发展,单片机广泛的应用于工业控制中。

工业控制也越来越多的采用计算机控制,在这里我们采用51系列单片机来做控制器。

锅炉DCS控制系统的设计与实现

锅炉DCS控制系统的设计与实现

科学与财富1、概述锅炉是工业生产中重要的动力来源,随着生产的发展,锅炉日益广泛的用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。

在现代化的建设中,能源的需求是非常大的,然而我国的能延龄使用率极低,所以实现锅炉的自动控制以提高其热效率,有着极为重要的实际意义[1]。

在本设计中,针对35T/H 燃煤锅炉控制要求,利用SIMATIC PCS 7进行其DCS 系统设计。

该设计包括DCS 系统的硬件配置及其组态,上位机的人机监控画面组态与动态模拟以及下位机的控制方案组态和模拟运行。

2、35T/H 燃煤锅炉DCS 系统现场仪表的选型本设计中的35T/H 燃煤锅炉控制系统的一次仪表选型具体如表1所示。

3、35T/H 燃煤锅炉DCS 系统的软硬件配置根据DCS 系统结构特点和实际的35T/H 燃煤锅炉控制要求,35T/H燃煤锅炉DCS 由一个工程师站、一个操作员站、一个PLC 站,两个远程I/O 站构成,其结构如图1所示。

其中,网络采用PROFIBUS-DP 和以太网两级网络。

PROFIBUS-DP 用于用于现场层的高速数据传送,以太网用于PLC 与操作员站和工程师站之间的数据传输。

4、燃煤锅炉控制系统软件设计本设计的软件设计是基于PCS7-WinCC V6.0的上位监控画面组态,根据锅炉控制工艺流程开始进行组态画面的设计,在画面中,使用了静态文本、输入输出域、画面窗口、按钮、控件和库,运行后如图2所示。

下位控制组态基于PCS7-Step7。

图2过程画面运行效果图5、结束语在本次设计中,完成了35T/H 燃煤锅炉的DCS 设计,通过仿真软件的模拟仿真与多次调试,系统的各项功能都达到了预期的目标,较好的满足了35T/H 燃煤锅炉的控制要求。

姻锅炉DCS 控制系统的设计与实现滕天杰(江西工程学院,江西省新余市338000)摘要:锅炉是工业生产过程中必不可少的重要动力设备,在企业生产中起着非常重要的作用。

锅炉供热控制系统设计

锅炉供热控制系统设计

1 引言1.1 系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。

因此,在工业生产和家居生活过程中常需对温度进行检测和监控。

由于许多实践现场对温度的影响是多方面的,使得温度的控制比较复杂,传统的加热炉电气控制系统普遍采用继电器控制技术,由于采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电多,效率不高且易出故障,不能保证正常的工业生产。

随着计算机控制技术的发展,传统继电器控制技术必然被基于计算机技术而产生PLC控制技术所取代。

而PLC 本身优异的性能使基于PLC控制的温度控制系统变的经济高效稳定且维护方便。

这种温度控制系统对改造传统的继电器控制系统有普遍性意义。

通过本设计可以熟悉并掌握西门子S7-300PLC的原理与功能以及它的编程语言,以自动控制理论为指导思想,解决工业生产及生活中温度控制的问题。

1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。

PLC主控系统图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。

既加热炉温度控制得到实现。

其中PLC主控系统为加热炉温度控制系统的核心部分起着重要作用。

1.3 系统组成本系统的结构框图如图2-3所示。

由图1-2可知,温度传感器采集到数据后送给S7-300PLC,S7-300PLC通过运算后给固态继电器一个控制信号从而控制加热炉的导通与否。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

基于PLC和组态软件的工业锅炉监控系统的设计

基于PLC和组态软件的工业锅炉监控系统的设计

基于PLC和组态软件的工业锅炉监控系统的设计引言工业锅炉作为工厂的核心设备之一,在工艺生产中起着至关重要的作用。

为了确保工业锅炉的安全运行和有效监控,需要一套可靠的监控系统来实时采集、传输和分析工业锅炉的各项数据。

本文将介绍一种基于PLC(可编程逻辑控制器)和组态软件的工业锅炉监控系统的设计。

设计目标设计目标是实现对工业锅炉的实时监控和数据采集,能够准确获取温度、压力、流量等关键参数,并具备报警功能,以便快速响应异常情况,保证工业锅炉的正常运行。

系统组成PLCPLC是本监控系统的核心控制单元,负责实时采集锅炉的各项数据、控制锅炉的运行以及与组态软件的通信。

PLC采用了可编程的逻辑控制程序,能够根据预设的逻辑条件,自动进行运算、判断和控制。

同时,PLC具备硬件可靠性高、抗干扰能力强等优点,非常适合工业环境下的应用。

为了获取锅炉的各项数据,需要安装相应的传感器。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

这些传感器将实时监测锅炉的工作状态,将获取的数据传输给PLC进行处理和分析。

组态软件组态软件是工业锅炉监控系统的操作界面,用户通过组态软件可以实时查看锅炉的运行状态、参数曲线图和报警信息等。

组态软件支持图形化配置和数据可视化的功能,使得用户可以方便地操作和管理锅炉监控系统。

系统实现数据采集锅炉的各项参数数据通过传感器实时采集到PLC中。

PLC将采集到的数据进行处理和分析,并将处理后的数据传输给组态软件进行显示。

数据采集过程中需要注意数据的准确性和实时性,确保监控系统能够准确反映锅炉的状态。

控制策略PLC作为控制单元,根据预先设定的控制策略,实现对锅炉的精确控制。

根据不同的工艺需求和运行状态,可以设定不同的控制参数,如温度、压力设定值等。

PLC根据设定值和实际值之间的差异,调整锅炉的工作状态,确保锅炉能够稳定运行。

监控系统应具备报警功能,能够及时发现并响应异常情况。

当锅炉的参数超出预设的安全范围时,PLC将通过组态软件发送报警信息,提醒操作人员采取相应的措施。

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。

关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。

提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。

工业锅炉温度控制系统设计与实现

工业锅炉温度控制系统设计与实现

工业锅炉温度控制系统设计与实现摘要:工业锅炉是工业生产中利用率非常高的设备之一,它对一次能源的消耗非常大,特别是煤炭资源,但是目前仍然存在煤质不均一、控制操作不及时等问题,使得燃煤时热效率低、但煤耗率却居高不下,所以如何提高工业锅炉的工作效率是一项亟待解决的问题,这其中,热蒸汽温度是一个十分重要的参数,如何控制工业锅炉的热蒸汽温度保持在既能安全运行又能保证较高利用率的一定范围内,是工业锅炉是否安全经济运行的一项重要任务。

关键词:工业锅炉;温度控制;系统设计1 前言温度控制系统很多是通过PWM方式控制执行器件、调功的方式调节来控制温度、利用直接数字控制中的最小拍控制、或者基于单片机和PC机设计的温度控制系统,还有的以MCGS组态运行系统作为上位机监控系统。

本文根据工业锅炉的运行特点及环境条件,采用最简单最基本的单回路控制,并结合西门子下位机和智能仪表的应用,既能实现数据的实时传输处理,又能跟踪到系统的状态对其进行智能调节。

2 系统方案设计2.1 系统方案设计过程控制系统通常是指工业生产中具有连续生产过程自动控制、由过程检测和控制仪表组成、被控过程多样这些特点的自动控制系统。

过程控制的设计方案十分丰富,单回路控制就是其中之一,如图1所示。

图1中,W为调节器传函,W为调节阀传函,W为被控过程传函,W为测量变送器传函。

从图1可见,该系统只有一个闭环回路,一般是一个对象对另一个对象的调节控制过程,为了防止被控量的参数值不断变化或者该参数值在一个小范围内波动,中间利用传感器对被控量进行调节控制。

这种控制系统得结构简洁明了、易于调节,且成本较低方便投入运行,并能满足大部分工业生产的需求,特别适用于纯滞后和惯性小的系统,本系统就采用这种控制方式。

综合上述原理和控制方式,可获得本系统设计的控制流程如图2所示。

如果测量的实时热蒸汽温度值在设定温度范围内,那么系统处于一种动态平衡状态,水泵的电动阀门就不动。

等到过了一段时间炉膛燃料的燃烧温度发生变化,那时工业锅炉的热蒸汽温度也会随之变化,造成了它的实时测量值与设定范围之间产生了一定的偏差,偏差信号送回给智能仪表,经过它的计算、判断后,产生信号,使水泵的电动阀门适当调节开合程度,减少或加大水泵的水流量,直到再次检测到热蒸汽温度值恢复于设定范围中,那么系统就再次回到了特定的平衡状态,水泵电动阀门再次暂停工作。

锅炉自动控制系统的设计与调试

锅炉自动控制系统的设计与调试

锅炉自动控制系统的设计与调试锅炉自动控制系统是现代工业中常见的关键设备之一,它能够确保锅炉能够高效、安全地运行。

设计和调试这样一个复杂的系统需要综合考虑多个因素,包括控制策略、传感器选择、控制器配置等等。

本文将深入探讨锅炉自动控制系统的设计与调试过程。

首先,设计一个合理的控制策略是锅炉自动控制系统的关键。

常见的控制策略包括比例控制、比例积分控制、模糊控制和模型预测控制等。

在选择控制策略时,需要考虑锅炉的特性、工艺要求以及可用的控制器等因素。

比例控制是最简单的控制策略,它根据当前错误信号的大小来控制执行机构输出。

比例积分控制在比例控制的基础上增加了积分部分,用于消除静态偏差。

模糊控制则通过模糊规则和模糊集合来实现控制,它能够应对非线性系统。

模型预测控制基于数学模型预测未来的系统行为,并制定最优的控制策略。

根据具体的需求和实际情况选择合适的控制策略非常重要。

其次,选择合适的传感器对于控制系统的稳定性和精确度来说也至关重要。

常用的锅炉传感器包括压力传感器、温度传感器、流量传感器等。

压力传感器用于监测锅炉内部压力的变化,温度传感器则用于测量锅炉内部温度的变化。

流量传感器可用于测量锅炉进出口的流量,以便精确控制水的供给。

传感器的选择需要考虑其精确度、响应速度和适应环境等因素。

同时,还需要考虑传感器与控制器之间的数据传输方式,如4-20mA信号或数字信号等,以确保数据准确传递。

控制器的配置也是锅炉自动控制系统设计中不可忽视的一环。

现代控制器提供了更多的功能和选项,如PID参数调整、通信接口、报警功能等。

PID控制器是最常见的控制器类型,通过调整比例、积分和微分参数来实现控制。

在配置PID控制器时,需要首先根据实际情况调整比例、积分和微分参数,以达到理想的控制效果。

另外,现代控制器通常具有通信接口,可以与上位机或网络连接,以实现远程监控和数据采集。

此外,控制器还应具备相应的报警功能,在发生异常情况时及时报警,保障安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业锅炉控制方案设计学生学号:******** 学生姓名:***专业班级:自动化12102班指导老师:***目录引言 (4)1文献综述 (5)1.1锅炉的基本构造 (5)1.2锅炉的工作原理及过程 (6)1.2.1燃料的燃烧过程 (7)1.2.2水的汽化过程 (7)1.2.3烟气向水的传热过程 (7)2总体方案设计 (9)2.1蒸汽温度控制系统 (9)2.2蒸汽压力控制系统 (9)2.3汽包液位控制系统 (10)2.4炉膛负压控制系统 (11)2.5报警系统 (11)3具体方案实施 (13)3.1控制系统的硬件选型 (13)3.1.1传感器的选型 (13)3.1.2变送器 (14)3.1.3常规控制器的控制规律及其选择 (14)3.1.4变频器 (14)3.1.5测速发电机 (15)3.1.6计算机控制模块 (15)3.1.7控制系统具体选型 (15)具体选型见表3.1和表3.2所示。

(15)3.2硬件组成 (20)3.3软件组成 (21)3.4控制台 (21)参考文献 (23)引言锅炉是国民经济中主要的供热设备之一。

电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。

各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。

锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。

为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。

供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。

随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。

在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。

此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。

锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。

工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。

因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。

用微机进行控制是一件具有深远意义的工作。

本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

1文献综述在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。

要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。

1.1锅炉的基本构造锅炉是一种产生蒸汽或热水的热交换设备。

它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。

所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。

图1.1为简单锅炉的大体组成部分。

锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。

气锅:由上下锅筒和三簇沸水管组成。

水在管内受管外烟气加热,因而管簇内发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。

炉子:是使燃烧从充分燃烧并释放出热量的设备。

炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。

锅筒:使自然循环锅炉各受热面能适应负荷变化的设备。

(须指出,直流锅炉内无锅筒。

)水冷壁:主要是辐射受热面,保护炉壁的作用。

过热器:是将气锅所产生的饱和蒸汽继续加热为过热蒸汽的换热器。

过热器一般都装在炉膛出口。

省煤器:是利用余热加热锅炉给水,以降低排出烟气温度的换热器。

采用省煤器后,降低了排烟温度,提高了锅炉效率,节省了燃料。

同时,由于提高了进入气包的给水温度,减少了因温差而引起的汽包壁的热适应力,从而延长了汽包的使用寿命。

燃烧设备:将燃料和燃烧所需的空气送入炉膛并使燃料着火稳定,充分燃烧。

引风设备:包括引风机、烟道和烟囱等几部分。

用它将锅炉中的烟气连续排出。

送风设备:包括有鼓风机和分道组成。

用它来供应燃料所需的空气。

给水设备:由水泵和给水管组成。

空气预热器:是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气,是一个换热器。

省煤器出口烟温度高,装上空气预热器后,可以进一步降低排烟温度,也可改善燃料着火和燃烧条件,降低不完全燃烧所造成的损失,提高锅炉机组的效率。

水处理设备:其作用是为清除水中的杂质和降低给水硬度,以防止在锅炉受热面上结水垢或腐蚀。

燃料供给设备:由运煤设备、原煤仓和储煤斗等设备组成,保证锅炉所需燃料供应。

除灰除尘设备:是收集锅炉灰渣并运往储灰场地的设备。

此外,除了保证锅炉的正常工作和安全,蒸汽锅炉还必须装设安全阀、水位表、高低水位报警器、压力表、主气阀、排污阀和止污阀等,还有用来消除受热面上积灰的吹灰器,以提高锅炉运行的经济性,本设计由于篇幅其间,则就不必考虑这些问题了。

锅炉引风机图1.1 锅炉控制系统硬件组成图1.2锅炉的工作原理及过程锅炉是一种生产蒸汽的换热设备。

它通过煤油或燃气等燃料的燃烧释放出化学能,并通过传热过程将能量传递给水,使水转变为蒸汽,蒸汽,蒸汽直接供给工业生产中所需的热能,或通过蒸汽动力机能转变为机能,或通过汽轮发电机转变为电能。

所以锅炉的中心任务是把燃料中的化学能最有效地转变为蒸汽的热能。

因此,近代锅炉亦称为蒸汽发生器。

锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程、水的汽化过程、烟气向水的传热过程。

1.2.1燃料的燃烧过程首先将燃料(这里用煤)加到煤斗中,借助于重力下落在炉排面上,炉排接电动机通过变速齿轮箱减速后由链轮来带动,将燃料煤带入炉内。

燃料一面燃烧,一面向后移动,燃料所需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃料反应形成高温烟气。

燃料燃烧剩下的灰渣,在炉排末端翻过除渣板后排入灰斗,(若是燃气式锅炉就没有这一部分了)这整个过程称为燃烧过程。

1.2.2水的汽化过程水的汽化过程就是蒸汽的产生过程,主要包括水循环和水分离过程。

经处理的水由泵加压,先流经省煤器而得到预热,然后进入气锅。

锅炉工作时气锅的工作介质是处于饱和状态的汽水混合物。

位于烟温较低区段的对流灌束,因受热较弱,汽水工质的容量较大,而位于烟温较高区段的对流管束,因受热强烈,相应的汽水工质的容量较小,从而量大的工质则向上流入下锅筒,而容量小的工质则向上流入上锅筒,形成了锅水的自然循环。

蒸汽所产生的过程是借助于上锅筒内设的汽水分离装置。

以及在锅筒本身空间的重力分离力作用,使汽水混合物得到分离。

蒸汽在上锅筒顶部引出后,进入蒸汽过热气,而分离下来的水仍回到上锅筒下半部的水中。

锅炉中的水循环,也保证与高温烟气相接触的金属受热面的以冷却而不被烧坏,是锅炉能长期安全运行的必要条件。

而汽水混合物的分离设备则是保证蒸汽品质和蒸汽过热可靠工作的必要的设备。

1.2.3烟气向水的传热过程由于燃料的燃烧放热,炉内温度很高在炉膛的四周墙面上,都布置一排水管,俗称水冷壁。

高温烟气与水冷壁进行强烈的辐射换热,将热量传给管内工质水。

继而烟气受引风机和烟囱的引力而向炉膛上方流动。

烟气从炉膛出口掠过防渣管后,就冲刷蒸汽过热器——一组垂直放置的蛇型管受热面,使气锅中产生的饱和蒸汽在其中受烟气加热而得到的过热。

烟气流经过过热气后掠过胀接在上、下锅筒间的对流管束,在管束间设置了折烟墙使烟气呈“S”型曲折地横向冲刷,再次以对流换热的方式将热量传递给管束的工质。

沿途逐渐降低温度的烟气最后进入尾部烟道,与省煤器和空气预热器内的工质进行热交换后,以经济的较低的烟温排出锅炉。

省煤器实际上同给水预热器和空气预热器一样,都设置在锅炉尾部(低温)烟道,以降低排烟温度提高锅炉效率,从而节省了燃料。

以上就是一般锅炉工水的过程,一个锅炉进行工作,其主要任务是:(1)要是锅炉出口蒸汽压力稳定。

(2)保证燃烧过程的经济性。

(3)保持锅炉负压恒定。

通常我们是炉膛负压保持在微负压(-10~80Pa)。

为了完成上述三项任务,我们对三个量进行控制:燃料量,送风量,引风量。

从而使锅炉能正常运行。

1.3难点分析由于调量是汽包水位,而调节量则是给水流量,通过对给水流量的调节,使汽包内部的物料达到动态平衡,变化在允许范围之内,虽然锅炉汽包水位对蒸气流量和给水流量变化的响应呈积极特性,但是在负荷(蒸气流量)急剧增加时,表现却类似逆响应特性,即所谓的虚假水位。

造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。

汽包水位控制系统,实质上是维持锅炉进出水量平衡的系统。

它是以水位作为水量平衡与否的控制指标,通过调整进水量的多少来达到进出平衡,将汽包水位维持在汽水分离界面最大的汽包中位线附近,以提高锅炉的蒸发效率,保证生产安全。

由于锅炉水位系统是一个设有自平衡能力的被控对象,运行中存在虚假水位现象,实际应用中可根据情况采用水位单冲量、水位蒸汽量双冲量和水位、蒸汽量、给水量三冲量的控制系统。

2总体方案设计锅炉系统是一个复杂的多变量耦合系统。

根据主控变量可将锅炉系统分为蒸汽温度控制系统、蒸汽压力控制系统、汽包液位控制系统以及炉膛负压控制系统。

下面分别对这几个子系统的设计进行详细的介绍。

2.1蒸汽温度控制系统因为锅炉的运行环境不可能是理想的状态,蒸汽的温度总是会受到某些干扰的影响,所以必学对蒸汽的温度加以控制,以在一定范围内得到温度相对恒定的蒸汽。

影响蒸汽温度的主要因素是给煤量以及空煤比,所以我们采用了串级比值控制系统分别控制给煤量以及给风量。

另外,影响蒸汽温度的因素还有给水量、蒸发量以及引风量等,又考虑到了控制系统相应的快速性,我们又将给水量和蒸发量作为蒸汽温度控制的前馈量构成前馈控制系统。

即采用前馈比值串级控制系统对蒸汽温度进行控制,其控制系统的结构框图见图2.1所示。

图2.1 蒸汽温度控制系统结构框图2.2蒸汽压力控制系统如果过来内压力过低,将会降低蒸汽质量;反之,如果锅炉内压力过高,有可能导致爆炸等安全事故的发生。

所以必须保证锅炉的压力处于一个适中的范围内,即必须对锅炉压力加以控制。

相关文档
最新文档