定时控制器逻辑电路设计

合集下载

可编程逻辑控制器(PLC)的应用与电路设计

可编程逻辑控制器(PLC)的应用与电路设计

可编程逻辑控制器(PLC)的应用与电路设计可编程逻辑控制器(Programmable Logic Controller,简称PLC)是一种专门用于工业自动化控制的电子设备。

它的出现极大地提高了工业生产效率和自动化程度。

本文将介绍PLC的基本原理、应用领域以及电路设计方面的知识。

一、PLC的基本原理可编程逻辑控制器是由微处理器、存储器和各种输入输出接口构成的。

它具备以下三个基本特点:1. 程序化控制:PLC通过内部的程序控制来实现自动化控制功能,它可以根据预先编写好的程序,控制设备的运行状态。

2. 变动性:PLC具有灵活性和可变性,它可以根据需求修改、更新控制程序,无需改变硬件配置。

3. 实时控制:PLC通过对输入信号的实时采集和处理,可以在极短的时间内做出反应,并输出相应的控制信号。

二、PLC的应用领域PLC广泛应用于各个行业的自动化控制系统中,常见的应用领域如下:1. 工业制造:PLC在工业制造中被广泛应用,用于控制传送带、机床、机械手等设备的运行状态,实现生产线的自动化控制。

2. 建筑工程:PLC可以用于控制大楼的照明、消防系统、电梯等设备,实现对建筑物的智能化管理。

3. 能源管理:PLC可用于控制电力系统、水处理系统、制冷系统等,实现对能源的高效管理和优化利用。

4. 交通运输:PLC可应用于交通信号灯、火车信号系统、地铁运行控制等方面,提高交通流畅度和安全性。

5. 医疗设备:PLC可以用于管理医疗设备、监控患者的生命体征,实现医疗过程的自动化和数字化。

三、PLC电路设计在PLC电路设计方面,需要考虑以下几个关键要素:1. 输入输出接口电路设计:PLC的输入输出接口电路是连接外部设备和PLC的关键部分。

在设计过程中,需要根据外部设备信号类型和电压范围,选择合适的电路保护和电平转换方案。

2. 电源电路设计:PLC需要稳定可靠的电源供电。

电源电路设计需要考虑电源的稳定性、过载保护和短路保护等因素,在设计过程中,可以采用电源滤波器、稳压模块等组件。

用555电路原理构成单稳态电路及其应用

用555电路原理构成单稳态电路及其应用

用555电路原理构成单稳态电路及其应用作者:**兰州理工大学07级自动化(一)班学号:********用555电路原理构成单稳态电路及其应用作者: 朱刚摘要:本文应用555定时器的基本原理,构成了单稳态电路,并用555定时器构成的单稳态电路设计了楼道灯光的开关控制器,还构成了一个分频电路,可将高频脉冲变换为低频脉冲。

关键词:555定时器、单稳态电路、灯光控制器、分频器。

一、前言:555 定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555 定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

二、 555定时器基本原理(参考:《数字电子技术基础 》第四版 阎石)1、555定时器内部电路如图1所示。

2、555定时器功能表如表1。

表1 555定时器功能表输入输出 RTH TROUT T 0⨯ ⨯低 导通 1 23CC V > 13CC V > 低 导通 1 23CC V < 13CC V > 不变 不变 1 23CC V < 13CC V < 高 截止 123CC V > 13CC V < 高截止三、 用555定时器构成单稳态电路1、电路结构电路如图2所示,该电路在555电路的基础上,外加电阻R1,R2和电容C1组成。

2、工作原理触发信号从TRI 端输入,没有触发信号时TRI 输入的是高电平(13CC V >)。

接通电源时触发器可能处于0,也可能处于1。

1)、假设通电时Q=0,则三极管T 导通,0THR ≈,图 1中R=S=1,Q=0,Vo=0,且这一状态稳定的保持住,除非TRI 端有有效的触发脉冲。

2)、假如通电时Q=1,这时三极管T 截止,Vcc 经电阻R1向电容C1充电。

(完整版)基于51单片机的数字钟毕业论文

(完整版)基于51单片机的数字钟毕业论文

西安邮电学院毕 业 设 计(论 文)题 目: 基于51单片机的数字钟设计院 (系):专 业:班 级:学生姓名:导师姓名: 职称:基于单片机的数字钟毕业论文摘要…………………………………………………………………………… ⅠAbstract……………………………………………………………………… (Ⅱ)第1章 绪 论 (2)1.1 课题背景 (2)1.2 课题来源 (2)1.3 本章小结 (3)第2章 MCS-51单片机的结构 (4)2.1 控制器 (4)2.2 存储器的结构 (4)2.3 并行IO口 (5)2.4 时钟电路与时序 (5)2.5 单片机的应用领域 (6)2.6 本章小结 (6)第3章 电路的硬件设计 (7)3.1 复位电路 (7)3.2 时钟电路 (7)3.3 按键电路 (8)3.4 相关控制电路 (9)3.4.1 控制打铃电路 (9)3.4.2 时间表显示电路 (9)3.5 数码管显示电路 (10)3.6 电源电路设计 (10)3.7 本章小结 (10)第4章 电路的软件设计 (11)4.1 软件程序内容 (11)4.2 软件流程图 (11)4.3 定时程序设计 (12)4.3.1实时时钟实现的基本方法 . (13)4.3.2 实时时钟程序设计步骤 (13)4.4程序说明 (13)4.5 本章小结 (14)第5章 结论与展望 (15)5.1 结论 (15)5.2 单片机的发展趋势 (15)参考文献 (17)附录………………………………………………………………………………18第1章 绪 论1.1 课题背景单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。

由于单片机集成度高、功能强、可靠性高、体积小、功耗地、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。

单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC 机外围以及网络通讯等广大领域。

定时控制器

定时控制器

定时控制器这是一个数字时钟电路,它可以定时开关一路使用交流电的设备。

简介这个定时控制电路既可以在实际中应用,也可以作为一个学习用C51控制定时器中断0、七段LED数码管和键盘扫描的例子。

它可输出一路控制信号来控制一个继电器或可控硅等。

那些需要七位数码显示和键盘接口的电路也可从这个电路和单片机程序得到启发。

工作原理P1.0-1.7采用倒灌方式驱动七段共阳数码管。

P3.0-3.3驱动4个PNP三极管2N2907。

如图所示,第三个数码管旋转了180度,这样第三个数码管的那个点和第二个数码管的那个点用来表示数字时钟上的那两个点,它们每秒闪动一次。

P3.0-3.3同时连接到四个微动开关,微动开关的另一脚连接到P3.4。

在显示和键盘扫描期间,从P3.0到P3.3轮替输出一个逻辑0,如果这时某个微动开关被按下,P3.4将变成低电平。

P3.7输出一路控制信号,可以通过一个三极管来控制一个继电器。

电路原理图如下:程序clock.c程序是用C语言写的,用Micro-C编译的。

内存模式是TINY。

clock.hex是它的十六进制文件。

clock1.c是用为C51编译器修改过的。

修正实时钟的子程序已被移到定时中断0中。

程序的扩展clock.c中的time()函数没有放在定时中断0中。

scanLED()函数中有一个位延迟功能用于时钟延迟,你可写个子程序来调整时钟。

因为还有足够的程序空间,所以你可以再写一些程序来完成第二组定时功能。

重负载如果要控制的负载很重的话,建议使用合适的固态继电器,大多数固态继电器可以使用3-30V来驱动。

基于PLC的电力控制系统设计与实现

基于PLC的电力控制系统设计与实现

基于PLC的电力控制系统设计与实现随着科技的发展和电力需求的增长,电力控制系统在各个领域中扮演着重要的角色。

而基于PLC的电力控制系统在实现自动化控制、提高生产效率和保障电力安全方面起到了至关重要的作用。

本文将探讨基于PLC的电力控制系统的设计与实现,并分析其在电力领域中的应用。

一、引言电力控制系统是指为了达到对电力设备的保护、监控和自动控制的目的而设计的系统。

而PLC(可编程逻辑控制器)是一种集电路控制、顺序逻辑控制和定时控制于一体的集成电路控制器。

基于PLC的电力控制系统由PLC控制模块、数据采集模块、执行模块和人机界面组成,具备实时性强、可靠性高和应用范围广的特点。

二、基于PLC的电力控制系统设计1. 电力系统建模和需求分析在设计电力控制系统之前,首先需要对电力系统进行建模和需求分析。

这包括电力设备的种类、功率需求、运行方式等方面的考虑。

通过建模和需求分析,可以明确电力控制系统的功能和性能需求。

2. PLC控制模块设计PLC控制模块是整个电力控制系统的核心部分,负责控制电力设备的运行和状态监测。

在设计PLC控制模块时,需要根据需求分析结果确定输入输出端口和控制逻辑。

同时,还需要考虑PLC的编程语言选择和程序设计方法。

3. 数据采集模块设计数据采集模块负责对电力设备的状态进行采集和监测,并将采集的数据传输给PLC控制模块。

在设计数据采集模块时,需考虑传感器的选择、数据传输方式以及数据处理和存储的方法。

4. 执行模块设计执行模块用于控制电力设备的开关和运行状态。

在设计执行模块时,需要选择适合的电力设备控制器,并设置相应的保护措施和故障诊断机制。

5. 人机界面设计人机界面是PLC电力控制系统与操作人员之间的信息交互平台。

在设计人机界面时,需要考虑界面的友好性、操作的简便性和显示的清晰性。

同时,还应提供相应的报警和故障处理功能。

三、基于PLC的电力控制系统实现1. 硬件设备选型与搭建根据设计需求和性能要求,选择合适的PLC、传感器和执行器等硬件设备,并按照设计要求进行搭建和连接。

【精品】循环定时器电路图

【精品】循环定时器电路图

循环定时器电路图循环定时器电路图循环定时器电路图1、按照电路原理图组装定时器。

2、接6伏电源,调整RP使发光二极管闪烁频率为每秒一次。

或按自己需要调整,则定时时间相应改变。

3、按钮按下“清零”,定时从新开始,发光二极管闪烁发光。

图中电路的接法,定时16秒钟后(发光管闪16下)蜂鸣器间断发声,发光二极管变成长亮。

4、调整印板图最下端的短路线,可成倍地增加延时时间。

(依此为 16、32、64、128、256、512、1024、2048秒,图中位置为16秒)元件清单:(共23件)4011集成电路R1 1MΩ电阻R8 5.1KΩ电阻4040集成电路R2 100KΩ电阻R9 56KΩ电阻9012晶体管R3 150KΩ电阻RP 500KΩ微调电阻发光二极管R4 10KΩ电阻 C1 4.7uF电解电容蜂鸣器(喇叭) R5 15KΩ电阻 C2 0.01uF 瓷片电容按钮R6 1KΩ电阻 D1 1N4148 二极管印刷电路板R7 22KΩ电阻 D2 1N4148 二极管16针排插短路插基于TEC9328可编程定时电路的循环式定时控制器摘要:TEC9328是深圳天潼公司生产的四位定时计数电路,利用它可以对控制对象进行循环控制操作。

文中介绍了它主要特点、引脚功能和内部结构。

并给出了利用TEC9328设计的循环式定时控制器的实际应用电路。

关键词:循环控制定时器 TEC9328在日常生产及工业应用中,有时可能需要对某一控制对象进行循环式控制,即让对象工作一段时间(如1分钟),然后停歇一段时间(如10分钟),再工作一段时间,再停歇一段时间,如此循环地工作下去。

通常的定时器仅能使对象在停歇一段时间后继续工作,而不能实现循环控制。

而基于TEC9328可编程定时电路循环式定时控制器则非常适合于这种循环式的自动控制操作。

1 TEC9328的主要特点TEC9328是深圳天潼微电子公司生产的四位定时计数电路,其主要特点如下:●工作电压范围为3~6V;●采用CMOS工艺,功耗极低,抗干扰能力强;●具有开机复位功能;●采用32768Hz石英晶振;●具有4位BCD码计数器,计数频率小于2MHz,可级连使用;●当时间到达设定值后,器件的G端即有相应的输出。

基于AT89C51单片机的计数器设计

基于AT89C51单片机的计数器设计

基于AT89C51单片机的计数器设计一、引言计数器是数字电路中常见的一种组合逻辑电路,用于对输入脉冲信号进行计数和累加操作,常用于计数、测频、分频等场合。

AT89C51单片机是一种常用的8位微控制器,具有丰富的外设和功能,能够灵活应用于各种数字电路设计中。

本文将基于AT89C51单片机,设计一个简单的计数器,并介绍其原理和实现方法。

二、设计原理AT89C51单片机具有丰富的外设资源,包括多种定时器、计数器和串行通信接口等,适合用于计数器设计。

在本设计中,我们将使用AT89C51的定时器/计数器功能,通过编程控制实现一个简单的计数器。

具体设计原理如下:1. 硬件设计:基于AT89C51单片机的计数器由单片机、数码管、脉冲输入端和其他外围电路组成。

其中脉冲输入端接收外部脉冲信号作为计数输入,数码管用于显示计数结果。

2. 软件设计:利用AT89C51的定时器/计数器功能,编程设计实现计数器的逻辑功能。

通过中断控制和计数器清零等操作,实现对脉冲输入信号的计数和累加,并将结果通过数码管显示出来。

三、设计实现1. 硬件连接:首先进行硬件连接,将AT89C51单片机与数码管、外部脉冲信号输入端等进行连接。

通常可以通过引脚连接或者扩展模块等方式进行连接。

2. 软件编程:接下来进行软件编程,通过C语言或汇编语言等进行编程设计。

其中需要实现对定时器/计数器的初始化、中断服务函数的编写、脉冲输入的捕获和计数功能的实现等操作。

3. 调试验证:编程完成后,进行调试验证,对设计的计数器进行功能测试和性能评估。

通过输入不同的脉冲信号进行测试,验证计数器的计数和显示功能是否正常。

四、设计优化在设计过程中,可以对基于AT89C51单片机的计数器进行优化,以提高其性能和稳定性。

具体优化方法如下:1. 硬件优化:在硬件设计中,可以采用更稳定和精密的外部时钟源、优化数码管驱动电路、加入防抖电路等,以提高计数器的稳定性和抗干扰能力。

2. 程序优化:在软件编程中,可以优化计数算法和显示方式,减少计数误差和提高显示效果。

定时控制器逻辑电路设计

定时控制器逻辑电路设计

定时控制器逻辑电路设计1.时钟电路:定时控制器需要一个稳定的时钟信号来进行计时。

一个常用的时钟电路是使用晶体振荡器和计数器构成的。

晶体振荡器提供了一个固定频率的方形波信号,并通过计数器将其转换为可用的时钟信号。

2.计数器:计数器用于进行时间计数。

它可以是一个二进制同步计数器,可以根据时钟信号递增,并在达到预设的计数值时触发输出信号。

计数器的位数决定了定时控制器的计时范围。

3.预设器:预设器用于设置定时控制器的触发时间。

它可以是一个二进制的预设器,用于设置计数器的初始值。

当计数器的计数值与预设值相等时,预设器将向触发电路发出触发信号。

4.触发电路:触发电路用于接收来自预设器的触发信号,并产生输出信号。

触发电路可以是一个开关电路,通过控制输出信号的开关状态来触发特定事件。

上述是一个基本的定时控制器逻辑电路设计。

然而,在实际应用中,通常需要考虑更多的因素,例如精度、可调性和扩展性等。

以下是一些可以进一步优化和扩展的设计考虑因素:1.可调性:定时控制器设计应该具有可调性,以便用户可以根据需要调整触发时间。

这可以通过添加可调的预设器来实现。

用户可以通过设置预设的计数值来调整触发时间。

2.精度:定时控制器的精度是一个重要的考虑因素。

精度可以通过使用更高频率的时钟信号和更大位数的计数器来提高。

此外,还可以使用更精确的计时元件,如RTC(实时时钟)芯片。

3.可扩展性:定时控制器设计应具有可扩展性,以满足不同应用的需求。

这可以通过添加额外的预设器和触发电路来实现。

每个预设器可以设置不同的触发时间,每个触发电路可以控制不同的输出信号。

4.电源管理:定时控制器还应该考虑电源管理。

例如,可以添加一个低功耗模式,以延长电池寿命或减少能源消耗。

总的来说,定时控制器逻辑电路设计需要考虑时钟电路、计数器、预设器和触发电路。

通过优化和扩展这些基本设计,可以实现更高的可调性、精度和可扩展性。

定时控制器逻辑电路的设计对于实现精确的时间控制和自动化控制是至关重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定时控制器的主要功能是实现定时触发,它
是一种用于实现定时功能的电子元件,可以
在指定的时间内自动触发,从而实现定时功能。

它可以用于控制各种电子设备,如灯、
空调、电视机等。

定时控制器的逻辑电路设计可以分为三个主
要部分:时钟电路、计时器电路和触发电路。

一、时钟电路
时钟电路的主要功能是产生定时时钟信号,
它是定时控制器的核心部分,它可以产生一
个定时的时钟信号,以控制其他部件的工作。

时钟电路的主要元件包括时钟源、时钟控制
电路和时钟输出电路。

时钟源可以是外部电源,也可以是内部电源,如晶振、电容、电
阻等。

时钟控制电路可以用于调节时钟源的
频率,以满足不同的定时要求。

时钟输出电
路可以将时钟信号输出到其他部件,以实现
定时控制。

二、计时器电路
计时器电路的主要功能是计算定时时间,它
可以接收时钟信号,根据时钟信号的频率计
算定时时间,并将定时时间输出到触发电路。

计时器电路的主要元件包括时钟接收电路、计数器、计时器和计时器输出电路。

时钟接收电路可以接收时钟信号,并将其转换为计时器可以识别的信号。

计数器可以根据时钟信号的频率计算定时时间。

计时器可以将计算出的定时时间输出到计时器输出电路,以实现定时控制。

三、触发电路
触发电路的主要功能是根据计时器输出的定时时间触发设备,从而实现定时功能。

触发电路的主要元件包括计时器接收电路、
比较器、触发器和触发输出电路。

计时器接
收电路可以接收计时器输出的定时时间信号,并将其转换为比较器可以识别的信号。

比较
器可以比较定时时间信号和当前时间信号,
当定时时间到达时,比较器会输出一个触发
信号。

触发器可以将触发信号转换为设备可
以识别的信号,从而实现定时触发功能。

以上就是定时控制器的逻辑电路设计,它由
时钟电路、计时器电路和触发电路三个部分
组成,它可以实现定时触发功能,从而控制
各种电子设备。

相关文档
最新文档