【必考题】九年级数学上期中一模试题带答案(2)
【浙教版】九年级数学上期中一模试卷(含答案)

一、选择题1.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是( ) A .14B .13C .512D .122.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( ) A .13B .49C .59D .233.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( ) A .24个 B .10个C .9个D .4个4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为( ) A .13B .14C .16D .1365.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 6.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .20187.将4个数a ,b ,c ,d 排成2行,2列,两边各加一条竖直线记成a b c d,定义a b ad bc c d=-,上述记号就叫做2阶行列式.若21171x x x +-=+,则x 的值为( )A .±2B .10C .±4D .28.定义运算:x *y =x 2y ﹣2xy ﹣1,例如4*2=42×2﹣2×4×2﹣1=15,则方程x *1=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .只有一个实数根9.如图,边长为2+边长为( )A .0.5B .22C .1D .210.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .10311.□ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,可推出□ABCD 是菱形,那么这个条件可以是( ) A .AB=CDB .AC=BDC .AC ⊥BDD .AB ⊥BD12.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒二、填空题13.有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张放回记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为 ____ .14.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.15.若关于x 的一元二次方程x 2﹣3x +c =0有一个根是2,则另一根是_____. 16.已知关于x 的一元二次方程22(1)210k x x k --+-=有一个根为0,则k =________.17.某兴趣班的同学在元旦节期间每个同学用手机给班级其他同学各发一条短信问候节日快乐.如果全班同学共发出短信90条,那么该兴趣班共有____人.18.如图,四边形ABCD是正方形,AB=1,以AB为对角线作第二个正方形AEBF,以EB 为对角线作第三个正方形EGBH,以此类推,则第n个正方形的面积是_______ .19.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为_______________.20.如图,正方形ABCD的边长为8,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是_____.三、解答题21.小明和小华想利用抽取扑克牌游戏决定谁去参加市里举办的“创建全国文明城市,争做文明学生”的演讲比赛,游戏规则是:将4张除了数字2、3、4、5不同外,其余均相同的扑克牌,数字朝下随机平铺于桌面,一人先从中随机取出1张,另一人再从剩下的3张扑克牌中随机取出一张,若取出的2张扑克牌上数字和为偶数,则小明去参赛,否则小华去参赛.(1)用列表法或画树状图法,求小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.22.明明是一个集邮爱好者,正值2021年辛丑牛年来临之际,明明收集了自己感兴趣的4张牛邮票(除正面内容不同外,其余均相同),现将这四张邮票背面朝上洗匀放好.(1)明明从中随机地抽取一张邮票是8分的概率是 ;(2)明明从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,请你用列表或画树状图的方法求抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率(这四张邮票分别用字母A ,B ,C ,D 表示).23.已知关于x 的一元二次方程2410x x m -++=有实数根. (1)若1是方程的一个根,求出一元二次方程的另一根; (2)若方程的两个实数根为1x ,2x ,且1211+x x =3,求m 的值. 24.一商店销售某种商品,平均每天可售出12件,每件盈利20元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于15元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若每件商品降价2元,则平均每天盈利多少元? (2)当每件商品降价多少元时,该商店每天的盈利为320元?25.如图,四边形OABC 是一张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,5OC =,点E 在边BC 上,点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为OE . (1)求点G 的坐标,并求直线OG 的解析式;(2)若直线:l y mx n =+平行于直线OG ,且与长方形ABMN 有公共点,请直接写出n 的取值范围.(3)设点P 为x 轴上的点,是否存在这样的点P ,使得以,,P O G 为顶点的三角形为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.26.如图在Rt ABC △中,AB AC =,90BAC ∠=︒,O 为BC 的中点.(1)写出点O 到ABC 的三个顶点A 、B 、C 的距离的大小关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN BM =,请判断OMN 的形状,并证明你的结论.(3)当点M 、N 分别在AB 、AC 上运动时,四边形AMON 的面积是否发生变化?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页, ∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123=. 故选:B . 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2.C解析:C【分析】画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,所以两人中至少有一个给“好评”的概率=59.故选C.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.3.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比5.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k2≠0,且△=b2-4ac≥0,建立关于k的不等式组,求出k的取值范围.【详解】解:由题意知,k2≠0,且△=b2-4ac=(2k+1)2-4k2=4k+1≥0.解得k≥-14且k≠0.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.B解析:B【分析】利用一元二次方程根的定义,代入变形计算即可.【详解】∵x m =是方程210x x +-=的根, ∴210m m +-=, ∴21m m +=, ∴22020m m ++=2021, 故选B . 【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.7.A解析:A 【分析】直接利用已知将原式变形进而解方程得出答案. 【详解】解:由题意可得:21171x x x +-=+, 则(x+1)2-2(x-1)=7, 解得:x=±2. 故选:A . 【点睛】此题主要考查了解一元二次方程,正确将原式变形是解题关键.8.A解析:A 【分析】先转换成一元二次方程,再用根的判别式判断即可. 【详解】解:根据题意,方程x *1=0为:2210x x --=, ∵2(2)4(1)8∆=--⨯-=>0, ∴方程有两个不相等的实数根; 故选:A . 【点睛】本题考查了新定义运算和一元二次方程的根的判别式,解题关键是理解题意,把方程转化为一元二次方程,再用根的判别式判断.9.D解析:D 【分析】设正八边形的边长为x ,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可. 【详解】解:设正八边形的边长为x x,∵正方形的边长为2+,∴+=+2x+x x解得:x=∴故选:D【点睛】本题考查了正方形的性质,等腰直角三角形的性质,读懂题目信息,根据正方形的边长列出方程是解题的关键.10.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,8BF===,∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=8,3∴EC=8.3故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.11.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt△ABE中,∠ABE=90°-∠AEB=26°.故选D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】先画树状图展示所有12种等可能的结果数再找出两次都为红桃并且数字之和不小于8的结果数然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数其中两次都为红桃并且数字之和不小于8的解析:38【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为6,所以两次都为红桃,并且数字之和不小于8的概率=63= 168.故答案为38.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.15.【分析】利用一元二次方程根与系数关系可直接求得另一根【详解】解:设关于x的一元二次方程x2﹣3x+c=0的另一根为a根据根与系数关系可得a+2=3解得a=1;故答案为:1【点睛】本题考查了一元二次方解析:【分析】利用一元二次方程根与系数关系可直接求得另一根.【详解】解:设关于x的一元二次方程x2﹣3x+c=0的另一根为a,根据根与系数关系可得,a+2=3,解得,a=1;故答案为:1.【点睛】本题考查了一元二次方程根与系数关系,解题关键是熟知一元二次方程两根之和等于b a-. 16.-1【分析】先根据一元二次方程的解的意义把x=0代入方程求出k=1或-1然后根据一元二次方程的定义确定k 的值【详解】解:把x=0代入方程得k2-1=0解得k=1或k=-1而k-1≠0所以k=-1故答解析:-1 【分析】先根据一元二次方程的解的意义把x=0代入方程求出k=1或-1,然后根据一元二次方程的定义确定k 的值. 【详解】解:把x=0代入方程得k 2-1=0,解得k=1或k=-1, 而k-1≠0, 所以k=-1. 故答案为:-1. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.17.10【分析】设该班级共有同学名互相发短信每两个人之间产生2条短信根据共发出90条短信可得方程然后求解即可【详解】解:设该班级共有同学名根据题意得:解之得:故答案为:10【点睛】本题考查了由实际问题抽解析:10 【分析】设该班级共有同学n 名,互相发短信,每两个人之间产生2条短信,根据共发出90条短信可得方程,然后求解即可. 【详解】解:设该班级共有同学n 名, 根据题意,得:(1)90n n ,解之得:10n = 故答案为:10. 【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.18.【分析】由正方形ABCD 的边长为1求出分别算出第二个第三个正方形的面积即可推导得出答案;【详解】∵正方形ABCD 的边长为1∴∴∴∴故答案是:【点睛】本题主要考查了正方形的性质准确分析计算是解题的关键 解析:112n -【分析】由正方形ABCD 的边长为1,求出122AE AF AC ===,1122AH AB ==,分别算出第二个、第三个正方形的面积,即可推导得出答案; 【详解】∵正方形ABCD 的边长为1, ∴1AB =,AC =∴12AE AF AC ===, 1122AH AB ==,∴1正方形=1ABCD S S =,2正方形12AEBF S S ==⨯=, 3正方形111224HEGB S S ==⨯=, ⋯,∴112n n S -=. 故答案是:112n - 【点睛】本题主要考查了正方形的性质,准确分析计算是解题的关键.19.【分析】先证四边形BGDH 为平行四边形再证BG=BH 然后由勾股定理求B G四边形BGDH 的周长=4BH 即可【详解】由题意得矩形矩形∴四边形是平行四边形∴平行四边形的面积∴四边形是菱形设则在中由勾股定理解析:34011【分析】先证四边形BGDH 为平行四边形,再证BG=BH ,然后由勾股定理求B G,四边形BGDH 的周长=4BH 即可. 【详解】由题意得矩形ABCD ≌矩形BEDF ,90,7,//,//,11A AB BE AD BC BF DE AD ︒∴∠====,∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⋅=⋅,BG BH ∴=,∴四边形BGDH 是菱形, BH DH DG BG ∴===.设BH DH x ==,则11AH x =-.在Rt ABH △中,由勾股定理得2227(11)x x +-=, 解得85,11x =8511BG ∴=, ∴四边形BGDH 的周长340411BG ==. 【点睛】本题考查四边形的周长问题,关键是证四边形BGDH 为菱形,用勾股定理求BH ,掌握矩形的性质,菱形的性质与判定,会用勾股定理解决问题.20.4【分析】要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解【详解】解:如图连接AE ∵点C 关于BD 的对称点为点A ∴PE+PC =PE+AP 根据两点之间线段最解析:45 【分析】要求PE +PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解. 【详解】解:如图,连接AE ,∵点C 关于BD 的对称点为点A , ∴PE +PC =PE +AP ,根据两点之间线段最短可得AE 就是AP +PE 的最小值, ∵正方形ABCD 的边长为8,E 是BC 边的中点, ∴BE =4,∴AE 224845=+=, 故答案为:45.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE 就是AP +PE 的最小值是解题关键.三、解答题21.(1)13;(2)不公平,理由见解析【分析】(1)先列出表格,展示出所有等可能的结果,数出符合条件的结果数,利用概率公式,即可求解;(2)分别求出小明和小华去参赛的概率,进而即可求解.【详解】解:(1)列表如下P∴(小明参赛)41 123 ==;(2)游戏不公平,理由:P(小明参赛)13 =,P∴(小华参赛)12133 =-=,1233≠,∴这个游戏不公平.【点睛】本题主要考查概率和游戏的公平性,掌握列树状图和列表格展示等可能的结果,是解题的关键.22.(1)12;(2)抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率16=.【分析】(1)根据概率公式直接计算可得;(2)列树状图表示所有可能出现的情况,确定抽到的两张邮票恰好是“4分邮票”和“10分邮票”的次数,根据概率公式计算即可.【详解】(1)随机地抽取一张邮票是8分的概率是24=12, 故答案为:12; (2)画树状图如图所示:由图可知,共有12种等可能的结果数,其中恰好是“4分邮票”和“10分邮票”的结果数有2种,∴抽到的两张邮票恰好是“4分邮票”和“10分邮票”的概率21126==. 【点睛】此题考查概率的计算公式,列举法求事件的概率,正确理解题意画出树状图是解题的关键.23.(1)3;(2)13. 【分析】(1)设方程的另一个根为α,选择合适计算方式,利用根与系数关系定理求解即可; (2)利用根与系数关系定理和根的判别式求解即可. 【详解】解:(1)∵1是关于x 的一元二次方程2410x x m -++=的一个根, ∴设α是关于x 的一元二次方程2410x x m -++=的另一个根, ∴1+α=4, ∴α=3,∴关于x 的一元二次方程2410x x m -++=的另一个根是3; (2)∵12,x x 是方程2410x x m -++=的两个实数根, ∴=16-4(1)0m ∆+≥, ∴3m ≤, 又∵1211+x x =3 而124x x +=且121x x m =+,∴1211+x x =1212431x x x x m +==+, ∴13m =<3,∴m 的值是13. 【点睛】本题考查了根与系数的关系定理的解题应用,根的判别式的应用,熟练掌握根与系数关系定理并灵活应用是解题的关键. 24.(1)288元;(2)4元 【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件);(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可. 【详解】解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元, 则平均每天可多售出2×2=4(件),即平均每天销售数量12+4=16(件), 利润为:18×16=288, ∴平均每天盈利288元;(2)设每件商品降价x 元时,该商品每天的销售利润为320元, 由题意得:(20-x )(12+2x )=320, 整理得:x 2-14x+40=0, ∴(x-4)(x-10)=0, ∴x 1=4,x 2=10, ∵每件盈利不少于15元, ∴x 2=10应舍去.答:每件商品降价4元时,该商品每天的销售利润为320元. 【点睛】本题考查了一元二次方程在商品利润问题中的应用,明确商品平均每天售出的件数乘以每件盈利等于每天销售这种商品利润是解决本题的关键. 25.(1)G 的坐标为(3,4),直线OG 的解析式为43y x =;(2)2013n -;(3)P 的坐标为(5,0)或(50)-,或(6,0)或25,06⎛⎫⎪⎝⎭【分析】(1)由图形折叠的不变性可得OG 的长度,从而可求NG 的长度,可得G 的坐标;利用待定系数法代入G 的坐标,可得直线OG 的解析式(2)结合图形,分别求出直线过点M 、A 时n 的值,可得n 的取值范围 (3)依据等腰三角形性质的定义,将两腰相等的情况分为三类,分别求解即可 【详解】解:(1)由折叠的性质可知,5OG OC ==,由勾股定理得,4GN ==,∴点G 的坐标为(3,4) 设直线OG 的解析式为y kx = 将(3,4)G 代入y kx =,得43k = ∴直线OG 的解析式为43y x =. (2)∵直线:l y mx n =+平行于直线OG ,34m ∴=,即直线l 的解析式为43y x n =+, 当直线l 经过点(3,5)M 时,4533n =⨯+, 解得,1n =当直线l 经过点(5,0)A 时,4053n =⨯+ 解得,203n =-, ∴直线l 与长方形ABMN 有公共点时,2013n - (3)①当5OP OG ==时,若点P 在原点左侧,点P 的坐标为(5,0)-, 若点P 在原点右侧,点P 的坐标为(5,0), ②当GP GO =时,GN OP ⊥, 3NP NO ∴==,6OP ∴=∴点P 的坐标为(6,0), ③当PO PG =时,可得3PN OP ON OP =-=-,在Rt GPN 中,222PG GN PN =+,即222(3)4OP OP =-+, 解得,256OP =∴,点P 的坐标为25,06⎛⎫⎪⎝⎭, 综上所述,以P O G ,,为顶点的三角形为等腰三角形时,点P 的坐标为(5)0,或(50)-,或(6)0,或2506⎛⎫⎪⎝⎭,. 【点睛】本题利用图形折叠的不变性,考查了一次函数解析式的求法及一次函数图像的平移,同时考查了等要三角形的定义及勾股定理的应用,熟练掌握考查内容并利用数形结合的思想是解决问题的关键26.(1)OA OB OC==;(2)OMN是等腰直角三角形,证明见解析;(3)四边形AMON的面积不变,理由见解析【分析】(1)连接OA,由O为BC的中点可得OC OB=,由直角三角形斜边上的中线的性质可得12 OABC=,即可得OA OB OC==.(2)由(1)不难证明45CAO B∠=∠=︒,结合已知条件进而证明OAN≌OBM,即可得OM ON=,NOA MOB∠=∠,即90NOM AOB∠=∠=︒,所以OMN是等腰直角三角形.(3)由(2)可得OANS=OBMS,进而将四边形AMON的面积转化为AOB的面积,AOB的面积保持不变,故四边形AMON的面积保持不变.【详解】(1)连接OA,Rt ABC△中,O为BC的中点,∴12OA BC=,OC OB=,∴122OA OB OB=⨯⨯=,∴OA OB OC==.(2)OMN是等腰直角三角形,证明如下:AB AC=,O为BC的中点,∴AO BC⊥,∴90AOB∠=︒,OA OB OC==,∴45CAO B∠=∠=︒,在OAN与OBM中,OA OBCAO BAN BM=⎧⎪∠=∠⎨⎪=⎩,∴OAN≌OBM,∴OM ON=,NOA MOB∠=∠,∴90NOM AOB ∠=∠=︒, ∴OMN 是等腰直角三角形.(3)四边形AMON 的面积保持不变,理由如下: 由(2)可得: OAN S=OBMS,∴OANAOMOBMAOMAOBAMON S SSSSS=+=+=四边形.AOB 的面积保持不变∴四边形AMON 的面积保持不变. 【点睛】本题主要考查直接三角形斜边上中线的性质以及全等三角形的判定与性质,掌握全等三角形的判定与性质定理并灵活运用是解题关键.。
2021-2022年九年级数学上期中第一次模拟试题带答案(2)

一、选择题1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是( )A .抛一枚硬币,出现正面B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D .从一个装有2个白球和1个红球的袋子中任取一球,取到红球2.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个B .12个C .8个D .不确定3.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是( ) A .13B .49C .19D .234.,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是( ) A .15B .25 C .35D .455.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( ) A .﹣2 B .﹣3C .2D .36.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+=7.关于x 的一元二次方程()22120x m x m +--=的根的情况是( )A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .无实数根8.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36 S=甲,20.54S=乙,甲的射击成绩稳定9.如图,在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于点G,给出下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;其中结论正确的共有()A.4个B.3个C.2个D.1个10.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.对角线互相垂直的平行四边形是正方形C.对角线相等的平行四边形是矩形D.有三个角是直角的四边形是矩形11.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,E是BC的中点,EF⊥CD于点F,则EF的长是()A.3 B.4 C.5 D.12 512.如图,正方形ABCD中,6AB=,G是BC的中点.将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是()A.2 B.2.5 C.3.5 D.4二、填空题13.在单词“BANANA”中随机选择一个字母,选到字母“N”的概率是____.14.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.15.在美丽乡村建设中,某村2017年新增绿化面积为20000平方米,计划到2019年新增绿化面积要达到28800平方米.如果每年新增绿化面积的增长率相同,那么这个增长率是________.16.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________.17.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.设储藏x 个星期再出售这批农产品,可获利122000元.根据题意,可列方程______. 18.(知识衔接)(1)长方形的对角线相等且互相平分; (2)直角三角形斜边上的中线等于斜边的一半.(问题解决)如图,在ABCD 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连结EF ,BF .下列结论:①2ABC ABF ∠=∠;②EF BF =;③S 四边形DEBC 2EFB S =△;④4CFE DEF ∠=∠.正确的是_______19.如图,正方形AOBC 的两边分别在x 轴、y 轴上,点()4,3D -在边AC 上,以点B 为中心,把△BCD 旋转90︒,则旋转后点D 的对应点1D 的坐标是________.20.在数学课上,老师提出问题:如图,将锐角三角形纸片()ABC BC AC >经过两次折叠,得到边,,AB BC CA 上的点,,D E F ,使得四边形DECF 恰好为菱形.小明给出的折叠方法:如图,①AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;②C 点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .老师说:“小明的作法正确.”请回答:小明这样折叠的依据是①______是平行四边形;②______是菱形.三、解答题21.如图三张不透明的卡片,正面图案分别是我国著名的古代数学家祖冲之、杨辉和赵爽的头像,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀从中随机抽出一张,记录图像后放回,重新洗匀后再从中随机抽取一张,请你用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“祖冲之”的概率.22.某水果经销商批发了一批水果,进货单价为每箱50元,若按每箱60元出售,则可销售80箱.现准备提价销售,经市场调研发现:每箱每提价1元,销量就会减少2箱,为保护消费者利益,物价部门规定,销售利润不能超过50%,设该水果售价为每箱x (x >60)元(1)用含x 的代数式表示提价后平均每天的销售量为 箱; (2)现在预算要获得1200元利润,应按每箱多少元销售? 23.已知2x =时,二次三项式224x mx -+的值等于4. (1)x 为何值时,这个二次三项式的值为3;(2)是否存在x 的值,使得这个二次三项式的值为1-?说明理由.24.章丘区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划,学生可根据自己的喜好选修一门球类项目(A :足球,B :篮球,C :排球,D :羽毛球,E :乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图). (1)该班共 人; (2)将条形统计图补充完整;(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.25.如图1.在平面直角坐标系中,一次函数323y x =-+的图象与x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC △与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.26.如图,矩形ABCD 中,对角线AC 的垂直平分线交AD 边于点E ,交BC 边于点F ,分别连接AF 和CE .(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法); (2)证明四边形AFCE 是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,再进行判断.【详解】A、抛一枚硬币,出现正面的概率是12,不符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是14,不符合题意;C、抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5的概率是16,不符合题意;D、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是13,符合题意,故选:D.【点睛】此题考查频率估计概率,计算简单事件的概率,正确理解题意计算出各事件的概率是解题的关键.2.C解析:C【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.3.A解析:A 【分析】将三个小区分别记为A 、B 、C ,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案. 【详解】将三个小区分别记为A 、B 、C ,根据题意列表如下:所以他们恰好抽到同一个小区的概率为31=93.故选:A . 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.4.C解析:C 【分析】先确定这5个数中无理数的个数,再利用概率公式计算得出答案. 【详解】∵cos45°=2是无理数, ∴,cos45°,π,0,17,cos45°,π,共3个, ∴,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是35. 故选C. 【点睛】此题主要考查了概率公式,正确得出无理数的个数是解题关键.5.B解析:B 【分析】直接根据根与系数的关系解答即可.【详解】解:∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根, ∴x 1x 2=-3. 故选B . 【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 6.D解析:D 【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可; 【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意; B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意; C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意. 故选:D . 【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.7.B解析:B 【分析】判断上述方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号就可以了. 【详解】解:∵关于x 的一元二次方程()22120x m x m +--=的二次项系数a=1,一次项系数b=2m-2,常数项c=-2m ,∴△=(2m-2)2-4(-2m )=4m 2+1>0, ∴原方程有两个不相等的实数根; 故选:B . 【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.C解析:C 【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可. 【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意; B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x -+=中,24440b ac ∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定,正确,不符合题意; 故选:C . 【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.9.B解析:B 【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,设EC=x ,由勾股定理就可以表示出BE 与EF ,再通过比较可以得出结论. 【详解】解:∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°. ∵△AEF 等边三角形, ∴AE=EF=AF ,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩== ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE=DF . 故①正确; ∠BAE=∠DAF , ∴∠DAF+∠DAF=30°, 即∠DAF=15° 故②正确; ∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF , ∵AE=AF ,∴AC 垂直平分EF . 故③正确;设EC=x ,由勾股定理,得,CG=2x ,AG=2x∴AC=2x∴x∴x x x -=∴BE+DF=)1x=EF故④错误; 故选:B 【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题时关键.10.B解析:B 【分析】根据特殊平行四边形的判定与性质可以对各选项的正误作出判断. 【详解】由平行四边形的性质及特殊平行四边形的判定可以得到: (1)有一组邻边相等的矩形是正方形,故A 正确; (2)对角线互相垂直的平行四边形是菱形,故B 错误; (3)对角线相等的平行四边形是矩形,故C 正确; (4)有三个角是直角的四边形是矩形,故D 正确. 故选B . 【点睛】本题考查特殊平行四边形的应用,熟练掌握特殊平行四边形的判定与性质是解题关键.11.D解析:D 【分析】根据勾股定理得出AB ,进而利用直角三角形的性质得出:BD=DC=AD=5,利用三角形面积公式解答即可. 【详解】∵在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴226810AB =+=,∵D 是AB 的中点,∴BD=DC=AD=5,1116812222BDC BAC SS ==⨯⨯⨯=, 连接DE ,∵E 是BC 的中点,∴162DEC BDC SS ==, ∵115622DEC S DC EF EF ==⨯⨯= ∴125EF = 故选:D .【点睛】本题主要考查的是勾股定理,直角三角形斜边上的中线,关键是根据勾股定理解出AB ,进而利用直角三角形的性质解答.12.A解析:A【分析】连接AE ,根据翻折变换的性质和正方形的性质可证Rt △AFE ≌Rt △ADE ,在直角△ECG 中,根据勾股定理求出DE 的长.【详解】解:连接AE ,∵正方形ABCD 中,6AB =∴AB=AD=BC=CD 6=,∠B=∠D=90°,由折叠的性质得:AB =AF 6=,∠B=∠AFG=90°,BG=GF∴AD=AF ,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.二、填空题13.【分析】由单词BANANA中有2个N直接利用概率公式求解即可求得答案【详解】一共有BANANA六种结果其中是N的有2种所以P选到字母N故答案为:【点睛】本题考查概率的计算方法列举出所有可能出现的结果解析:13.【分析】由单词"BANANA"中有2个N,直接利用概率公式求解即可求得答案.【详解】一共有B、A、N、A、N、A六种结果,其中是“N”的有2种,所以P选到字母“N”21 63 ==.故答案为:13.【点睛】本题考查概率的计算方法,列举出所有可能出现的结果是正确解答的前提.14.8【分析】设有红球有x个利用频率约等于概率进行计算即可【详解】设红球有x个根据题意得:=20解得:x=8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8【分析】设有红球有x 个,利用频率约等于概率进行计算即可.【详解】设红球有x 个, 根据题意得:40x =20%, 解得:x =8,即红色球的个数为8个,故答案为:8.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率. 15.20【分析】本题需先设出这个增长率是x 再根据已知条件找出等量关系列出方程求出x 的值即可得出答案【详解】解:设这个增长率为x 由题意得20000(1+x)2=28800(1+x)2=1441+x=±12解析:20%【分析】本题需先设出这个增长率是x ,再根据已知条件找出等量关系列出方程,求出x 的值,即可得出答案.【详解】解:设这个增长率为x ,由题意得20000(1+x)2=28800,(1+x)2=1.44,1+x=±1.2,所以x 1=0.2,x 2=-2.2(舍去),故x=0.2=20%.故答案是:20%.【点睛】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.16.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数 解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 17.【分析】设储藏x 星期出售这批农产品可获利122000元则需要支付费用1600x 元损失2x 吨价格为(1200+200x )元根据获利122000元列方程求解【详解】解:设储藏x 星期出售这批农产品可获利1解析:()()1200200802160064000122000x x x +⨯---=【分析】设储藏x 星期出售这批农产品可获利122000元,则需要支付费用1600x 元,损失2x 吨,价格为(1200+200x )元,根据获利122000元,列方程求解.【详解】解:设储藏x 星期出售这批农产品可获利122000元,由题意得(1200+200x )×(80-2x )-1600x-64000=122000,故答案为:()()1200200802160064000122000x x x +⨯---=.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.18.①②③【分析】利用平行线的性质等腰三角形的性质即可判断①;延长EF 与BC 的延长线相交与点G 易证再根据全等三角形的性质及直角三角形斜边上的中线等于斜边的一半即可判断②;根据三角形中位线的性质即可判断③ 解析:①②③【分析】利用平行线的性质,等腰三角形的性质即可判断①;延长EF 与BC 的延长线相交与点G ,易证DEF CGF ≅△△,再根据全等三角形的性质及直角三角形斜边上的中线等于斜边的一半即可判断②;根据三角形中位线的性质即可判断③;设DEF x ∠=,根据三角形外角和平行线的性质即可判断④.【详解】 解:F 为DC 的中点,2CD CF ∴=2CD AD =,AD BC =CF BC AD ∴==CFB CBF ∴∠=∠//AB CDCFB ABF ∴∠=∠ABF CBF ∴∠=∠2ABC ABF ∴∠=∠,故①正确;延长EF 与BC 的延长线相交与点G ,//AD BC ,BE AD ⊥DEF G ∴∠=∠,⊥BE BG在DEF 和CGF △中,DEF G EFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩DEF CGF ∴≅△△EF GF ∴=在Rt EBG 中,根据直角三角形斜边上的中线等于斜边的一半,EF BF ∴=,故②正确;BF 是EBG 的中线2BEG BEF S S ∴=△△又DEF CGF S S =△△∴S 四边形DEBC =S △BEC∴S 四边形DEBC =2S △BEF ,故③正确;设DEF x ∠=//AD BCDEF G x ∴∠=∠=FG FB =G FBG x ∴∠=∠=2EFB x ∴∠=,CFB CBF x ∠=∠=233CFE CFB BFE x x x DEF ∴∠=∠+∠=+==∠,故④错误;故答案为:①②③.【点睛】本题考查了直角三角形斜边上的中线、三角形外角性质、三角形中位线、等腰三角形的三线合一、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.19.(10)或(-18)【分析】画出旋转后的图形根据旋转的性质可知OD1的长和C2D2C2O 的长由此判断点D1的坐标【详解】如图所示:根据旋转的性质旋转前后两个图形全等如果△BCD 绕点B 逆时针旋转90°解析:(1,0)或(-1,8)【分析】画出旋转后的图形,根据旋转的性质可知OD 1的长和C 2D 2,C 2O 的长,由此判断点D 1的坐标.【详解】如图所示:根据旋转的性质,旋转前后两个图形全等,如果△BCD 绕点B 逆时针旋转90°后得△BOD 1,CD= OD 1,BC =BO ,∵四边形AOBC 是正方形,D(-4,3),∴BC=4,CD =4-3=1,∴OD 1=1∴D1(1,0)如果△BCD绕点B顺时针旋转90°后得△BC2D2C2O=BO+BC2=4+4=8,C2D2=CD=1,点D2的的坐标为D2(-1,8).故答案为:(1,0)或(-1,8).【点睛】本题主要考查图形的旋转及旋转的性质和正方形的性质,熟练掌握旋转的性质是解题的关键.20.对角线互相平分的四边形对角线互相垂直的平行四边形【分析】根据折叠的性质得到CD和EF互相垂直且平分结合菱形的判定定理对角线互相垂直平分的四边形是菱形证得结论【详解】解:如图连接DFDE根据折叠的性质解析:对角线互相平分的四边形对角线互相垂直的平行四边形【分析】根据折叠的性质得到CD和EF互相垂直且平分,结合菱形的判定定理“对角线互相垂直平分的四边形是菱形”证得结论.【详解】解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.∴依据是:①对角线互相平分的四边形是平行四边形;②对角线互相垂直的平行四边形是菱形;故答案为:对角线互相平分的四边形;对角线互相垂直的平行四边形.【点睛】本题考查了菱形的判定和平行四边形的判定,翻折变换(折叠问题).①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).三、解答题21.1 9【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】解:用A 表示祖冲之,用B 表示杨辉,用C 表示赵爽,列表如下:“祖冲之”的有1种结果,所以抽出的两张卡片上的图案都是“祖冲之”的概率为19. 【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)200-2x ;(2)70【分析】(1)利用平均每天的销售量802=-⨯提高的价格,即可用含x 的代数式表示出提价后平均每天的销售量;(2)根据每天的销售利润=每箱的销售利润⨯销售数量,即可列出关于x 的一元二次方程,解方程即可求出x 的值,在结合销售利润不能超过50%,即可确定x 的值【详解】(1)根据题意,提价后平均每天的销售量为:()802602002x x --=-(2)根据题意得:()()5020021200x x --=整理得:215056000x x -+=解得:170x =,280x =当70x =时,利润率7050100%40%50%50-=⨯=<,符合题意; 当80x =时,利润率8050100%60%50%50-=⨯=>,不合题意,舍去 所以要获得1200元利润,应按70元每箱销售.【点睛】本题考查了一元二次方程的应用以及列代数式,解题关键是根据各数量之间的关系,用含x 的代数式表示出平均每天的销售量,找准等量关系正确列出一元二次方程.23.(1)1;(2)不存在,理由见解析【分析】(1)由已知可以得到m 的值,并可得一元二次方程,解方程可得答案;(2)由已知可得一元二次方程,计算判别式的值可以得解.【详解】解:(1)当2x =时,求得1m =,∴由已知可得方程:2243x x -+=,即2210x x -+=,解之可得121x x ==;(2)不存在,理由如下:令2241x x -+=-,可得2250x x -+=,∵Δ=()22415160--⨯⨯=-< ∴方程无解,故不存在x 的值,使得这个二次三项式的值为−1.【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程的求解与根的判别式的计算与应用是解题关键.24.(1)50人;(2)图见解析;(3)56【分析】(1)由C 有12人,占24%,即可求得该班的总人数;(2)求出A 与E 的人数,即可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人至少有1人选修羽毛球的情况,再利用概率公式即可求得答案.【详解】解:(1)该班总人数为12÷24%=50(人).故答案为:50;(2)E 组人数为50×10%=5(人),A 组人数为50﹣7﹣12﹣5﹣9=17(人), 条形图如图所示:(3)画树状图为:A 表示足球,B 表示羽毛球,C 表示篮球.共有12种等可能的结果数,其中选出的2人中,至少有1人选修羽毛球有10种可能, 所以选出的2人至少有1人选修羽毛球概率为105126=. 【点睛】此题考查的是用列表法或树状图法求概率以及扇形统计图与频数分布直方图的知识.解题关键是准确的从统计图中获取信息,熟练运用列表法或树状图法求概率.25.(1)4;30.(2)AD ;(3)M 点的坐标为(-2,,−【分析】(1)先确定出OA =2,OC AC =4,可得出答案;(2)利用折叠的性质得出BD -AD ,最后用勾股定理即可得出结论;(3)分不同的情况画出图形,根据全等三角形的性质可求出点M 的坐标.【详解】解:(1)∵一次函数y =+的图象与x 轴,y 轴分别交于点A ,点C ,∴令0x =,则y =0y =,则2x =,∴A(2,0),C (0,∴OA =2,OC∵AB ⊥x 轴,CB ⊥y 轴,∠AOC =90°,∴四边形OABC 是矩形,∴AB =OC =8,BC =OA =4,在Rt △ABC 中,根据勾股定理得,4AC ===, ∴∠ACO =30°.故答案为:4;30.(2)由(1)知,BC =2,AB由折叠知,CD =AD ,在Rt △BCD 中,BD =AB -AD AD ,根据勾股定理得,CD 2=BC 2+BD 2,即:AD 2=4+(AD )2,∴AD =3; (3)①如图1,MN ⊥y 轴,若△AOC ≌△MNC ,则CN =CO ,∴M 点的纵坐标为43,代入y =-3x +23得,x =-2,∴M (−2,43).②如图2,MN ⊥AC ,MP ⊥y 轴,∵2323MCN AOC S S ∆∆⨯=== ∴CN =AC =4, ∴2323PM ⨯== ∴M 33y 3x 3得,y 3或y 3 ∴M 3−333).综合以上可得M 点的坐标为(-2,33−333【点睛】此题是一次函数综合题,主要考查了矩形的性质和判定,全等三角形的判定和性质,勾股定理,折叠的性质,解题的关键是利用分类讨论的思想解决问题.26.(1)答案见详解;(2)答案见详解.【分析】(1)分别以A 、C 为圆心,以大于12AC 的长为半径四弧交于两点,过两点作直线即可得到线段AC 的垂直平分线;(2)利用垂直平分线证得AOE COF ∆≅∆即可证得结论.【详解】(1)所作图形如图所示.(2)证明:∵四边形ABCD 是矩形,∴//AD BC ,∴AEO CFO ∠=∠,EAO FCO ∠=∠∵EF 是AC 的垂直平分线,∴AE CE =,AF CF =,OA OC =, 在AOE ∆与COF ∆中,EAO FCOAEO CFO OA OC∴AOE COF ∆≅∆AAS ,∴AE CF =, ∴AE CE AF CF ===,∴四边形AFCE 是菱形.【点睛】本题考查了基本作图,全等三角形的判定与性质和菱形的判定,熟悉相关性质是解题的关键.。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
2021-2022年九年级数学上期中第一次模拟试题(附答案)(2)

一、选择题1.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.792.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份3.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.234.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.135.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A.k≥﹣14B.k≥﹣14且k≠0C.k<﹣14D.k>-14且k≠06.如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A.32x+2x2=40 B.x(32+4x)=40C.64x+4x2=40 D.64x﹣4x2=407.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为( ) A .2019 B .2020 C .2021 D .20228.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+ 9.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶210.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A .4B .6C .8D .1011.如图,正方形ABCD 中,6AB =,G 是BC 的中点.将ABG 沿AG 对折至AFG ,延长GF 交DC 于点E ,则DE 的长是( )A .2B .2.5C .3.5D .412.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1D .14n 二、填空题13.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)14.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为_____. 15.某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到150吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为_________________. 16.如果一个直角三角形的两边长是一元二次方程27120x x -+=的两个根,那么这个直角三角形的斜边长为_______________.17.已知关于x 的一元二次方程22(1)210k x x k --+-=有一个根为0,则k =________.18.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO=20°,则∠HDB 的度数是________.19.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.20.如图,把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处,68DFG ∠=︒,则BEF ∠的度数为_________.三、解答题21.在一个不透明的盒子中只装2枚白色棋子和2枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出1枚棋子,记下颜色后放回,搅匀后再随机地摸出1枚棋子记下颜色.()1请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率.()2若小明、小亮做游戏,游戏规则是:两次摸出的棋子颜色不同则小明获胜,否则小亮获胜.你认为这个游戏公平吗?请说明理由.22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.23.“黄冈名师课堂”是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次.若10月至12月,每月在线听课人数平均增长率相同.(1)求每月的平均增长率;(2)按照这个平均增长率,预计2021年1月在线听课的人次将会达到多少?24.章丘区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划,学生可根据自己的喜好选修一门球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班共人;(2)将条形统计图补充完整;(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.25.在正方形ABCD中,点E、F分别在BC边和CD上,且满足AEF是等边三角形,连接AC交EF于点G.;(1)求证:CE CF(2)若等边AEF边长为2,求AC的长.26.如图,△ABC是等边三角形,D是边AC的中点,EC⊥BC与点C,连接BD、DE、AE且CE=BD,求证:△ADE为等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a 、b 、c 为边长正好构成等腰三角形的概率是:155279=. 故选:C .【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 2.B解析:B【分析】首先根据概率确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出红色区域应占的份数.【详解】解:∵他将转盘等分成12份,指针最后落在红色区域的概率为13, 设红色区域应占的份数是x , ∴1123x =, 解得:x=4,故选:B .【点睛】 本题考查了几何概率的求法,根据面积之比即所求几何概率得出是解题关键. 3.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a ,b 表示,一个负数用c 表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.A解析:A【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.5.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k2≠0,且△=b2-4ac≥0,建立关于k的不等式组,求出k的取值范围.【详解】解:由题意知,k2≠0,且△=b2-4ac=(2k+1)2-4k2=4k+1≥0.解得k≥-14且k≠0.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.B解析:B【分析】设小路的宽度为x 米,则小正方形的边长为2x 米,根据小路的横向总长度(20+2x )米和纵向总长度(12+2x )米,根据矩形的面积公式可得到方程.【详解】解:设道路宽为x 米,则中间正方形的边长为2x 米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B .【点睛】考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.7.C解析:C【分析】由一元二次方程根与系数的关系,得到1a b +=-,然后求出22022a a +=,然后代入计算,即可得到答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴1a b +=-,22022a a +=,∴222()()a a b a a a b ++=+++2022(1)=+-2021=.故选:C .【点睛】本题考查了一元二次方程的解,根与系数的关系,解题的关键是熟练掌握运算法则,正确的进行解题.8.A解析:A【分析】用含有x 的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x 个人,∴2人感染时,一轮可传染2x 人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x 个人,∴2(1+x)人感染时,二轮可传染2(1+x)x 人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()221x +人;∴()221y x =+, 故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.10.C解析:C【分析】作D 点关于AB 的对称点D ',连接CD '交AB 于P ,根据两点之间线段最短可知此时PC +PD 最小;再作D 'E ⊥BC 于E ,则EB =D 'A =AD ,先根据等边对等角得出∠DCD '=∠DD 'C ,然后根据平行线的性质得出∠D 'CE =∠DD 'C ,从而求得∠D 'CE =∠DCD ',得出∠D 'CE =30°,根据30°角的直角三角形的性质求得D 'C =2D 'E =2AB ,即可求得PC +PD 的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.11.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.12.B解析:B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n -1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA 可知同正方形中两三角形全等, 利用割补法可知一个阴影部分面积等于正方形面积的14 , 即是12214⨯⨯=, n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-.故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题13.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.14.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果以及点(ab )在第二象限的情况再利用概率公式即可求得答案【详解】解:画树状图图得:∵共有6种等可能的结果点(ab )在第二象限的有2种情况 解析:13【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a ,b )在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a ,b )在第二象限的有2种情况,∴点(a ,b )在第二象限的概率为:2163=. 故答案为:13. 【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A 可能出现的结果数时,要注意审查关于事件A 的说法,避免多数或少数. 15.【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2设平均每次增长的百分率为x 根据从100吨增加到150吨即可得出方程【详解】解:设蔬菜产量的年平均增长率为x 则可列方程为100(1+x )2=解析:()21001150x +=【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2,设平均每次增长的百分率为x ,根据“从100吨增加到150吨”,即可得出方程.【详解】解:设蔬菜产量的年平均增长率为x ,则可列方程为100(1+x )2=150,故答案为:()21001150x +=.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于熟知两次增长后的产量=增长前的产量×(1+增长率)2,根据条件列出方程. 16.5或4【分析】解方程可得直角三角形的两边是34然后分这两边都是直角边和边长为4为直角边两种情况解答即可【详解】解:(x-3)(x-4)=0x-3=0x-4=0∴方程的根为34∴直角三角形的两边为34解析:5或4.【分析】解方程27120x x -+=可得直角三角形的两边是3、4,然后分这两边都是直角边和边长为4为直角边两种情况解答即可.【详解】解:27120x x -+=(x-3)(x-4)=0x-3=0,x-4=0∴方程的根为3、4∴直角三角形的两边为3、4;当两边有一条边是直角边时,斜边长为4.故答案为5或4.【点睛】本题主要考查勾股定理、解一元二次方程等知识点,正确的解一元二次方程和分类讨论成为解答本题的关键.17.-1【分析】先根据一元二次方程的解的意义把x=0代入方程求出k=1或-1然后根据一元二次方程的定义确定k 的值【详解】解:把x=0代入方程得k2-1=0解得k=1或k=-1而k-1≠0所以k=-1故答解析:-1【分析】先根据一元二次方程的解的意义把x=0代入方程求出k=1或-1,然后根据一元二次方程的定义确定k 的值.【详解】解:把x=0代入方程得k 2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1.故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.18.20°【分析】根据菱形的性质得出OB=OD 根据直角三角形斜边的一半等于斜边的一半得出OH=OD 即可得出∠HDB=∠DHO=20°【详解】解:∵四边形ABCD 是菱形∴OB=OD ∵DH ⊥AB 于点H ∴OH解析:20°【分析】根据菱形的性质得出OB=OD ,根据直角三角形斜边的一半等于斜边的一半,得出OH=OD ,即可得出∠HDB=∠DHO=20°.【详解】解:∵四边形ABCD 是菱形,∴OB=OD ,∵ DH ⊥AB 于点H ,∴OH=12BD=OD , ∴ ∠HDB=∠DHO=20°.故答案为:20°.【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质.注意证得△OBH 是等腰三角形是关键.19.【分析】找出B 点关于AC 的对称点D 连接DM 则DM 就是PM+PB 的最小值求出即可【详解】解:连接DE 交AC 于P 连接BDBP 由菱形的对角线互相垂直平分可得BD 关于AC 对称则PD=PB ∴PE+PB=PE+解析:3【分析】找出B 点关于AC 的对称点D ,连接DM ,则DM 就是PM+PB 的最小值,求出即可.【详解】解:连接DE 交AC 于P ,连接BD ,BP ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD=PB ,∴PE+PB=PE+PD=DE ,即DM 就是PM+PB 的最小值,∵∠BAD=60°,AD=AB ,∴△ABD 是等边三角形,∵AE=BE ,∴DE ⊥AB (等腰三角形三线合一的性质)在Rt △ADE 中,DM=22AD AM -=2221=3-.故PM+PB 的最小值为3.故答案为:3.【点睛】本题考查的是最短线路问题及菱形的性质,由菱形的性质得出点D 是点B 关于AC 的对称点是解答此题的关键.20.56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠使点B 与点D 重合点A 落在点G 处∴∠G=∠A=90°∠GDE=∠B=90°∵∠DFG=6解析:56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可.【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处, ∴∠G=∠A=90°,∠GDE=∠B=90°,∵∠DFG=68°,∴∠GDF=∠G-∠DFG=90°-68°=22°,∴∠ADE=∠GDE-∠GDF=90°-22°=68°,∴∠EDC=∠ADC-∠ADE=90°-68°=22°,∴∠DEC=90°-∠EDC=90°-22°=68°,由折叠可得:∠FEB=∠FED , ∴180180685622DEC BEF -∠-=︒︒︒∠==︒, 故答案为:56.【点睛】 此题考查翻折问题,关键是根据折叠前后图形全等和长方形性质解答.三、解答题21.()112;()2公平,理由见解析 【分析】 (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色相不同的情况数,再利用概率公式即可求得答案;(2)求出两次摸出的棋子颜色相同的概率,通过比较即可.【详解】解:(1)根据题意画图如下:∵共有16种等可能的结果,其中两次摸出的棋子颜色相同有8种情况,两次摸出的棋子颜色不同的有8种情况,∴两次摸出的棋子颜色不同的概率为:81162=, (2)由(1)可知, 两次摸出的棋子颜色不相同的概率是81162=, ∴这个游戏对双方是公平的.【点睛】 本题考查了概率及游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.利用列举法求出概率是解题关键.22.(1)②是“邻根方程”,(2) m =0或﹣2【分析】(1)解方程求得方程的根即可判断;(2)解方程得x =﹣m 或x =1,根据题意﹣m =1+1或﹣m =1﹣1,解得m =0或﹣2.【详解】解:(1)①分解因式得:(x ﹣4)(x +3)=0,解得:x =4或x =﹣3,∵4≠﹣3+1,∴x 2﹣x ﹣12=0不是“邻根方程”;②分解因式得:(x ﹣4)(x ﹣5)=0,解得:x =4或x =5,∵5=4+1,∴x 2﹣9x +20=0是“邻根方程”;(2)分解因式得:(x +m )(x ﹣1)=0,解得:x =﹣m 或x =1,∵方程程x 2+(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程,∴﹣m =1+1或﹣m =1﹣1,∴m =0或﹣2.【点睛】本题考查了解一元二次方程﹣﹣因式分解法,“邻根方程”的定义,熟练掌握因式分解法是解题的关键.23.(1)20%;(2)114480人【分析】(1)设该每月平均增长率为x ,根据等量关系:10月份在线听课的学生人次×(1+增长率)2=12月份在线听课学生人次,列出方程求解即可;(2)1月份在线听课的人次=12月份在线听课的人次×增长率列式计算即可.【详解】(1)解:设每月的平均增长率为x ,由题意得:266250(1)95400x +=,解得:10.2x =,2 2.2x =-(舍).答:月平均增长率为20%.(2)95400(120%)114480+=(人)答:按照这个平均增长率,预计2021年1月在线听课的人次将会达到114480人.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣.24.(1)50人;(2)图见解析;(3)5 6【分析】(1)由C有12人,占24%,即可求得该班的总人数;(2)求出A与E的人数,即可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人至少有1人选修羽毛球的情况,再利用概率公式即可求得答案.【详解】解:(1)该班总人数为12÷24%=50(人).故答案为:50;(2)E组人数为50×10%=5(人),A组人数为50﹣7﹣12﹣5﹣9=17(人),条形图如图所示:(3)画树状图为:A表示足球,B表示羽毛球,C表示篮球.共有12种等可能的结果数,其中选出的2人中,至少有1人选修羽毛球有10种可能,所以选出的2人至少有1人选修羽毛球概率为105 126=.【点睛】此题考查的是用列表法或树状图法求概率以及扇形统计图与频数分布直方图的知识.解题关键是准确的从统计图中获取信息,熟练运用列表法或树状图法求概率.25.(1)见解析 (21【分析】(1)根据正方形和等边三角形的性质,证Rt ABE Rt ADF △≌△即可;(2)由(1)可知,AC 垂直平分EF ,根据勾股定理和斜边中线等于斜边的一半求AG 、CG 即可.【详解】(1)证明:正方形ABCD ,∴AB AD =,B D ∠=∠=90°,BC CD =. AEF 是等边三角形,AE AF ∴=.(HL)Rt ABE Rt ADF ∴△≌△.BE DF ∴=.CE CF ∴=.(2)由(1)得,CE=CF ,AE=AF=2,AC ∴垂直平分EF .1EG FG ∴==.AG ∴===,∵∠ECF=90°,EG=GF , ∴112CG EF ==,1AC AG CG ∴=+=.【点睛】本题考查了正方形、等边三角形、全等三角形的判定与性质、勾股定理等知识,解题关键是准确把握已知,熟练运用全等三角形、勾股定理等知识进行证明和计算.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.。
【浙教版】九年级数学上期中一模试卷含答案(2)

一、选择题1.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) A .15B .25C .35D .452.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为( ) A .13B .49C .59D .233.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .194.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm 统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm 的概率是()A .0.85B .0.57C .0.42D .0.155.关于x 的一元二次方程()21210k x x +-+=有实数根,则k 满足( ) A .0k ≥B .0k ≤且1k ≠-C .0k <且1k ≠-D .0k ≤6.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( )A .()1121x x x ++=B .()11121x x ++=C .()21121x +=D .()1121x x +=7.已知a 是方程2210x x --=的一个根,则代数式2245a a -+的值应在( ) A .4和5之间 B .3和4之间C .2和3之间D .1和2之间8.如果关于x 的一元二次方程x 2﹣4x ﹣k =0有两个不相等的实数根,那么k 的取值范围是( ) A .k <﹣4B .k <4 且k ≠0C .k >﹣4D .k >﹣4且k ≠09.下列命题中,正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .平行四边形的对角线平分且相等D .顺次连结菱形各边中点所得的四边形是矩形10.如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE =25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A .25°B .40°C .90°D .50°11.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .2412.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题13.如图,正方形ABCD 是一飞镖游戏板,其中点E ,F ,G ,H 分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是______.14.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球25个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为_________.15.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.16.高明区某绿色产业基地2018年的粉葛产量为100吨,2019年、2020年连续两年改良技术,提高产量,2020年粉葛产量达到144吨.设平均每年的增长率为x ,列出方程为:______.17.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.18.如图,菱形ABCD 的边长为10,对角线BD 的长为16,点E ,F 分别是边AD ,CD 的中点,连接EF 并延长与BC 的延长线相交于点G ,则EG 的长为________.19.如图,矩形ABOC 的顶点B 、C 分别在x 轴、y 轴上,顶点A 在第一象限,点B 的坐标为(3,0),将线段OC 绕点O 顺时针旋转60°至线段OD ,若反比例函数k y x= (k ≠0)的图象进过A 、D 两点,则k 值为_____.20.如图,矩形ABCD 中AC 交BD 于点O ,120AOB ∠=,3AD =,则BD 的长为__________.三、解答题21.小明和小亮用如图所示的甲、乙两个转盘(甲转盘被分成五个面积相等的扇形,乙转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一扇形区域为止).(1)请求出甲转盘指针指向偶数区域的概率;(2)若两次数字之和为3,4或5时,则小明胜,否则小亮胜.这个游戏对双方公平吗?请用树状图或列表法说说你的理由.22.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组5060x≤<6第2组6070≤<8x第3组7080≤<14x第4组8090x≤<a 第5组90100≤<10x请结合图表完成下列各题:(1)①表中a的值为_________,中位数在第_________组:②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率. 23.解方程:2(2)3(2)x x +=+24.2020年年末,大丰迈入高铁时代,建设部门打算对高铁站广场前一块长为20m ,宽为8m 的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分),若它们的面积之和为102m 2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?25.综合与实践已知四边形ACBD 与AEFG 均为正方形.数学思考:(1)如图1,当点E 在AB 边上,点G 在AD 边上时,线段BE 与DG 的数量关系是______,位置关系是______.(2)在图1的基础上,将正方形AEFG 以点A 为旋转中心,逆时针旋转角度α,得到图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; 拓展探索:(3)如图3,若点D ,E ,G 在同一直线上,且222AB AE ==BE 长为_____.(直接写出答案即可,不要求写过程).26.如图,已知四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 中点,点F 是BD 中点.(1)求证:EF BD ⊥;(2)过点D 作DH AC ⊥于H 点,如果BD 平分HDE ∠,求证:BA BC =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 试题这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C .考点:1.概率公式;2.中心对称图形.2.C解析:C 【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可. 【详解】解:两个正数分别用a ,b 表示,一个负数用c 表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59; 故选:C . 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B 【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比. 【详解】解:∵如图所示的正三角形, ∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°, 设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.4.D解析:D 【分析】先计算出样本中身高不低于180cm 的频率,然后根据利用频率估计概率求解. 【详解】样本中身高不低于180cm 的频率=15100=0.15, 所以估计他的身高不低于180cm 的概率是0.15. 故选D . 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.B解析:B 【分析】根据根的判别式计算即可. 【详解】解:∵关于x 的一元二次方程()21210k x x +-+=有实数根,∴()244410b ac k ∆=-=-+≥,10k +≠,∴4440k --≥,1k ≠-, 解得:0k ≤,1k ≠-; 故答案选B . 【点睛】本题主要考查了一元二次方程根的判别式,准确计算是解题的关键.6.C解析:C 【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可. 【详解】解:设每轮传染中平均一个人传染了x 个人,依题意得1+x+x(1+x)=121, 即(1+x)2=121, 故选:C . 【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.7.A解析:A 【分析】先依据一元二次方程的定义得到a 式的取值范围. 【详解】解:∵a 是方程2210x x --=的一个根, ∴2210a a --=,即221a a -=, ∴原式=22(2)2a a -=+ ∵459,∴23<<,∴425<+<,即224a a -+的值在4和5之间, 故选:A . 【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.8.C解析:C 【分析】根据根的判别式解答. 【详解】根据题意得△=(﹣4)2﹣4(﹣k )>0, 解得k >﹣4. 故选:C . 【点睛】此题考查一元二次方程根与系数的关系:∆>0时方程有两个不相等的实数根,∆=0时方程有两个相等的实数根,∆<0时方程没有实数根.第II 卷(非选择题)请点击修改第II 卷的文字说明9.D解析:D 【分析】根据矩形、菱形的判定和平行四边形的性质判断即可. 【详解】解:A 、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意; B 、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意; C 、平行四边形的对角线平分,原命题是假命题,不符合题意; D 、顺次连结菱形各边中点所得的四边形是矩形,是真命题,符合题意; 故选:D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B解析:B 【分析】证明Rt △ABE ≌Rt △ADF (HL ),可得∠BAE =∠DAF =25°,求出∠EAF 即可解决问题. 【详解】解:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠B =∠D =90°由旋转不变性可知:AE =AF , 在Rt △ABE 和Rt △ADF 中,AB ADAE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ), ∴∠BAE =∠DAF =25°, ∴∠EAF =90°﹣25°﹣25°=40°, ∴旋转角为40°, 故选:B . 【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt △ABE 和Rt △ADF 全等是解题的关键,也是本题的难点.11.B解析:B 【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积. 【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒, ∵AF CD ⊥, ∴90AFC ∠=︒, ∵90C ∠=︒, ∴四边形AECF 是矩形, ∴90EAF ∠=︒, ∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠, 在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形, ∵ABEADFSS,∴216ABCD AECF S S AE ===.故选:B . 【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.12.C解析:C 【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBECEFS S=可得:13CBEABCDSS =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④. 【详解】解:①∵F 是AD 的中点, ∴AF=FD , ∵在▱ABCD 中, AD=2AB , ∴AF=FD=CD , ∴∠DFC=∠DCF , ∵AD ∥BC , ∴∠DFC=∠FCB , ∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确; ②延长EF ,交CD 延长线于M , ∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠A=∠MDF , ∵F 为AD 中点, ∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ), ∴FE=MF ,∠AEF=∠M , ∵CE ⊥AB , ∴∠AEC=90°, ∴∠AEC=∠ECD=90°, ∵FM=EF ,∴EF=CF ,故②正确; ③∵EF=FM ,EFCCFMSS∴=,若,CBECEFS S=则13CBEABCDSS =11,23BE EC AB EC ∴= 32,BE AB ∴= 2,3BE AB ∴=与已知条件不符, 故CBECEFSS=不一定成立,故③错误;④设∠FEC=x ,,EF CF = ∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-, ∴∠EFD=9018022703x x x ︒-+︒-=︒-, ∵∠AEF=90,M FCM x ∠=∠=︒- ∴∠DFE=3∠AEF ,故④正确. 故选:C . 【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.二、填空题13.【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积设正方形ABCD 的边长是则∵F 是BC 中点∴∴概率是故答案是:【点睛】本题考查概率的求解析:14【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率. 【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积, 设正方形ABCD 的边长是x ,则AB x =, ∵F 是BC 中点, ∴12BF x =, ∴211112224ABFSAB BF x x x =⋅=⋅=, 概率是221144ABFABCDxSS x ==. 故答案是:14. 【点睛】本题考查概率的求解,解题的关键是掌握概率求解的方法.14.【分析】袋中黑球的个数为x 利用概率公式得到然后解方程即可【详解】解:设袋中黑球的个数为x 根据题意得解得:经检验x=20是所列方程的解且符合实际所以袋中黑球的个数为个故答案为:【点睛】本题考查了概率公 解析:20.【分析】袋中黑球的个数为x ,利用概率公式得到51,52510x =++然后解方程即可.【详解】解:设袋中黑球的个数为x , 根据题意得51,52510x =++解得:20,x =经检验,x=20是所列方程的解且符合实际, 所以袋中黑球的个数为20个. 故答案为:20. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.15.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn 分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11 【分析】根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根, ∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-. 故答案为:-11. 【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.16.【分析】根据等量关系列出方程即可等量关系:2020年的产量=2018年的产量×(1+年平均增长率)2【详解】解:设粉葛产量的年平均增长率(百分数)为x 根据题意得100(1+x )2=144故答案为:1 解析:()21001144x +=【分析】根据等量关系,列出方程即可,等量关系:2020年的产量=2018年的产量×(1+年平均增长率)2. 【详解】解:设粉葛产量的年平均增长率(百分数)为x , 根据题意,得 100(1+x )2=144, 故答案为:100(1+x )2=144. 【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2019年和2020年的产量的代数式,根据条件找准等量关系,列出方程.17.-2【分析】把-1代入方程求m 再把m 代回方程解方程即可;或用根与系数关系可求【详解】解:方法一把-1代入方程得解得m=2代入原方程得解得故答案为:-2;方法二设另一个根是a 根据根与系数关系a×(-1解析:-2 【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求. 【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=, 解得,121,2x x =-=-, 故答案为:-2;方法二,设另一个根是a , 根据根与系数关系,a ×(-1)=2, a =-2, 故答案为:-2 【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.18.12【分析】连接AC 交BD 于点O 先证EF 是△ACD 的中位线得EF ∥AC 再证四边形CAEG 是平行四边形得AC =EG 然后由勾股定理求出OA =OC =6即可解决问题【详解】解:连接AC 交BD 于点O 如图所示:解析:12 【分析】连接AC ,交BD 于点O ,先证EF 是△ACD 的中位线,得EF ∥AC ,再证四边形CAEG 是平行四边形,得AC =EG ,然后由勾股定理求出OA =OC =6,即可解决问题. 【详解】解:连接AC ,交BD 于点O ,如图所示:∵菱形ABCD 的边长为10, ∴AD ∥BC ,AB =BC =CD =DA =10, ∵点E 、F 分别是边AD ,CD 的中点, ∴EF 是△ACD 的中位线, ∴EF ∥AC , ∴AC ∥EG∴四边形CAEG是平行四边形,∴AC=EG,∵AC、BD是菱形的对角线,BD=16,∴AC⊥BD,OB=OD=8,OA=OC,在Rt△AOB中,AB=10,OB=8,∴OA=OC22108=-=6,∴AC=2OA=12,∴EG=AC=12;故答案为:12.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质,三角形中位线定理及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.19.4【分析】过点D作DH⊥x轴于H四边形ABOC是矩形由性质有AB=CO∠COB=90°将OC绕点O顺时针旋转60°OC=OD∠COD=60°可得∠DOH=30°设DH=x点D(xx)点A(2x)反比解析:43【分析】过点D作DH⊥x轴于H,四边形ABOC是矩形,由性质有AB=CO,∠COB=90°,将OC绕点O顺时针旋转60°,OC=OD,∠COD=60°,可得∠DOH=30°,设DH=x,点D(3x,x),点A(3,2x),反比例函数kyx=(k≠0)的图象经过A、D两点,构造方程求出即可.【详解】解:如图,过点D作DH⊥x轴于H,∵四边形ABOC是矩形,∴AB=CO,∠COB=90°,∵将线段OC绕点O顺时针旋转60°至线段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH,设DH=x,∴点D,x),点A2x),∵反比例函数kyx=(k≠0)的图象经过A、D两点,∴×x x,∴x=2,∴点D(2),∴k==故答案为:【点睛】本题考查反比例函数解析式问题,关键利用矩形的性质与旋转找到AB=CO=OD,∠DOH=30°,DH=x,会用x表示点D,x),点A,2x),利用A、D在反比例函数kyx=(k≠0)的图象上,构造方程使问题得以解决.20.6【分析】根据矩形的对角线相等且互相平分可得OA=OD再求出∠AOD=60°然后判断出△AOD是等边三角形根据等边三角形的性质求出OD即可得出BD的长【详解】解:在矩形ABCD中OA=OC=ACOB解析:6【分析】根据矩形的对角线相等且互相平分可得OA=OD,再求出∠AOD=60°,然后判断出△AOD是等边三角形,根据等边三角形的性质求出OD,即可得出BD的长.【详解】解:在矩形ABCD中,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OD,∵∠AOB=120°,∴∠AOD=180°-120°=60°,∴△AOD是等边三角形,∴OD=AD=3,∴BD=2OD=6;故答案为:6.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的性质,证出△AOD是等边三角形是解题的关键.三、解答题21.(1)25;(2)不公平,见解析【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到使小明、小亮获胜的结果数,再利用概率公式计算出两人获胜的概率,从而得出答案.【详解】(1)P(甲指向偶数)=2 5(2)列表如下3,4或5的有8种结果,两次数字之和不是3,4或5的有7种结果,所以P(小明胜)=815,P(小两胜)=715∴游戏不公平.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)12;3;补充的频数分布直方图见解析;(2)44%;(3)1 3【分析】(1)①根据题意和表中的数据可以求得a的值;②将5个组的人数从小到大排序,处于中间位置的数即为中位数;③由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意画树状图可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.【详解】解:(1)①由题意和表格,可得:5068141012a=----=,故答案为:12;成绩的中位数是第25和第26的平均数,且前三组人数和为28人 ∴中位数处于第3组, 故答案为:3;②补充完整的频数分布直方图如下图所示:(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:1210100%44%50+⨯=; (3)用A 表示小明,B 表示小强,C 、D 表示其他两名同学, 根据题意画树状图如下:从上图可知共有12种等可能情况,小明与小强两名男同学分在同一组的情况有4种,则小明与小强两名男同学分在同一组的概率是P =412=13. 【点睛】此题主要考查频数分布直方图及概率的求解,解题的关键是熟知统计调查的知识及树状图的画法.23.122,1x x =-=. 【分析】利用因式分解法求解即可. 【详解】∵2(2)3(2)x x +=+, ∴()()22320x x +-+=∴()()2230x x ++=⎡⎤⎣⎦- ∴()()210x x +-= 解得:122,1x x =-=. 【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解法的实质,灵活准确求解是解题的关键.24.1 【分析】根据矩形的面积和为102平方米列出一元二次方程求解即可. 【详解】解:设人行通道的宽度为x 米,根据题意得, (20﹣3x )(8﹣2x )=102, 解得:x 1=1,x 2293=(不合题意,舍去). 答:人行通道的宽度为1米. 【点睛】本题考查了一元二次方程的应用,利用两块矩形的面积之和为102m 2得出等式是解题关键.25.(1)BE DG =,BE DG ⊥;(2)成立.证明见解析;(3)71+ 【分析】(1)根据正方形的性质得到AB AD =,AG AE =,90A ∠=︒,即可证明BE DG =,BE DG ⊥;(2)延长BE ,与DG 交于点H ,证明BAE DAG ≌,得BE DG =,ABE ADG ∠=∠,再由()18090DHO ADG DOH ∠=︒-∠+∠=︒即可证明结论;(3)过点A 作AM BE ⊥于点M ,由ABE ADG ≅△△,证明AEM △是等腰直角三角形,根据勾股定理求出AM 和EM 的长,再算出BM 的长,即可得到BE 的长. 【详解】解:(1)∵四边形ACBD 与AEFG 均为正方形, ∴AB AD =,AG AE =,∴AB AE AD AG -=-,即BE DG =, ∵90A ∠=︒, ∴BE DG ⊥,故答案是:BE DG =,BE DG ⊥; (2)成立,如图,延长BE ,与DG 交于点H ,∵四边形ABCD 与AEFG 均为正方形,∴AB AD =,AE AG =,90BAD EAG ∠=∠=︒, ∴BAD EAD EAG EAD ∠+∠=∠+∠,∴BAE DAG ∠=∠,∴BAE DAG ≌, ∴BE DG =,ABE ADG ∠=∠,∵18090OBA BOA BAO ∠+∠=︒-∠=︒,DOH BOA ∠=∠,∴90ADG DOH ∠+∠=︒,∴()18090DHO ADG DOH ∠=︒-∠+∠=︒,∴DG BE ⊥;(3)如图,过点A 作AM BE ⊥于点M ,由(2)知ABE ADG ≅△△,∵GE 是正方形AEFG 的对角线,∴45AEB AGD ∠=∠=︒,则AEM △是等腰直角三角形, ∵222AB AE ==,∴2AE =, ∵222AM EM AE +=, ∴1AM EM ==,∴22817BM AB AM =-=-=,∴71BE BM EM =+=+, 故答案是:71+.【点睛】本题考查全等三角形的性质和判定,旋转的性质,正方形的性质,解题的关键是熟练掌握这些性质定理进行证明求解.26.(1)见详解;(2)见详解【分析】(1)根据直角三角形斜边上的中线等于斜边的一半以及等腰三角形“三线合一”,即可得到结论;(2)先证明DH ∥BE ,再证明BE 垂直平分AC ,即可得到结论.【详解】(1)90ABC ADC ∠=∠=︒,点E 是AC 中点,∴DE=12AC,BE=12AC,∴DE=BE,∵点F是BD中点,∴EF BD⊥;(2)∵BD平分HDE∠,∴∠HDB=∠EDB,∵DE=BE,∴∠EDB=∠∠EBD,∴∠HDB=∠EBD,∴DH∥BE,∵DH AC⊥,∴BE⊥AC,∵点E是AC中点,∴BE垂直平分AC,∴BA BC=.【点睛】本题主要考查直角三角形的性质,等腰三角形的性质定理以及中垂线的性质定理,熟练掌握直角三角形斜边上的中线等于斜边的一半,等腰三角形“三线合一”是解题的关键.。
2021-2022九年级数学上期中一模试卷(含答案)

一、选择题1.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.192.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份3.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.144.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.55.若关于x的一元二次方程220x x a++=的一个根大于1,另一个根小于1,则a的值可能为()A.2-B.4-C.2 D.46.某商品的售价为100元,连续两次降价%x后售价降低了36元,则x的值为()A.60 B.20 C.36 D.187.将一个正方形剪成①、②、③、④四块(如图1),恰能拼成如图2的矩形,若1a=,则这个正方形的面积为()A 51+B51-C.9 D735+8.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x,则下面所列方程中正确的是()A.10(1﹣x)2=16 B.16(1﹣x)2=10C.16(1+x)2=10 D.10(1+x)2=169.正方形具有而矩形没有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等10.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个 11.如图,边长为22+的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )A .0.5B .22C .1D .212.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=6,则BC 的长为( ).A .3B .32C .23D .322二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.在边长为1的小正方形组成的43⨯网格中,有如图所示的A B 、两个格点,在其余格点上任意放置点C ,恰好能使ABC ∆的面积为1的概率是_____.15.如果一个直角三角形的两边长是一元二次方程27120x x -+=的两个根,那么这个直角三角形的斜边长为_______________.16.已知方程2560x kx ++=的一个根是2,则它的另一个根是________.17.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.18.如图,ABC 和ABD △都是直角三角形,C ,D 是直角顶点,60,45BAC BAD ∠=︒∠=︒.取AB 的中点O ,连结,OC OD ,则COD ∠的度数是__________.19.若ABC ∆的三边长分别为5,26,1,比较三边长的大小,并用“<”连接起来,___________,最长边上的中线长为___________.20.将一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在M 、N 的位置上,EM 与BF 交于点G ,若54EFG ∠=︒,则21∠-∠=___︒.三、解答题21.“赣江”是长江主要支流之一,江西省最大的河流.其东源出自石城县武夷山,称“绵水”,流经瑞金,在会昌县与“湘水”(江西)汇合,称“贡水”;其西源出自崇义县聂都山,称“章水”.“章水"与“贡水”在赣州市八镜台汇合,是为“赣江”.小丽和小杰一起玩游戏:将“章水”、“贡水”、“绵水”、“湘水”分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上.小丽从中随机抽取一张卡片,小杰再从剩余的卡片中随机抽取一张卡片.(1)“赣江被抽中”是______事件,“章水被抽中”是______事件(填“不可能”或“必然”或“随机”);(2)试用画树状图或列表的方法表示所有可能的结果,并求“两人抽取的河流能汇合”的概率.22.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根、且其中一个根比另一个根大 1,那么称这样的方程为“邻根方程”.例如、一元二次方程20x x +=的两个根是120,1x x ==-,则方程20x x +=是“邻根方程”.通过计算,判断下列方程是否是“邻根方程”:(1)260x x --=;(2)222310x x -+=.23.解方程:(1)2210x x +-=; (2)3(1)2(1)x x x -=-.24.章丘区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划,学生可根据自己的喜好选修一门球类项目(A :足球,B :篮球,C :排球,D :羽毛球,E :乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班共 人;(2)将条形统计图补充完整;(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.25.如图,点E 为边长为3的正方形ABCD 的边CB 延长线上一点,1BE =,连接AE ,将ABE △绕着正方形的顶点A 旋转得到ADF .(1)写出上述旋转的旋转方向和旋转角度数:(2)连接EF ,求AEF 的面积:(3)如图中,ADG 可以看作由BAE △先绕着正方形的顶点B 顺时针旋转90︒,再沿着BA 方向平移3个单位的二次基本运动所成,那么ADG 是否还可以看作由BAE △只通过一次旋转运动而成呢?如果可以,请写出(同时在图中画出)旋转中心、旋转方向和旋转角度数,如果不能,则说明理由.26.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式; (3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P (点数之和等于4)=31=3612. 故选:C .【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比. 2.B解析:B【分析】首先根据概率确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出红色区域应占的份数.【详解】解:∵他将转盘等分成12份,指针最后落在红色区域的概率为13, 设红色区域应占的份数是x , ∴1123x , 解得:x=4,故选:B .【点睛】 本题考查了几何概率的求法,根据面积之比即所求几何概率得出是解题关键.3.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A ,B ,C ,D 四个点中任选三个点,有:△ABC 、△ABD 、△ACD 、△BCD ,共4个三角形;其中是等腰三角形的有:△ACD 、△BCD ,共2个;∴能够组成等腰三角形的概率为:2142P ==; 故选:B .【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数. 4.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个, 故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 5.B解析:B【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案.【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0,()12121x x x x ∴-++<0,()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.6.B解析:B【分析】起始价为100元,终止价为100-36=64元,根据题意列方程计算即可.【详解】∵起始价为100元,终止价为100-36=64元,∴根据题意,得1002(1-%)x =64,解得x=20或x=180(舍去),故选B .【点睛】本题考查了一元二次方程的增长率问题,熟练掌握增长率问题的计算方法,正确布列方程是解题的关键.7.D解析:D【分析】从图中可以看出,正方形的边长=a +b ,所以面积=(a +b )2,矩形的长和宽分别是a +2b ,b ,面积=b (a +2b ),两图形面积相等,列出方程得=(a +b )2=b (a +2b ),其中a =1,求b 的值,即可求得正方形的面积.【详解】解:根据图形和题意可得:(a +b )2=b (a +2b ),其中a =1,则方程是(1+b )2=b (1+2b ),解得:b ,∴正方形的面积为(1)2. 故选:D .【点睛】此题主要考查了图形的剪拼,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b 的值,从而求出边长,求面积.8.D解析:D【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.设增长率为x ,根据题意得210(1)16x +=. 故选:D .【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).9.B解析:B【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直.【详解】解:A 、正方形和矩形对角线都互相平分,故A 不符合题意,B 、正方形对角线平分对角,而矩形对角线不平分对角,故B 符合题意,C 、正方形和矩形对角线都相等,故C 不符合题意,D 、正方形和矩形的对边都相等,故D 不符合题意.故选:B .【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.10.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 11.D解析:D【分析】设正八边形的边长为x ,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可.【详解】解:设正八边形的边长为x ,则剪掉的等腰直角三角形的直角边为2x , ∵正方形的边长为2+,∴由题意可得:222x+x x +=+解得:x =∴故选:D【点睛】本题考查了正方形的性质,等腰直角三角形的性质,读懂题目信息,根据正方形的边长列出方程是解题的关键. 12.C解析:C【分析】根据菱形AECF ,得∠FCO=∠ECO ,再利用∠ECO=∠ECB ,可通过折叠的性质,结合直角三角形勾股定理求解.【详解】解:∵菱形AECF ,AB=6,设BE=x ,则AE=CE=6-x ,∵菱形AECF ,∴∠FCO=∠ECO ,∵∠ECO=∠ECB ,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE ,即CE=2x ,∴2x=6-x ,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:23BC=,故选:C.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】在的网格中共有20-2=18个格点找到能使得三角形ABC的面积为1的格点即可利用概率公式求解【详解】解:由题意知任意放C的情况有18种使三角形的面积为的情况有5种故答案为:【点睛】本题考查了解析:518【分析】在43⨯ 的网格中共有20-2=18个格点,找到能使得三角形ABC 的面积为1的格点即可利用概率公式求解. 【详解】解:由题意知,任意放C 的情况有18种,使三角形的面积为的情况有5种()1518∴=使三角形面积为P 故答案为:518【点睛】本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.15.5或4【分析】解方程可得直角三角形的两边是34然后分这两边都是直角边和边长为4为直角边两种情况解答即可【详解】解:(x-3)(x-4)=0x-3=0x-4=0∴方程的根为34∴直角三角形的两边为34解析:5或4. 【分析】解方程27120x x -+=可得直角三角形的两边是3、4,然后分这两边都是直角边和边长为4为直角边两种情况解答即可. 【详解】解:27120x x -+= (x-3)(x-4)=0 x-3=0,x-4=0 ∴方程的根为3、4 ∴直角三角形的两边为3、4; 当两边有一条边是直角边时,斜边长为4. 故答案为5或4. 【点睛】本题主要考查勾股定理、解一元二次方程等知识点,正确的解一元二次方程和分类讨论成为解答本题的关键.16.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35. 【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a cx x x x a-+=,=.17.-2【分析】把-1代入方程求m 再把m 代回方程解方程即可;或用根与系数关系可求【详解】解:方法一把-1代入方程得解得m=2代入原方程得解得故答案为:-2;方法二设另一个根是a 根据根与系数关系a×(-1解析:-2 【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求. 【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=, 解得,121,2x x =-=-, 故答案为:-2;方法二,设另一个根是a , 根据根与系数关系,a ×(-1)=2, a =-2, 故答案为:-2 【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.18.30°【分析】根据等腰三角形三线合一的性质得到∠AOD=90°证明△AOC 是等边三角形得到∠AOC 从而计算出∠COD 【详解】解:∵CD 是直角顶点∴∠ACB=∠ADB=90°又∵∠BAC=60°∠BA解析:30° 【分析】根据等腰三角形三线合一的性质得到∠AOD=90°,证明△AOC 是等边三角形,得到∠AOC ,从而计算出∠COD . 【详解】解:∵C 、D 是直角顶点, ∴∠ACB=∠ADB=90°, 又∵∠BAC=60°,∠BAD=45°, ∴∠ABC=30°,∠ABD=45°, ∴△ABD 是等腰三角形,AC=12AB , 又∵O 是AB 中点, ∴OD ⊥AB ,OC=OA=12AB=AC ,∠AOD=90°, ∴△OAC 是等边三角形, ∴∠AOC=60°, ∴∠COD=30°, 故答案为:30°. 【点睛】本题考查了等腰三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.19.5【分析】先判断三条边的大小进而判断三角形为直角三角形根据直角三角形性质求解即可【详解】解:∵∴三边大小关系为∵∴为直角三角形5为斜边长∴最长边上中线即斜边上中线长为25故答案为:;25【点睛】本题解析:15<< 5 【分析】先判断三条边的大小,进而判断三角形为直角三角形,根据直角三角形性质求解即可. 【详解】解:∵ ∴三边大小关系为15<<,∵(2221=25=5+,∴ABC ∆为直角三角形,5为斜边长, ∴最长边上中线即斜边上中线长为2.5.故答案为:15<;2.5. 【点睛】本题考查了二次根式化简,勾股定理逆定理,直角三角形性质,根据三边长判断出三角形是直角三角形是解题关键.20.36【分析】根据平行线的性质求得∠DEF再根据折叠性质求得∠GED然后利用平角性质和平行线的性质求得∠1和∠2进而可求得∠2﹣∠1的值【详解】∵在矩形中AD∥BC∴∠DEF=∠EFG=54º∠2=∠解析:36【分析】根据平行线的性质求得∠DEF,再根据折叠性质求得∠GED,然后利用平角性质和平行线的性质求得∠1和∠2,进而可求得∠2﹣∠1的值.【详解】∵在矩形中,AD∥BC∴∠DEF=∠EFG=54º,∠2=∠GED由折叠性质,得:∠GEF=∠DEF=54º∴∠GED=2∠DEF=108º∴∠2=108º,∠1=180º-∠GED=180º-108º=72º∴∠2﹣∠1=108º﹣72º=36º故答案为:36.【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,正确理解题意,熟练掌握平行线的性质和折叠性质,能够根据性质找到相等的角是解答的关键.三、解答题21.(1)不可能、随机,(2)列表见解析,13.【分析】(1)根据随机事件和不可能事件的概念判断即可;(2)列举出所有情况,看所求的情况占总情况的多少即可.【详解】解:(1)“赣江被抽中”是不可能事件,“章水被抽中”是随机事件;故答案为:不可能、随机.(2)根据题意可列表如下:(A表示章水,B表示贡水,C表示绵水,D表示湘水)由表可知,共有12种等可能结果,其中“两人抽取的河流能汇合”的有4种结果, 所以“两人抽取的河流能汇合”的概率=41123=. 【点睛】本题主要考查了事件的类型,列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件,解题关键是注意两步实验中是否有重. 22.(1)不是;(2)是. 【分析】(1)求出方程解,然后根据“邻根方程”的定义进行判定; (2)求出方程解,然后根据“邻根方程”的定义进行判定. 【详解】解:(1)260x x --=,解得13x =,22x =-, ∵125x x -=,不符合邻根方程的定义 ∴260x x --=不是邻根方程.(2)2210x -+=,解得112x =,212x =∴121x x -= ∴符合邻根方程的定义∴2210x -+=是邻根方程. 【点睛】本题主要考查了一元二次方程解法.理解题意,掌握“邻根方程”的定义是关键.23.(1)11x =-21x =-;(2)11x =,223x = 【分析】(1)配方法求解可得; (2)因式分解法求解可得; 【详解】(1)解:2212x x ++=2(1)2x +=1x +=11x ∴=-+21x =-.(2)解:3(1)2(1)0x x x ---=(1)(32)0x x --=10x -=;或320x -=11x ∴=,223x =.【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.24.(1)50人;(2)图见解析;(3)5 6【分析】(1)由C有12人,占24%,即可求得该班的总人数;(2)求出A与E的人数,即可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人至少有1人选修羽毛球的情况,再利用概率公式即可求得答案.【详解】解:(1)该班总人数为12÷24%=50(人).故答案为:50;(2)E组人数为50×10%=5(人),A组人数为50﹣7﹣12﹣5﹣9=17(人),条形图如图所示:(3)画树状图为:A表示足球,B表示羽毛球,C表示篮球.共有12种等可能的结果数,其中选出的2人中,至少有1人选修羽毛球有10种可能,所以选出的2人至少有1人选修羽毛球概率为105 126.【点睛】此题考查的是用列表法或树状图法求概率以及扇形统计图与频数分布直方图的知识.解题关键是准确的从统计图中获取信息,熟练运用列表法或树状图法求概率.25.(1)旋转方向:逆时针旋转,旋转角:90°;(2)5;(3)可以,图见解析,BAE△绕点O顺时针旋转90°得到ADG【分析】(1)根据图形和正方形的性质即可得出结论;(2)根据正方形的性质和旋转的性质可得AD=DC=BC=3,DF=BE=1,从而求出EC和CF,最后利用AEFS=S梯形AECD-S△ADF-S△ECF即可求出结论;(3)根据旋转中心、旋转方向和旋转角的定义即可得出结论.【详解】解:(1)由图易知:由ABE△到ADF的旋转方向为逆时针旋转,∵四边形ABCD为正方形∴∠BAD=90°即旋转角为90°综上:旋转方向:逆时针旋转,旋转角:90°;(2)∵正方形ABCD的边长为3,1BE=∴AD=DC=BC=3,DF=BE=1∴EC=BE+BC=4,CF=DC-DF=2∴AEFS=S梯形AECD-S△ADF-S△ECF=12DC(AD+EC)-12AD·DF-12EC·CF=12×3×(3+4)-12×3×1-12×4×2=10.5 1.54--=5;(3)可以,∵在BAE△和ADG中,点A的对应点是点D,点B的对应点是点A,点E的对称点是点G∴作线段AD的对称轴和线段BA的对称轴交于点O,根据旋转中心的定义,由BAE△到ADG,点O即为旋转中心,由图易知旋转方向为顺时针旋转连接OA、OB,则∠BOA=90°即旋转角为90°综上:BAE△绕点O顺时针旋转90°得到ADG.【点睛】此题考查的是图形的旋转,掌握旋转的性质、旋转中心、旋转方向和旋转角的定义是解题关键.26.(1)443yx=+;(2)()3+124S m m=-<;()3124S m m=->;(3)能,70,8B⎛⎫⎪⎝⎭【分析】(1)根据OA、OC的长度结合图形可得出点A、C的坐标,再利用待定系数法即可求出直线AC的解析式;(2)根据点B的坐标可得出BC的长度,结合平行四边形的面积公式即可得出S关于m的函数关系式;(3)根据菱形的性质,利用勾股定理构建方程即可解决问题;【详解】解:(1)∵OA=3,OC=4,∴A(﹣3,0)、C(0,4).设直线AC的函数解析式为y=kx+b,将点A(﹣3,0)、C(0,4)代入y=kx+b中,得:304k bb-+=⎧⎨=⎩,解得:434kb⎧=⎪⎨⎪=⎩,∴直线AC的函数解析式为y=43x+4.(2)∵C(0,4) B (0,m)当点B在C点下方时BC=4-m,∴S=BC•OA=3(4-m)=-3m+12(m<4).当B点在C点上方时BC=m-4,∴S=BC•OA=3(m-4)=3m-12(m>4).(3)能,当四边形ABCD是菱形时,AB=BC 在RtΔAOB中 AB2=OA2+OB2=32+m2,∴32+m2=(4﹣m)2解得:m=78,∴B(0,78).【点睛】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题.。
【北师大版】九年级数学上期中一模试题(附答案)
一、选择题1.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒2.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .303.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .14.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )A .3种B .4种C .5种D .6种6.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个 7.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个8.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .209.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+11.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 12.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-413.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x+= C .220++=ax bx cD .223x x +=14.方程23x x =的根是( ) A .3x =B .0x =C .123,0x x =-=D .123,0x x ==二、填空题15.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,则该商店每月获得最大利润时,每顶头盔的售价为__________元.16.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.18.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.19.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 20.一元二次方程()422x x x +=+的解为__.三、解答题21.有这样一个问题:探究函数的图象()()2)3(1y x x x =---与性质.小东对函数()()23()1y x x x =---的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数()()23()1y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.②若()(),720,11,720M n N -为该函数图象上的两点,则n =(3)在平面直角坐标系xOy 中,如图所示,点()11,A x y 是该函数在23x ≤≤范围的图象上的最低点.①直线1y y =-与该函数图象的交点个数是②根据图象,直接写出不等式()()12()30x x x --->的解集.22.将边长为4的正方形ABCD与边长为5的正方形AEFG按图1位置放置,AD与AE 在同一条直线上,AB与AG在同一条直线上.将正方形ABCD绕点A逆时针旋转一周,直线EB与直线DG交于点P,(1)DG与BE的数量关系:______;DG与BE的位置关系:______.(2)如图2,当点B在线段DG上时,求ADG的面积.(3)连结PF,当42PE=时,求PF的值.23.某超市进了一款新型玩具,预计平均每天售出20个,每个玩具盈利25元.为了增加盈利,超市老板决定采取降价措施.销售价格每降低1元,超市平均每天多售出2个玩具.(1)若超市卖玩具平均每天盈利600元,每个玩具售价应降低多少元?(2)若使超市卖玩具平均每天的盈利最多,每个玩具售价应降低多少元?24.如图,抛物线213y x=-+向右平移1个单位得到抛物线2y.回答下列问题:(1)抛物线2y的顶点坐标是______.(2)求阴影部分的面积;(3)若再将抛物线2y 绕原点O 旋转180︒得到抛物线3y ,则抛物线3y 开口方向_____,顶点坐标是_____.25.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?26.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据旋转的性质可得,35A A ACA ''∠=∠∠=︒,再根据三角形的内角和定理可得A '∠的度数,由此即可得. 【详解】由旋转的性质得:,35A A ACA ''∠=∠∠=︒,90A DC '∠=︒,18055A A DC ACA '''∴∠=︒-∠-∠=︒, 55A A '∴∠=∠=︒, 故选:C . 【点睛】本题考查了旋转的性质、三角形的内角和定理,熟练掌握旋转的性质是解题关键.2.A解析:A【分析】根据旋转的性质找到对应点、对应角、对应线段作答. 【详解】解:∵3120B A ∠=∠=︒ ∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC , ∴∠D=∠A=40°,∠DEC=∠B=120°, ∴∠DCE=180°-40°-120°=20°, ∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°. 故选:A . 【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.3.B解析:B 【分析】连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值. 【详解】 解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2, ∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒, ∵P 是A B ''的中点,M 是BC 的中点, ∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线). 故选:B . 【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.4.C解析:C【分析】直接根据四边形AEHB的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°-∠E-∠BAE-∠ABH=360°-90°-35°-135°=100°.故选C.【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.C解析:C【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【详解】如图所示:,共5种,故选C.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.B解析:B【分析】画出图形,利用图象法解决问题即可.【详解】观察图象可知,满足条件的α的值为90°或180°或270°,故选B.【点睛】本题考查了旋转变换,轴对称的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.B解析:B 【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题; 【详解】∵ ()()22356y x x x x =--=-+,∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点; 故选:B . 【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键;8.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.9.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.10.B解析:B 【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可. 【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B 【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.11.A解析:A 【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案. 【详解】 解:2210xx +-=2212x x ++=∴2(1)2x +=,故选:A . 【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.12.B解析:B 【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论. 【详解】解:当k=0时,原方程为-4x+1=0, 解得:x=14, ∴k=0符合题意; 当k≠0时,∵方程kx 2-4x-1=0有实数根, ∴△=(-4)2+4k≥0, 解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4. 故选:B . 【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.D解析:D 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可. 【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误; C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误; D 223x x +=符合一元二次方程的定义,故D 正确; 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.D解析:D【分析】先把方程化为一般式,再把方程左边因式分解得x(x﹣3)=0,方程就可转化为两个一元一次方程x=0或x﹣3=0,然后解一元一次方程即可.【详解】解:∵x2=3x,∴x2﹣3x=0,∴x(x﹣3)=0,∴x=0或x=3,故选:D.【点睛】本题考查了利用因式分解法解一元二次方程ax2+bx+c=0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.二、填空题15.55【分析】根据题意可以得到利润和售价之间的函数关系然后化为顶点式即可得到当售价为多少元时利润达到最大值【详解】解:设每顶头盔的售价为x元获得的利润为w元w=(x−40)200+(60−x)×20=解析:55【分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【详解】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−40)[200+(60−x)×20]=−20(x−55)2+4500,∴当x=55时,w取得最大值,此时w=4500.故答案为:55.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.【分析】先根据二次函数的顶点在y轴上可得其对称轴为y轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y轴上此二次函数的对称轴为y轴即解得二次函数的解析式为其顶点坐标为故答案0,2解析:()【分析】先根据二次函数的顶点在y轴上可得其对称轴为y轴,从而求出m的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 17.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 19.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 20.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法 解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+ ()()4220x x x +-+=()()4120x x -+=114x =,22x =-.故答案是:114x =,22x =-. 【点睛】 本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.三、解答题21.(2)①60-;②7n =-; (3)①2;②12x <<或3x >【分析】(2)①通过观察表格,(-2,m ),(6,60)关于 (2,0)成中心对称即可; ②由于M 与N 的函数值互为相反数,()(),720,11,720M n N -关于(2,0)成中心对称,11-2=2-n 求出即可;(3)①由点()11,A x y 是该函数在23x ≤≤范围的图象的最低点,直线1y y =-与该函数图象的有一个交点()11,A x y ,与x <1部分还有一个交点即可; ②()()12()30x x x --->分四段讨论当x<1时,x-1,x-2,x-3,判断符号即可则,当1<x<2时,x-1,x-2,x-3, 判断符号即可则当2<x<3时,x-1,x-2,x-3,判断符号即可则 当x>3时,x-1,x-2,x-3,判断符号即可则即可求出 ()()12()30x x x --->的范围.【详解】(2)①通过观察表格,(-2,m ),(6,60)关于 (2,0)成中心对称,m=60-; ②()(),720,11,720M n N -为该函数图象上的两点,由于M 与N 的函数值互为相反数,()(),720,11,720M n N -关于(2,0)成中心对称,11-2=2-n ,n=-7;(3)①由点()11,A x y 是该函数在23x ≤≤范围的图象的最低点直线1y y =-与该函数图象的有一个交点()11,A x y ,与x <1部分还有一个交点,直线1y y =-与该函数图象的有一个交点有2个;②()()12()30x x x --->,分四段讨论,当x<1时,x-1<0,x-2<0,x-3<0,三负,则()()12()30x x x ---<,当1<x<2时,x-1>0,x-2<0,x-3<0,两负一正,则()()12()30x x x --->,当2<x<3时,x-1>0,x-2>0,x-3<0,两正一负,则()()12()30x x x ---<,当x>3时,x-1>0,x-2>0,x-3>0,三正,则()()12()30x x x --->,()()12()30x x x --->的范围是12x <<或3x >.【点睛】本题考查多次函数的图像与性质,根据给定的表格找出函数图像关于点(2,0)中心对称是解题关键.22.(1)相等;垂直;(2)4234ADG S =+△;(3)7PF =. 【分析】(1)由题意可得△DAG ≌△BAE ,从而可得DG=BE ,再利用全等三角形的性质和直角三角形的知识可以得知DG ⊥BE ;(2)连结AC 交DG 于点 O ,则由勾股定理可得OG 的长度,从而得到△ADG 的面积; (3)连结GE 并旋转△PGF 至△HEF ,由勾股定理即可得到正确解答.【详解】(1)在△DAG 与△BAE 中,DA=BA ,∠DAG=∠BAE=90°,AG=AE ,∴△DAG ≌△BAE ,∴DG=BE ,∠DGA=∠BEA ,∴∠BEA+∠GDE=∠DGA+∠GDE=90°,∴∠DPE=90°,∴DG ⊥BE ;(2)如图,当B 在线段DG 上时,连结AC 交DG 于点O ,则22AO =,()2252217OG =-=2217DG =(122172242342ADG S =⨯⨯=+△ (3)如图,连结GE ,以F 为中心旋转△FGP 至△FEH ,则与(1)类似有△DAG ≌△BAE ,∴∠DGA=∠BEA ,∴∠DGE+∠GEP=∠DGA+45°+∠GEP=45°+∠BEA+∠GEP=45°+45°=90°,∴∠GPE=90°, ∴()()2222524232PG GE PE =-=-=,由旋转性质可知∠FEH=∠FGP ,∴∠FEH+∠FEP=∠FGP+∠FEP=360°-(∠GFE+∠GPE )=360°-180°=180°,∴P 、E 、H 三点共线,且PFH △是等腰直角三角形,∵PH=PE+EH=PE+GP=423272=∴(222227298,49PF PH PF ====,PF=7. 【点睛】本题考查正方形的综合应用,灵活运用三角形全等的判定与性质、旋转的性质和勾股定理求解是解题关键.23.(1)若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元;(2)若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元【分析】(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元,根据题意列出方程()()20225600x x +-=,求解即可;(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元,则()()20225y x x =+-,利用二次函数的性质即可求解.【详解】解:(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元根据题意得,()()20225600x x +-=解这个方程得,1x 5=,210x =答:若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元根据题意得,()()20225y x x =+-∴()227.5612.5y x =--+ ∵20-<∴若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元.【点睛】本题考查一元二次方程的实际应用、二次函数的应用,理解题意并列出方程是解题的关键.24.(1)()1,3;(2)阴影部分的面积等于3;(3)向上,()1,3--.【分析】(1)根据抛物线的移动规律左加右减可直接得出抛物线y 2的解析式,再根据y 2的解析式求出顶点坐标即可;(2)根据阴影部分的面积等于底×高,列式计算即可;(3)先求出二次函数旋转后的开口方向和顶点坐标,从而得出抛物线y 3的解析式.【详解】解:(1)∵抛物线y 1=-x 2+3向右平移1个单位得到的抛物线y 2,∴抛物线y 2的顶点坐标为(1,3).故答案为:(1,3);(2)如图所示,根据平移前后图形的全等性,图中阴影部分的面积等于平行四边形ABCD 的面积.133ABCD S S ∴==⨯=阴影,即阴影部分的面积等于3.(3)∵将抛物线y 2绕原点O 旋转180°后,得到抛物线y 3的顶点坐标为:(-1,-3), ∴抛物线y 3的解析式为y 3=(x+1)2-3,开口方向向上.故答案为:向上,(-1,-2).【点睛】此题考查了二次函数的图象与几何变化,用到的知识点是二次函数的图象和性质、顶点坐标,关键是掌握二次函数的移动规律和几何变换.25.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 26.(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.。
2021-2022年九年级数学上期中第一次模拟试题(含答案)(2)
一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是( )A .掷一枚骰子,出现3点的概率B .抛一枚硬币,出现反面的概率C .任意写一个整数,它能被3整除的概率D .从一副扑克中任取一张,取到“大王”的概率2.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( ) A .14B .13C .512D .233.下列命题正确的是( )A 1x -x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为384.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是( ) A .316B .14C .168D .1165.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A .1m <- B .1m >-且0m ≠ C .1m >-D .1m ≥-且0m ≠6.为切实解决群众看病贵的问题,药监部门对药品价格进行了两次下调.某种药品原价为250元/瓶,经两次下调后价格变为160元/瓶,该药品平均每次降价的百分率为( ) A .10% B .15% C .20% D .25%7.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根8.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10 C .16(1+x )2=10D .10(1+x )2=169.如图,已知正方形ABCD 与正方形AEFG 的边长分别为4和1,若将正方形AEFG 绕点A 旋转,则在旋转过程中,点,C E 之间的最小距离为 ( )A .3B .421-C .321-D .4210.如图,以ABC 的每一条边为边作三个正方形.正方形ABIH 的顶点H 恰好在ED 边上,记DHK △的面积为1S ,AHE 的面积为2S ,ABC 的面积为3S ,四边形CJIK 的面积为4S ,四边形BFGJ 的面积为5S .若12534S S S S S ++=+,则3S 与4S 的大小关系式成立的是( )A .34S S >B .34S S =C .34S S <D .无法判断11.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =AF 的长是( )A .6 B .7 C .3D .512.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒二、填空题13.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球25个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为_________.14.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.15.若12x x 、是一元二次方程2310x x -+=的两个根,则1211+x x =___________.16.已知△ABC 中,AB=3,AC=5,第三边BC 的长为一元二次方程x 2﹣9x+20=0的一个根,则该三角形为_____三角形.17.一元二次方程221x x -=的两根α、β,则αβαβ++⋅=______.18.如图,在平面直角坐标系中,边长为1的正方形1111D C B A (记为第1个正方形)的顶点1A 与原点重合,点1B 在y 轴上,点1D 在x 轴上,点1C 在第一象限内,以1C 为顶点作等边122C A B ,使得点2A 落在x 轴上,22A B x ⊥轴,再以22A B 为边向右侧作正方形2222A B C D (记为第2个正方形),点2D 在x 轴上,以2C 为顶点作等边233C A B ,使得点3A 落在x 轴上,33A B x ⊥轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为_________.19.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.20.如图,在平面直角坐标系中,长方形OABC 的边OA 在x 轴上,OC 在y 轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E ,交AC 于点D .若y 轴上有一点P (不与点C 重合),能使△AEP 是以为 AE 为腰的等腰三角形,则点 P 的坐标为____.三、解答题21.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中一门.某班班主任对全班同学的选修情况进行了调查统计,制成了两幅不完整的统计图(图①和图②):(1)请你求出该班的总人数,并补全条形图;(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?22.有三张背面完全相同的、、A B C 三张卡片,其正面分别画有三种不同的图形:双曲线、抛物线、圆,现将三张卡片背面朝上后洗均匀(1)从中任意摸出一张卡片,求摸到的卡片上画有中心对称图形的概率;(2)从中任意摸出一张卡片,放回洗匀后再摸出一张,请用树状图或者列表法求两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形的概率 23.用适当的方法求解下列方程: (1)2210x x --=;(2)2(4)5(4)x x +=+.24.解方程:3(x ﹣2)2=x (2﹣x ).25.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形26.若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图1,在四边形ABCD 中,AB AD CB CD ==,,判断四边形ABCD 是否为垂美四边形,并说明理由;(2)性质探究:如图2,试在垂美四边形ABCD 中探究2AB 、2BC 、2CD 、2AD 之间的数量关系;(3)解决问题:如图3,分别以Rt △ABC 的直角边AC 和斜边AB 为边向外作正方形ACFD 和正方形ABGE ,连接BD 、CE 、DE ,CE 分别交AB 、BD 于点M 、N ,若AB =2,AC 3,求线段DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.B解析:B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况, ∴组成的两位数是3的倍数的概率是:41123=. 故选:B 【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B 【分析】分别分析各选项的题设是否能推出结论,即可得到答案. 【详解】解:1x -x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B. 【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.4.B解析:B 【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可. 【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41164= 故选:B. 【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.5.B解析:B 【分析】利用判别式大于零和二次项系数不为零求解即可. 【详解】∵方程2210mx x +-=有两个不相等的实数根, ∴m≠0,且△>0, ∴m≠0,且224m +>0, ∴1m >-且0m ≠, 故选B . 【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.6.C解析:C 【分析】设该药品平均每次降价的百分率为x ,根据题意列方程求解即可. 【详解】解:设该药品平均每次降价的百分率为x ,根据题意得, 250(1-x )2=160,解得,x 1=0.2,x 2=1.8(舍去),答:该药品平均每次降价的百分率为20%; 故选:C . 【点睛】本题考查了一元二次方程的应用—增长率(或下降率)问题,解题关键是熟知增长率(或下降率)问题的数量关系,结合题意列方程.7.A解析:A 【分析】根据新定义运算法则以及利用△>0可判断方程根的情况. 【详解】解:由题意可知:1☆x=x 2-x-1=0, ∴△=1-4×1×(-1)=5>0, ∴有两个不相等的实数根 故选:A . 【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.D解析:D 【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可. 【详解】设增长率为x ,根据题意得210(1)16x +=. 故选:D . 【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).9.B解析:B 【分析】连接CE 、AC ,根据正方形ABCD 与正方形AEFG 的边长分别为4和1,可以求出AC 的长,又因为CE≥AC -AE ,所以当A 、E 、C 三点共线时取等号,即可求值; 【详解】如图,连接CE 、AC ,已知正方形ABCD 与正方形AEFG 的边长分别为4和1, ∴ AB=BC=4,AE=1,由勾股定理得:222AC AB BC =+ , ∴224442AC =+=∵ CE≥AC -AE , ∴CE≥421-,∴CE 的最小值为421-, 故选:B .【点睛】本题考查了正方形的性质、勾股定理、以及三角形的三边关系,正确掌握知识点是解题的关键.10.B解析:B 【分析】设,,AC b BC a AB c ===,则有22125,BCJACKH S S S b SS a ++=+=四边形,234+BCJACKH S S S Sc ++=四边形,进而可得△ABC 是直角三角形,然后由正方形的性质可证△ABJ ≌△BIK ,最后根据等积法可求解. 【详解】解:∵四边形ACDE 、ABIH 、BCGF 都是正方形, ∴AB=AH=BI ,AC=AE ,∠ABI=∠BIK=90°,∠GCB=90°, 设,,AC b BC a AB c ===,则有22125,BCJACKH S S S b SS a ++=+=四边形,234+BCJACKH S S S Sc ++=四边形,∵12534S S S S S ++=+, ∴222+=a b c ,∴△ABC 是直角三角形, ∴∠ACB=90°, ∴A 、C 、G 三点共线,∵∠JAB+∠ABC=90°,∠KBI+∠ABC=90°, ∴∠JAB=∠KBI , ∵∠ABJ=∠BIK=90°, ∴△ABJ ≌△BIK (ASA ),ABJ BIKSS∴=,∵34,+ABJBCJBIKBCJSS SSS S=+=,∴34S S =; 故选B . 【点睛】本题主要考查正方形的性质及勾股定理,熟练掌握正方形的性质及勾股定理是解题的关键.11.C解析:C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论. 【详解】 ∵AB ⊥AF , ∴∠FAB=90°, ∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B,∵∠AEB=2∠B,∴∠AED=∠ADE,∴AE=AD,∴AE=AD=4,∵,EF⊥AF,∴==3,故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt△ABE中,∠ABE=90°-∠AEB=26°.故选D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】袋中黑球的个数为x利用概率公式得到然后解方程即可【详解】解:设袋中黑球的个数为x根据题意得解得:经检验x=20是所列方程的解且符合实际所以袋中黑球的个数为个故答案为:【点睛】本题考查了概率公解析:20.【分析】袋中黑球的个数为x ,利用概率公式得到51,52510x =++然后解方程即可. 【详解】 解:设袋中黑球的个数为x , 根据题意得51,52510x =++ 解得:20,x = 经检验,x=20是所列方程的解且符合实际,所以袋中黑球的个数为20个.故答案为:20.【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.14.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对 解析:22【分析】袋中黑球的个数为x ,利用概率公式得到5152310x =++,然后利用比例性质求出x 即可.【详解】解:设袋中黑球的个数为x , 根据题意得5152310x =++,解得22x =, 即袋中黑球的个数为22个.故答案为:22.【点睛】 本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.15.3【分析】根据韦达定理可得将整理得到代入即可【详解】解:∵是一元二次方程的两个根∴∴故答案为:3【点睛】本题考查韦达定理掌握是解题的关键 解析:3【分析】根据韦达定理可得123x x +=,121=x x ,将1211+x x 整理得到1212x x x x +,代入即可. 【详解】解:∵12x x 、是一元二次方程2310x x -+=的两个根,∴123x x +=,121=x x ,∴121212113x x x x x x ++==, 故答案为:3.【点睛】 本题考查韦达定理,掌握12b x x a +=-,12c x x a=是解题的关键. 16.直角或等腰【分析】先解方程再根据三角形的三边关系定理求得第三边的范围即可得出第三边再根据勾股定理的逆定理得出该三角形的形状【详解】解一元二次方程x2﹣9x+20=0得:x=4或5∵AB=3AC=5∴解析:直角或等腰【分析】先解方程,再根据三角形的三边关系定理求得第三边的范围,即可得出第三边,再根据勾股定理的逆定理得出该三角形的形状.【详解】解一元二次方程x 2﹣9x +20=0,得:x =4或5,∵AB =3,AC =5,∴2<BC <7,∵第三边BC 的长为一元二次方程x 2﹣9x +20=0的一个根,∴BC =4或5,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形;当BC =5时,BC =AC ,△ABC 是等腰三角形;故答案为直角或等腰.【点睛】本题考查了一元二次方程的解法、等腰三角形的判定、勾股定理的逆定理,注意分类讨论思想的应用.17.1【分析】根据根与系数的关系得到+=2=-1把+和的值代入求出代数式的值【详解】解:∵是一元二次方程()的两根∴+=2=-1∴2-1=1故答案为:1【点睛】本题考查了一元二次方程根与系数的关系利用根解析:1【分析】根据根与系数的关系,得到α+β=2,αβ=-1,把α+β和αβ的值代入,求出代数式的值.【详解】解:∵α、β是一元二次方程221x x -=(2210x x --=)的两根,∴α+β=2,αβ=-1,∴αβαβ++⋅=2-1=1.故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,利用根与系数的关系求出代数式的值.18.【分析】根据等边三角形的性质求出第23个正方形的边长发现规律即可求解【详解】依题意可得:第一个正方形的边长为1∴C1D1=1∠C1D1A2=90°∵是等边三角形是正方形∴∠B2A2C1=60°∠B2解析:20202【分析】根据等边三角形的性质求出第2,3个正方形的边长,发现规律即可求解.【详解】依题意可得:第一个正方形的边长为1,∴C 1D 1=1,∠C 1D 1A 2=90°,∵122C A B 是等边三角形,2222A B C D 是正方形,∴∠B 2A 2C 1=60°,∠B 2A 2D 2=90°,∴∠C 1A 2D 1=30°,∴A 2B 2=A 2C 1=2C 1D 1=2,∴正方形2222A B C D 的边长为2=21,同理可得:正方形3333A B C D 的边长=2A 2B 2=4=22,…∴正方形n n n n A B C D 的边长=2n-1,其中n 为正整数,∴第2021个正方形的边长为20202,故答案为:20202.【点睛】此题主要考查图形与坐标规律变化、等边三角形与正方形的性质,解题的关键是根据题意发现边长的变化规律.19.【分析】根据菱形对角线互相垂直且平分的性质得到点B 的对称点为点D 再由两点之间线段最短解得的最小值再根据题意判定是等边三角形结合三线合一及勾股定理解题【详解】如图连接BD 交AC 于点O 连接DM 交点AC 于【分析】根据菱形对角线互相垂直且平分的性质,得到点B 的对称点为点D ,再由两点之间线段最短解得MP PB +的最小值,再根据题意判定ADM △是等边三角形,结合三线合一及勾股定理解题.【详解】如图,连接BD 交AC 于点O ,连接DM 交点AC 于点P ,连接BP ,在菱形ABCD 中,AC BD ⊥,且OB=OD 即点B 关于AC 的对称点是点D ,PD PB ∴=MP PB MP DP DM ∴+=+=此时MP PB +值的最小,AB=AD ,60BAD ∠=︒,ADB∴是等边三角形,点M是AB边的中点,AB DM∴⊥,1AM∴=22213DM∴=-=.【点睛】本题考查菱形的性质、两点之间线段最短、等边三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.或【分析】设AE=m根据勾股定理求出m的值得到点E(1)设点P坐标为(0y)根据勾股定理列出方程即可得到答案【详解】∵对角线AC的垂直平分线交AB于点E∴AE=CE∵OA=1OC=2∴AB=OC=2解析:3(0,)4,3(0,)4-或1(0,)2【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,54),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案.【详解】∵对角线 AC的垂直平分线交AB 于点E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m,则BE=2-m,CE=m,∴在Rt∆BCE中,BE2+ BC2=CE2,即:(2-m)2+12=m2,解得:m=54,∴E(1,54),设点P坐标为(0,y),∵△AEP是以为 AE 为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=34±,当EP=AE,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12,∴点 P的坐标为3(0,)4,3(0,)4-,1(0,)2,故答案是:3(0,)4,3(0,)4-,1(0,)2.【点睛】本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.三、解答题21.(1)50人,图见详解;(2)1 3 .【分析】(1)由篮球人数及其所占百分比可得总人数,再进一步求出足球和羽毛球人数即可补全图形;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解.【详解】(1)该班的总人数为:1734%50÷=(人),足球科目人数为:5014%7⨯=(人)羽毛球科目人数为:501771259----=(人),补全统计图如图所示:(2)设选修排球的记为A,选修羽毛球记为1B和2B,选修乒乓球记为C.画树状图为:共有12种等可能的结果,其中恰好有1人选修排球、1人选修羽毛球的占4种,所以()1141123P ==恰好有人选修排球、人选修羽毛球. 【点睛】 本题考查了统计与概率,解题的关键是利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.22.(1)23;(2)49. 【分析】(1)先确定三张卡片中画有中心对称图形的个数,然后根据概率的意义解答即可; (2)画出树状图,然后根据概率公式列式计算即可.【详解】解:(1)双曲线、抛物线、圆中是中心对称图形的有双曲线和圆两张卡片, ∴从中任意摸出一张卡片,摸到的卡片上画有中心对称图形的概率P 为23; (2)三种图形中既是中心对称图形又是轴对称图形的是双曲线和圆,∴两次都摸到A 或C 卡片时满足题意,根据题意列树状图如下:一共9种情况,两次摸到的卡片是A 或C 的有4种情况,∴两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形概率P 为49. 【点睛】 本题考查了概率的意义以及通过列树状图或列表法求概率,属于基础题,熟练掌握列树状图或列表法求概率是解决本题的关键.23.(1)112x =212x =-2)14x =-,21x =【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可.【详解】解:(1)这里1a =,2b =-,1c =-∵()()224241180b ac -=--⨯⨯-=>,∴2121x ±==⨯即11x =+21x =-(2)∵()()2454x x +=+,∴()()24540x x +-+=, 则()()410x x +-=,∴40x +=或10x -=,解得14x =-,21x =.【点睛】本题考查了一元二次方程的解法,解题关键是根据方程的特点选择恰当的解法解方程. 24.x 1=2,x 2=32. 【分析】先移项,再提取公因式(x-2),可得两个一元一次方程,解方程即可得答案.【详解】3(x ﹣2)2=x (2﹣x )移项得:3(x ﹣2)2+x (x ﹣2)=0,提取公因式得:(x ﹣2)(3x ﹣6+x )=0,∴x ﹣2=0或3x ﹣6+x =0,解得:x 1=2,x 2=32. 【点睛】本题考查了解一元二次方程——因式分解法.因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.25.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.26.(1)是,见解析;(2)2222AB CD BC AD +=+;(3)13DE =【分析】(1)证法一:证明△ABC ≌△ADC ,即可得解;证法二:根据垂直平分线的性质证明即可;(2)根据勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理计算即可;【详解】解:(1)如图1,四边形ABCD 是垂美四边形.理由如下:证法一:∵AB AD CB CD ==,,AC =AC ,∴△ABC ≌△ADC .∴∠BAC =∠DAC .∴AC 是等腰三角形ABD 顶角∠BAD 的平分线.∴AC BD ⊥.∴四边形ABCD 是垂美四边形. 证法二:连结AC 、BD 交于点E .∵AB AD =,∴点A 在线段BD 的垂直平分线上. ∵CB CD =,∴点C 在线段BD 的垂直平分线上. ∴直线AC 是线段BD 的垂直平分线. ∴AC BD ⊥.∴四边形ABCD 是垂美四边形.(2)如图2,在垂美四边形ABCD 中, ∵AC BD ⊥于点O ,∴∠AOB =∠BOC =∠COD =∠AOD =90°. ∴222AB AO BO =+.222BC BO CO =+.222CD CO DO =+.222AD AO DO =+.∴222222AB CD AO BO CO DO +=+++. 222222BC AD BO CO AO DO +=+++. ∴2222AB CD BC AD +=+. (3)分别连结CD 、BE ,如图3,∵∠CAD =∠BAE =90°,∴CAD BAC BAE BAC ∠+∠=∠+∠. 即DAB CAE ∠=∠.在DAB ∆和CAE ∆中,AD AC DAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴DAB CAE ∆≅∆.∴ABD AEC ∠=∠.∵∠BAE =90°,∴90AEC AME ∠+∠=︒. ∴90ABD BMN ∠+∠=︒. ∴90BNM ∠=︒,即BD CE ⊥. ∴四边形CDEB 是垂美四边形. 由(2)得:2222DE BC CD BE +=+. ∵AB =AE =2,AC =AD,∴222226CD AC AD =+=+=. 22222228BE AB AE =+=+=.2222221BC AB AC =-=-=. ∴222268113DE CD BE BC =+-=+-=.∴DE =【点睛】本题主要考查了四边形综合,结合勾股定理、垂直平分线的性质计算是解题的关键.。
2021-2022年九年级数学上期中第一次模拟试题(带答案)(2)
一、选择题1.连续掷两次骰子,出现点数之和等于4的概率为( ) A .136B .118C .112D .192.一个不透明的袋子装有除颜色外其余均相同的2个白球和n 个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n 的值为( ) A .2B .4C .8D .103.经过一T 字型路口的行人,可能右拐,可能左拐.假设这两种可能性相同.有3人经过该路口,至少一人左拐的概率为( ) A .14B .38C .34D .784.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( ) A .6个 B .10个C .15个D .30个5.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+=6.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2-B .3-C .4-D .6-7.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( ) A .4B .4-C .2-D .28.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定 9.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为( )A .4B .C .2D .110.正方形具有而矩形没有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等11.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:① DF CF =;②BF EN ⊥;③BEN 是等边三角形;④3BEF DEF S S =△△. 其中,将正确结论的序号全部选对的是( )A.①②③B.①②④C.②③④D.①②③④12.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为().A.3 B.32C.23D.32 2二、填空题13.如图,五一黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从D,E出口离开的概率是______.14.袋中有6个黑球和n个白球,经过若干次试验,发现“若从中任意摸一个球,恰好摸到白球的概率为14”,则这个袋中的白球大约有_____个.15.已知关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,则m 的取值范围是_____.16.如图,在一个长为40 m,宽为26m的矩形花园中修建小道(图中阴影部分),其中mAB CD EF GH x====,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为2864m,那么x=______m.17.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.18.如图,AC 是菱形ABCD 的对角线,P 是AC 上的一个动点,过点P 分别作AB 和BC 的垂线,垂足分别是点F 和E ,若菱形的周长是12cm ,面积是6cm 2,则PE +PF 的值是_____cm .19.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm ,则矩形的面积为_____cm 2.20.如图,在平面直角坐标系中,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (4,1)在AB 边上,把△CDB 绕点C 旋转90°,点D 的对应点为点D ′,则OD ′的长为_________.三、解答题21.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x 分频数(人数)第1组 5060x ≤< 6 第2组 6070x ≤< 8 第3组 7080x ≤< 14 第4组 8090x ≤< a 第5组90100x ≤<10请结合图表完成下列各题:(1)①表中a 的值为_________,中位数在第_________组:②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率. 22.在甲、乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字2,3,4,5,乙口袋中的小球上分别标有数字3,4,5,小明先从甲袋中任意摸出一个小球,记下数字为m ,小张从乙袋中任意摸出一个小球,记下数字为n .(1)从甲袋摸出一个小球,则小球上的数字使代数式2712x x -+的值为0的概率; (2)若m ,n 都是方程27120x x -+=的解时,则小明获胜;若m ,n 都不是方程27120x x -+=的解时,则小张获胜;问他们两人谁获胜的概率大.23.2020年,受新冠疫情影响,众多学校开展了“停课不停学”的线上教学活动,因此,手写板的需求量大幅上升.某网店抓住时机销售A ,B 两款手写板,A 型手写板的单价为360元,B 型手写板的单价为240元.(1)商家在1月共销售两种型号手写板600个,若A 型手写板的销售额不低于B 型手写板销售额的3倍,求1月A 型手写板至少售出多少个?(2)该商家在2月继续销售这两种型号的手写板并适当的进行了调整,A 型手写板的售价降低了13a%.B 型手写板的销价不变.结果A 型手写板的销售量在1月最低销售量的基础上增加了43a%,B 型手写板的销售量在一月保证A 最低销量的基础上增加了15a%,结果2月两种手写板的总销售额比1月两种手写板的总销售额增加了35a%,求a 的值. 24.先化简,再求值:22221444x x x x x x -+⎛⎫-÷ ⎪-++⎝⎭,其中x 满足220x x +-=. 25.如图,在ABC 中,90,3,4BAC AB AC ︒∠===,点D 是BC 的中点,将ABD △沿AD 翻折得到AED ,联结CE .(1)求证://AD CE ; (2)求CE 的长.26.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AB ∥CD ,AB=CD ,且OA=OD .(1)求证:四边形ABCD 是矩形;(2)DF ⊥AC 于点F ,若∠ADF :∠FDC=3:2,则∠BDF 的度数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可. 【详解】 解:如图所示: 1234564的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n=0.2,解得:n=8.故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.3.D解析:D【分析】用树状图列举出所有等可能的情况,去掉至少一人左拐的次数,利用概率计算公式求解.【详解】树状图如下:共有8种等可能的情况,其中至少一人左拐的有7种, ∴P (至少一人左拐)=78, 故选:D . 【点睛】此题考查用树状图求事件的概率,概率的计算公式,正确理解题意并列举所有可能的情况是解题的关键.4.C解析:C 【分析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可. 【详解】∵共试验400次,其中有240次摸到白球,∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个,则0.610xx =+, 解得:x=15,∴盒子中的白球大约有15个, 故选:C . 【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.5.D解析:D 【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可; 【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意; B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意;C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意. 故选:D . 【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.6.A解析:A 【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可. 【详解】解:把1x =代入220x ax b ++=得,120a b ++=, ∴21a b +=-, ∴242a b +=-, 故选:A . 【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.7.C解析:C 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:由一元二次方程根与系数的关系得:12x x +=-ba =4-2=-2.故选:C . 【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-ba ,12c x x a⋅=.8.A解析:A 【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解. 【详解】解:3b c -=,3c b ∴=-,220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =-- 2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A . 【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.9.C解析:C 【分析】先画出图形,再根据菱形的性质、等边三角形的判定与性质即可得. 【详解】如图,由题意得:菱形ABCD 的周长为8,120ABC ∠=︒,82,604AB AD A ∴===∠=︒, ABD ∴是等边三角形, 2BD AB ∴==, A ABC ∠<∠,∴该菱形较短的对角线长为2BD =,故选:C .【点睛】本题考查了菱形的性质、等边三角形的判定与性质,熟练掌握菱形的性质是解题关键.10.B解析:B 【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直. 【详解】解:A 、正方形和矩形对角线都互相平分,故A 不符合题意,B 、正方形对角线平分对角,而矩形对角线不平分对角,故B 符合题意,C 、正方形和矩形对角线都相等,故C 不符合题意,D 、正方形和矩形的对边都相等,故D 不符合题意. 故选:B . 【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.11.B解析:B 【分析】由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断①; 易求得∠BFE =∠BFN ,则可得BF ⊥EN ,即可判断②;易证得△BEN 是等腰三角形,但无法判定是等边三角形,即可判断③;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断④. 【详解】∵四边形ABCD 是矩形, ∴∠D =∠BCD =90°,DF =MF , 由折叠的性质可得:∠EMF =∠D =90°, 即FM ⊥BE ,CF ⊥BC , ∵BF 平分∠EBC , ∴CF =MF ,∴DF =CF ;故①正确;∵∠BFM =90°−∠EBF ,∠BFC =90°−∠CBF , ∴∠BFM =∠BFC , ∵∠MFE =∠DFE =∠CFN , ∴∠BFE =∠BFN , ∵∠BFE +∠BFN =180°, ∴∠BFE =90°, 即BF ⊥EN ,故②正确; ∵在△DEF 和△CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∴△DEF ≌△CNF (ASA ), ∴EF =FN , ∴BF 垂直平分EN , ∴BE =BN ,假设△BEN 是等边三角形,则∠EBN =60°,∠EBA =30°,则AE=12 BE,又∵AE=12AD,则AD=BC=BE,而明显BE=BN>BC,∴△BEN不是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.故选:B.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.12.C解析:C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【详解】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6-x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6-x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC故选:C.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果可求得小红从入口A进入景区并从CD出口离开的情况再利用概率公式求解即可求得答案【详解】解:画树形图如图得:由树形图可知所有可能的结果有6解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得小红从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从E,D出口离开的概率是P,∵小红从入口A进入景区并从E,D出口离开的有2种情况,∴P=21=63.故答案为:13.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.2【解析】分析:根据若从中任摸一个球恰好是白球的概率为列出关于n的方程解方程即可详解:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是白球的概率为=解得:n=2故答案为2解析:2【解析】分析:根据若从中任摸一个球,恰好是白球的概率为14,列出关于n的方程,解方程即可.详解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个.∵从中任摸一个球,恰好是白球的概率为146nn∴+,=14,解得:n=2.故答案为2.点睛:本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.15.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.16.2【分析】设小道进出口的宽度为x米然后利用其种植花草的面积为864m2列出方程求解即可【详解】解:设小道进出口的宽度为x米依题意得(402x)(26x)=864整理得x246x+88=0解得x1=2解析:2【分析】设小道进出口的宽度为x米,然后利用其种植花草的面积为864m2列出方程求解即可.【详解】解:设小道进出口的宽度为x米,依题意得(40-2x)(26-x)=864,整理,得x2-46x+88=0.解得,x1=2,x2=44.∵44>40(不合题意,舍去),∴x=2.答:小道进出口的宽度应为2米.故答案为:2.【点睛】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为864m2找到正确的等量关系并列出方程.17.-2【分析】把-1代入方程求m 再把m 代回方程解方程即可;或用根与系数关系可求【详解】解:方法一把-1代入方程得解得m=2代入原方程得解得故答案为:-2;方法二设另一个根是a 根据根与系数关系a×(-1解析:-2 【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求. 【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=, 解得,121,2x x =-=-, 故答案为:-2;方法二,设另一个根是a , 根据根与系数关系,a ×(-1)=2, a =-2, 故答案为:-2 【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.18.2【分析】连接BP 根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =S △ABP +S △BPC =AB•PE +BC•PE 把相应的值代入即可【详解】解:连接BP ∵四边形ABCD 是菱形解析:2 【分析】连接BP ,根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =12ABCD S 菱形,S △ABP +S △BPC =12AB•PE +12BC•PE 把相应的值代入即可. 【详解】 解:连接BP ,∵ 四边形ABCD 是菱形,且周长是12cm ,面积是6cm 2∴AB =BC =14×12=3(cm ), ∵AC 是菱形ABCD 的对角线,∴ S △ABC =S △ABP +S △BPC =12ABCD S 菱形=3(cm 2), ∴S △ABP +S △BPC =12AB•PE +12BC•PE =3(cm 2), ∴12×3×PE +12×3×PF =3, ∴PE +PF =3×23=2(cm ), 故答案为:2. 【点睛】此题考查菱形的性质,S △ABP +S △BPC =S △ABC =12ABCD S 菱形是解题的关键.注意掌握辅助线的作法和数形结合思想的应用.19.25【分析】根据和谐矩形的性质求出∠ADB =30°由含30°角的直角三角形的性质求出ABAD 的长即可得出答案【详解】解:∵四边形ABCD 是和谐矩形∴OA =OCOB =ODAC =BD =10∠BAD =90解析:3 【分析】根据“和谐矩形”的性质求出∠ADB =30°,由含30°角的直角三角形的性质求出AB 、AD 的长,即可得出答案. 【详解】解:∵四边形ABCD 是“和谐矩形”,∴OA =OC ,OB =OD ,AC =BD =10,∠BAD =90°,∠CAD :∠BAC =1:2, ∴OA =OD ,∠CAD =30°,∠BAC =60°, ∴∠ADB =∠CAD =30°, ∴AB =12BD =5,AD 3=3 ∴矩形ABCD 的面积=AB ×AD =33cm 2);故答案为:253.【点睛】本题考查了矩形的性质、新定义、等腰三角形的性质、含30°角的直角三角形的性质等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质是解题的关键.20.3或【分析】由题意可分为逆时针旋转和顺时针旋转进行分析分别求出点OD′的长即可得到答案【详解】解:因为点D(41)在边AB上所以AB=BC=4BD=4-1=3;(1)若把△CDB顺时针旋转90°则点解析:3或73【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,所以AB=BC=4,BD=4-1=3;(1)若把△CDB顺时针旋转90°,则点D′在x轴上,OD′=BD=3,所以D′(-3,0);OD'=;∴3(2)若把△CDB逆时针旋转90°,则点D′到x轴的距离为8,到y轴的距离为3,所以D′(3,8),∴223873OD'=+=故答案为:373【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.三、解答题21.(1)12;3;补充的频数分布直方图见解析;(2)44%;(3)13【分析】(1)①根据题意和表中的数据可以求得a 的值;②将5个组的人数从小到大排序,处于中间位置的数即为中位数;③由表格中的数据可以将频数分布表补充完整; (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意画树状图可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率. 【详解】解:(1)①由题意和表格,可得:5068141012a =----=, 故答案为:12;成绩的中位数是第25和第26的平均数,且前三组人数和为28人 ∴中位数处于第3组, 故答案为:3;②补充完整的频数分布直方图如下图所示:(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:1210100%44%50+⨯=; (3)用A 表示小明,B 表示小强,C 、D 表示其他两名同学, 根据题意画树状图如下:从上图可知共有12种等可能情况,小明与小强两名男同学分在同一组的情况有4种,则小明与小强两名男同学分在同一组的概率是P =412=13. 【点睛】此题主要考查频数分布直方图及概率的求解,解题的关键是熟知统计调查的知识及树状图的画法. 22.(1)12;(2)小明获胜的概率大. 【分析】(1)先解方程,根据概率公式即可得出概率;(2)列出表格,分别计算出小明和小张获胜的概率,比较即可. 【详解】解:(1)当代数式2712x x -+的值为0时,27120x x -+=,解得123,4x x ==,所以,从甲袋摸出一个小球,则小球上的数字使代数式2712x x -+的值为0的概率为:2142=; (2)列表如下:故小明获胜的概率为:41123=; 都不是该方程的解的可能性有2种,故小张获胜的概率为21126=, 所以,小明获胜的概率大. 【点睛】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式;正确列出表格是解题的关键.23.(1)A 型手写板至少售出400个;(2)60a =. 【分析】(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意列出不等式求解即可;(2)根据售价×销量=销售额,别表示出A 型手写板和B 型手写板的销售额相加等于总销售额列出方程求解即可. 【详解】解:(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意3603240(600)x x ≥⨯-,解得400x ≥,故A 型手写板至少售出400个;(2)由(1)得,A 型手写板售出400个,B 型手写板售出200个, 根据题意可知1413360(1%)400(1%)240200(1%)(400360200240)(1%)3355a a a a -⨯++⨯+=⨯+⨯+解得:60a =或0a =(舍去). 所以60a =. 【点睛】本题考查一元一次不等式的应用,一元二次方程的应用.根据题意找出等量或者不等量关系,列出方程(不等式)是解题关键.(2)中计算过程较为复杂,可先领%y a =,求出y 后,再求a .24.2x x +,3 【分析】根据分式的加减乘除运算法则进行运算化简,再解方程把x 的值代入计算即可求出值. 【详解】解:22221444x x x x x x -+⎛⎫-÷ ⎪-++⎝⎭22(1)1(2)(2)(2)x x x x x x ⎡⎤-+=-÷⎢⎥+-+⎣⎦21(2)12(1)x x x x +⎛⎫=-⋅⎪++⎝⎭ 221(2)2(1)x x x x x +-+=⋅++ x 2x+=, 由220x x +-=,解得12x =-,21x =. 要使分式有意义,则1x =, ∴当1x =时,原式1231+==. 【点睛】本题主要考查了分式的化简求值,解一元二次方程,解题的关键是掌握分式混合运算顺序和运算法则.25.(1)见解析;(2)75【分析】(1)先根据直角三角形斜边上的中线等于斜边的一半得AD CD BD ==,再由折叠的性质得BD ED =,ADE ADB ∠=∠,再由外角和定理得DCE DEC EDB ADE ADB ∠+∠=∠=∠+∠,则DEC ADE ∠=∠,即可证明结论;(2)利用勾股定理求出BC 的长,由(1)得1522AD BC ==,设DF x =,则52AF x =-,在Rt ABF 和Rt BDF 中,利用勾股定理列式求出x 的值,再根据中位线定理得到2CE DF =即可. 【详解】解:(1)∵90BAC ∠=︒,D 是BC 中点, ∴AD CD BD ==, ∵折叠,∴BD ED =,ADE ADB ∠=∠, ∵CD BD ED ==, ∴DCE DEC ∠=∠,∵DCE DEC EDB ADE ADB ∠+∠=∠=∠+∠, ∴22DEC ADE ∠=∠,即DEC ADE ∠=∠, ∴//AD CE ;(2)∵90BAC ∠=︒,3AB =,4AC =, ∴5BC =, 由(1)知1522AD BC ==, 设DF x =,则52AF x =-, ∵折叠,∴AD 是BE 的垂直平分线, 在Rt ABF 和Rt BDF 中,222BF AB AF =-,222BF BD DF =-,∴2222AB AF BD DF -=-,即22525924x x⎛⎫--=- ⎪⎝⎭,解得710x =,∵D 、F 分别是BC 和BE 的中点,∴725CE DF ==. 【点睛】本题考查折叠的性质,中位线定理,直角三角形斜边上中线的性质,解题的关键是掌握这些性质定理进行证明求解. 26.(1)详见解析;(2)18° 【分析】(1)利用对边平行且相等证明四边形ABCD 是平行四边形,再利用对角线相等的平行四边形是矩形,即可证明四边形ABCD 是矩形;(2)先求出∠FDC=36°,再求出∠OCD =∠ODC=54°,即可求出∠BDF . 【详解】(1)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴∠ADC=90°,OC=OD,∴∠ODC=∠OCD,∵∠ADF:∠FDC=3:2,∴∠ADF=54°,∠FDC=36°,∵DF⊥AC,∴∠OCD=∠ODC=90°-∠FDC=54°,∴∠BDF=∠ODC-∠FDC=54°-36°=18°.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.。
【人教版】九年级数学上期中一模试卷带答案
一、选择题1.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP=D .2ABCAEPF S S =四边形2.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( )A .第二象限B .第三象限C .第四象限D .第二或第四象限3.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .134.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-13)B 3-1)C .(31-,)D .(-2,1)5.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能6.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案7.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m的值可以是( ) A .1B .0C .1-D .2-8.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+D .2(1)1y x =-+11.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b12.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根13.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-14.如图,是一个简单的数值运算程序,则输入x 的值为( )A .31+B .31-+C .31+或31-+D .无法确定二、填空题15.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.16.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.17.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.18.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.19.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.20.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.三、解答题21.在平面直角坐标系中,矩形OABC 如图所示放置,点A 在x 轴上,点B 的坐标为(2,1).将此矩形绕点O 逆时针旋转90°,得到矩形OA B C '''.(1)求过点A 、A '、C '的抛物线的解析式;(2)将矩形OABC 沿x 轴正方向平移,使点C 落在抛物线上,求平移的距离. 22.实践与探究已知:△ABC 和△DOE 都是等腰三角形,∠CAB=∠DOE=90°,点O 是BC 的中点,发现结论:(1)如图1,当OE 经过点A ,OD 经过点C 时,线段AE 和CD 的数量关系是 ,位置关系是 .(2)在图1的基础上,将△DOE 绕点O 顺时针旋转α(090α︒<<︒)得到图2,则问题(1)中的结论是否成立?请说明理由.(3)如图3在(2)的基础上,当AE=CE 时,请求出α的度数.(4)在(2)的基础上,△DOE 在旋转的过程中设AC 与OE 相交于点F ,当△OFC 为等腰三角形时,请直接写出α的度数.23.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润. 售价x (元) ... 70 65 60 ... 销售量y (个)...300350400...(2)售价为多少时利润最大?最大利润为多少?24.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 25.解方程:2420x x ++=. 26.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断. 【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°, ∵∠APE 、∠CPF 都是∠APF 的余角, ∴∠APE=∠CPF , 在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ), ∴AE=CF ,EP=PF ,S △AEP =S △CPF , ∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确,∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误; 故选:C . 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.2.D解析:D 【分析】根据旋转的性质,以原点为中心,将点P (3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限. 【详解】如图,点P (3,4)按逆时针方向旋转90°,得到点1Q , 按顺时针方向旋转90°,得到点2Q ,得点Q 所在的象限为第二、四象限. 故选:D . 【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论.3.A解析:A 【分析】过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,DF=3AF=43,由勾股定理可求解. 【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,, 60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键.4.C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴2222AO OE2--13==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,3∴A′(31),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.C解析:C【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是2,与AB的值相等,从而可以得出点A在△D′E′B的边上.【详解】∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=52,由三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,设△D′E′B 与直线AB 交于G , 可知:∠EBE′=45°,∠E′=∠DEB=90°, ∴△GE′B 是等腰直角三角形,且BE′=BE=5, ∴BG=52, ∴BG=AB ,∴点A 在△D′E′B 的边上, 故选C.6.C解析:C 【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6. 【详解】解:根据题意可知:∠A=∠C=60°, ∵线段OP 绕点O 逆时针旋转得到线段OD , ∴OP=DO , ∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°, ∴∠AOP=∠CDO , 在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOP ≌△CDO (AAS ), ∴AP=OC=AC ﹣AO=6. 故选C. 【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.7.D解析:D 【分析】当k <0时,抛物线对称轴为直线432k x k+=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k+=-2-32k >-2,可确定m 的范围, 【详解】 对称轴:直线433222k x k k+=-=--, 0k <,3222k∴-->-, x m <时,y 随x 的增大而增大,322m k∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D . 【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键.8.D解析:D 【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得. 【详解】 设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BCs =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤,由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合, 故选:D . 【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.9.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.10.B解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.11.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=,又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.12.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.13.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 14.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题15.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.16.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.17.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题. 18.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.19.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.20.1<a≤2【分析】画出图象找到该抛物线在MN 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界利用与y 交点位置可得a 的取值范围【详解】解:抛物线y =ax2+2ax +a−2(a >0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a−2(a >0)化为顶点式为y =a (x +1)2−2,∴函数的对称轴:x =−1,顶点坐标为(−1,−2),∴M 和N 两点关于x =−1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0), 如图所示:∵当x =0时,y =a−2,∴−1<a−2≤0,当x =1时,y =4a−2>0,即:120420a a --≤-⎧⎨⎩<>, 解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.三、解答题21.(1)A (2,0)、A '(0,2)、C '(-1,0); 22y x x =-++;(2)152+ 【分析】(1)先根据图象和题意求得点A 、A '、C '的坐标,再利用待定系数法代入抛物线一般式()20y ax bx c a =++≠求得解析式;(2)设线段BC 与抛物线的交点为P (m ,1),将点P (m ,1)代入抛物线解析式可得关于m 的一元二次方程,解方程即可求解.【详解】解:(1)∵四边形OABC 和四边形OA B C '''都是矩形,∴OA =OB ,A B OC '''=,∵B (2,1)∴A (2,0)∵矩形OA B C '''是矩形OABC 旋转90°得到的∴矩形OA B C '''≌矩形OABC∴1A B OC AB '=''==,=2OA OA '=故()1,0C '-,()0,2A '设抛物线解析式为()20y ax bx c a =++≠,将点A 、A '、C '的坐标代入得:04220a b c ca b c =++⎧⎪=⎨⎪=-+⎩解得:121a c b =-⎧⎪=⎨⎪=⎩故抛物线解析式为:22y x x =-++(2)设线段BC 与抛物线的交点为P (m ,1)将点P (m ,1)代入抛物线解析式可得:212m m =-++即210m m --=解得12m +=(负数舍去) 故矩形OABC 沿x个单位使点C 落在抛物线上. 【点睛】本题主要考查图形的旋转、二次函数图象及其性质、二次函数解析式、矩形的性质,解题的关键是熟练掌握所学知识.22.(1)AE=CD AE ⊥CD ;(2)成立,理由见解析;(3)45°;(4)45°或22.5°【分析】(1)证明△AOC 是等腰直角三角形即可得到结论;(2)连接AO ,延长DC 交AE 于点M ,设OE ,MD 相交于点N ,证明△AOE ≌△COD 可得AE=CD ,证明∠DME=90°可得AE ⊥CD ;(3)证明OE 是AC 的垂直平分线即可得到结论;(4)分OF=FC 和OC=CF 两种情况求解即可.【详解】解:(1)∵△ABC 是等腰三角形,∠CAB =90°,∴∠ACB=45°∵点O 是BC 的中点,∴AO ⊥BC∴△AOC是等腰直角三角形,∴AO=CO∵△DOE是等腰三角形,∠DOE=90°,∴EO=DO∴EO-AO=DO-CO即AE=CD∵OE经过点A,OD经过点C,∴AE⊥CD故答案为:AE=CD AE⊥CD(2)(1)中的结论仍然成立理由如下:连接AO,延长DC交AE于点M,设OE,MD相交于点N∵△ABC是等腰直角三角形,O是BC的中点∴AO=CO,AO⊥BC∴∠AOC=∠EOD=90°∴∠AOE=∠COD∵OE=OD∴△AOE≌△COD(SAS)∴AE=CD,∠AEO=∠CDO∵∠CDO+∠OND=90°,且∠OND=∠MNE∴∠AEO+∠MNE=90°∴∠DME=90°∴DM⊥AE即DC⊥AE(3)连接OA,如图3,∵AE=CE,OA=OC∴OE是AC的垂直平分线∴∠AOE=∠COE=45°∴α=45°(4)①若OF=FC时,如图4,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=45°∵AO⊥BC∴∠AOC=90°∴∠AOF=90°-45°=45°,即α=45°;②当OC=FC时,如图5,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=1804567.52︒-︒=︒ ∵AO ⊥BC∴∠AOC=90°∴∠AOF=90°-67.5°=22.5°,即α=22.5°;综上所述,α的度数为45°或22.5°. 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.23.(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350),∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.25.12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.26.(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x ,∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴12x +=12x x ∴== (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】九年级数学上期中一模试题带答案(2)一、选择题1.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 2.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3)3.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .74.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .25.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠36.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h 7.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( )A .2017B .2018C .2019D .2020 8.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)10.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =11.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AB=BC C .AC ⊥BD D .AC=BD12.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.15.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.已知一个直角三角形的两条直角边长分别为3cm 和4cm ,则这个直角三角形的内切圆的半径为 cm18.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为_____.19.如图,将ABCV绕点A逆时针旋转150︒,得到ADEV,这时点B C D、、恰好在同一直线上,则BÐ的度数为______.20.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.三、解答题21.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.22.(1)解方程:x2﹣2x﹣8=0;(2)解不等式组3(2)1112x xx--<⎧⎪⎨-<⎪⎩23.已知二次函数243y x x=-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象.(2)若1122(,),(,)A x yB x y是函数243y x x=-+图象上的两点,且121x x<<,请比较12y y、的大小关系(直接写出结果).24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件. (1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价.25.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯的概率是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B .【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.2.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
故选D3.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.5.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 6.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.7.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值. 8.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..10.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.11.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.D解析:D【解析】【分析】反比例函数kyx=图象在一、三象限,可得>0k.【详解】解:Q反比例函数2ayx-=(a是常数)的图象在第一、三象限,20 a∴->,2a∴>.故选:D.【点睛】本题运用了反比例函数kyx=图象的性质,解题关键要知道k的决定性作用.二、填空题13.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率解析:5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.14.(40382)【解析】【分析】先求出开始时点C的横坐标为OC=1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C的位置然后求出翻转B前进的距离连接CE过点D作解析:(4038,【解析】【分析】先求出开始时点C的横坐标为12OC=1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C的位置,然后求出翻转B前进的距离,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,求出CE=2CH=2×CDsin60°=C的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×32=3,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C所在的位置是解题的关键.15.k≤且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴△=(-4)2-4k×3≥0且k≠0解得k≤且k≠0故解析:k≤43且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可.【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根,∴△=(-4)2-4k×3≥0且k≠0,解得k≤43且k≠0,故答案为:k≤43且k≠0【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;解题时,要注意a≠0这个隐含的条件.16.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.17.1【解析】通过勾股定理计算出斜边的长得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半计算出内切圆半径最后求它们的差解:因为斜边==5内切圆半径r==1;所以r=1故填1会利用解析:1【解析】通过勾股定理计算出斜边的长,得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半,计算出内切圆半径,最后求它们的差.解:因为斜边==5,内切圆半径r==1;所以r=1.故填1.会利用勾股定理进行计算.其内切圆半径等于两直角边的和与斜边的差的一半.18.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.19.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△解析:9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD.【详解】解:(1)证明:如图,连接OD,∵BO=BD=DO,∴△OBD是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC ,∴∠BDC=12∠OBD=30°. ∴∠ODC=90°.∴OD ⊥CD . ∵OD 为⊙O 的半径,∴CD 是⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4.∴AD =22.(1)x=﹣2或x=4;(2)52<x <3 【解析】【分析】(1)用因式分解法求解;(2)分别求不等式,再确定公共解集.【详解】解:(1)∵(x+2)(x ﹣4)=0,∴x+2=0或x ﹣4=0,解得:x=﹣2或x=4;(2)解不等式x ﹣3(x ﹣2)<1,得:x >52, 解不等式12x -<1,得:x <3, ∴不等式组的解集为52<x <3. 【点睛】 考核知识点:解一元二次方程方程,解不等式组.掌握解不等式组和一元二次方程的基本方法是关键.23.(1)顶点(2,1)-;对称轴:直线2x =;与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),图象见解析;(2)12y y >.【解析】【分析】(1)根据二次函数解析式即可确定出顶点坐标、对称轴、与两坐标轴的交点坐标,再在坐标系中画出函数图象即可;(2)根据二次函数的图象解答.【详解】解:(1)二次函数y =x 2﹣4x +3=(x ﹣2)2﹣1,当x =0,y =3,当y =0时,x 2﹣4x +3=0,解得:11x =,23x =,∴抛物线的顶点为(2,﹣1),对称轴为直线x =2,与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),画出图象,如图所示:(2)∵当x <1时,y 随x 的增大而减小,∴当121x x <<时,12y y >.【点睛】此题考查了抛物线的图象与性质和二次函数与坐标轴的交点,熟练掌握二次函数的性质是解本题的关键.24.(1)200-20x ;(2)15元.【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700,整理得 x 2-8x +15=0,解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x =5.所以售价为10+5=15(元),答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.25.(1)29;(2)2()3n 【解析】【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为23,到第2个路口还没有遇到红灯的概率为24293y ⎛⎫== ⎪⎝⎭【详解】解:(1)画出树状图即可得到结果;由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2, 所以到第二个路口时第一次遇到红灯的概率为29; (2)P (第一个路口没有遇到红灯)=23, P (前两个路口没有遇到红灯)=282()183, 类似地可以得到P (每个路口都没有遇到红灯)=2()3n . 故答案为:2()3n【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。