(完整)数列题型及解题方法归纳总结,推荐文档
完整版数列题型及解题方法归纳总结

完整版数列题型及解题方法归纳总结2篇数列是数学中的重要概念之一,它是一组按照一定规律排列的数的集合。
数列题型在中小学数学教学中经常出现,涉及对数列的性质、求特定项的值、判断数列的增减性等问题。
接下来,我们将对数列题型及解题方法进行归纳总结。
数列题型可分为以下几类:一、公式法公式法是指利用数列的通项公式来进行求解。
通项公式是指数列中第n 项与n的关系式,可以通过观察数列规律或根据已知条件推导得到。
在使用公式法解题时,首先要观察数列的前几项,并找出数列的规律。
根据规律,可以列出数列的通项公式。
然后,根据题目给出的条件,求出所需要求解的特定项的值。
例如,对于一个等差数列求特定项的值,可以利用等差数列的通项公式:an = a1 + (n-1)d其中,an表示第n项的值,a1表示首项的值,d表示公差,n表示项数。
二、递推法递推法是指通过数列中前一项或前几项的值来求解后一项的值。
递推法常用于求数列的递推关系和递推公式。
在使用递推法解题时,首先要观察数列的前几项,并找出数列的递推关系。
根据递推关系,可以列出数列的递推公式。
然后,通过初始项的值和递推关系,依次求出所需要求解的特定项的值。
例如,对于一个斐波那契数列求特定项的值,可以利用递推关系和递推公式:an = an-1 + an-2其中,an表示第n项的值,an-1表示第n-1项的值,an-2表示第n-2项的值。
根据递推公式和初始项的值,可以逐步求出所需的特定项的值。
三、和与差法和与差法是指通过对数列的前n项进行求和或求差的方式来求解特定项的值。
在使用和与差法解题时,首先要根据数列的规律,找出数列的前n项和或前n项差的公式。
然后,根据题目给出的条件,求出所需的特定项的值。
例如,对于一个等差数列求特定项的值,可以利用等差数列的前n项和公式:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项的值,an表示第n项的值,n表示项数。
根据前n项和公式和题目给出的条件,可以求出所需的特定项的值。
数列经典题型总结精品

【关键字】方法、条件、规律、结构、关系、分析、满足、解决一、直接(或转化)由等差、等比数列的求和公式求和例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .练习:设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法例2(07高考天津理21)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;.例3(07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 三、逆序相加法例4(07豫南五市二联理22.)设函数222)(+=x xx f 的图象上有两点P 1(x 1, y 1)、P 2(x 2,y 2),若)(2121OP +=,且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f n f n f n f S ∈+⋯+++= 四、裂项求和法 例5 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例6(06高考湖北卷理17)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(完整word版)数列常见题型总结经典(超级经典)

高中数学《数列》常有、常考题型总结题型一数列通项公式的求法1.前 n 项和法(知 S n 求 a n ) a nS 1(n 1)S n S n 1(n 2)例 1、已知数列 { n } 的前 n 项和 S n 12nn 2 ,求数列{| a n|} 的前 n 项和T na1、若数列 {a n } 的前 n项和 S2n,求该数列的通项公式。
n2、若数列 { a n } 的前 n 项和 S n3 a n 3 ,求该数列的通项公式。
23、设数列 {} 的前,知足 T2Sn 2,a n n 项和为S n ,数列{ S n } 的前n 项和为T nnn求数列 { a n } 的通项公式。
2. 形如 a n 1 a nf (n) 型(累加法)( 1)若 f(n) 为常数 , 即: a n 1 a n d , 此时数列为等差数列,则 a n =a 1(n 1)d .( 2)若 f(n) 为 n 的函数时,用累加法 .例 1. 已知数列{ a n }知足 a 1 1, a n3n 11. 已知数列a n 的首项为 1,且 a n 1a n 2. 已知数列 { a n } 知足 a 1 3 , a na n 13. 形如an 1( )f n 型(累乘法)a na n 1 ( n 2) , 证明 a n 3n122n(n N * ) 写出数列a n 的通项公式 .1 ( n 2) ,求此数列的通项公式 .n(n 1)( 1)当 f(n) 为常数,即:a n 1q (此中 q 是不为 0 的常数),此数列为等比且 a n = a 1 q n 1 .a n( 2)当 f(n) 为 n 的函数时 , 用累乘法 .例 1、在数列 { a n } 中 a 11, a nn a n 1 (n 2) ,求数列的通项公式。
n 1 1、在数列 { a n } 中 a 11, a n n 1a n 1 (n 2) ,求 a n 与 S n 。
数列题型及解题方法归纳总结2推荐文档

知识框架数列的概念数列的分类数列的通项公式数列的递推关系函数角度理解求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法数列两个基本数列等差数列的定义a n等差数列的通项公式等差数列等差数列的求和公式等差数列的性质a n等比数列的定义3na na n 1a nS na mq(nd(na1 (nn /2(a12)1)da n) na ia p a q (mn(n 1)d2q)2)等比数列的通项公式等比数列等比数列的求和公式a nS n等比数列的性质公式法分组求和错位相减求和裂项求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用一八其他数列求和岂a n q1a i(1q n a1(q a n a m a p a q(m nn、q )/(q1 q1)p q)1)1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a+d及a n+1=qa n(d,q为常数)例1、已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解■/a n+1-a n=2为常数••• {a n}是首项为1,公差为2的等差数列--a n=1+2 (n-1 )即a n=2n-11例2、已知{a n}满足a n 1— a n,而a1 2,求a. =?2解V 是常数••七J是以2为首项.公比为扌的等匕嗷列5 -2 • L z --^―(2)递推式为a n+1=a n+f (n)1例3、已知{a n}中a1,a n 1解:由已知可知a n 1 a nan14n2 1求a n.1 丄(_匚(2n 1)(2n 1) 2(2n 112n1)令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a2-a 1)+ (a3-a2)+… +(a n-a n-1 )掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、1(1 亠 32 2n 1 4n 2★ 说明只要和f (1) +f (2) +…+f ( n-1 )是可求的,就可以由a”i=a n+f (n)以n=1, 2,…,(n-1)代入,可得n-1个等式累加而求a n⑶递推式为a n+1=p@+q (p, q为常数)例4、{a n}中,a1 1,对于n> 1 (n € N)有a n 3a n 1 2,求a..解法一:由已知递推式得a n+1=3a n+2, a n=3a n-1+2。
(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
(word完整版)数列全部题型归纳(非常全面,经典),推荐文档

数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。
(完整版)数列知识点总结及题型归纳(可编辑修改word版)

1⎩⎨ 数列一、数列的概念(1) 数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作 a n ,在数列第一个位置的项叫第 1 项(或首项),在第二个位置的叫第 2 项,……,序号为 n 的项叫第 n 项(也叫通项)记作 a n ; 数列的一般形式: a 1 , a 2 , a 3 ,……, a n ,……,简记作例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010 年各省参加高考的考生人数。
{a n } 。
(2) 通项公式的定义:如果数列{a n }的第 n 项与 n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…1 1 1 1 ②:1, ,, , …2 3 4 5数列①的通项公式是 a n = 数列②的通项公式是 a n = 说明:n ( n ≤ 7, n ∈ N + ), n( n ∈ N + )。
①{a n } 表示数列, a n 表示数列中的第 n 项, a n = f (n ) 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,a n = (-1)n ⎧-1, n = 2k -1=⎨+1, n = 2k (k ∈ Z ) ;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3) 数列的函数特征与图象表示:序号:1 2 3 4 5 6项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集 N + (或它的有限子集)的函数 f (n ) 当自变量 n 从 1 开始依次取值时对应的一系列函数值 f (1), f (2), f (3), ……, f (n ) ,…….通常用 a n 来代替 f (n ) ,其图象是一群孤立点。
数列题型及解题方法归纳总结

把
n-1
∴ an=2· 3n-1-1
个
等
式
累
加
得
:
(4) 递推式为 an+1=p a n+q n ( p, q 为常数)
思路:设 an 2 pan 1 qan , 可以变形为: an 2 an 1
(an 1 an ) ,
想
于是 {a - n+1 α an} 是公比为 β 的等比数列,就转化为前面的类型。
(3) 递推式为 an+1=pan+q( p, q 为常数)
例 4、 { an} 中, a1 1,对于 n> 1( n∈ N)有 an 3an 1 2 ,求 an .
解法一: 由已知递推式得 an+1=3an+2,an=3an-1 +2。两式相减: an+1-a n=3( an-a n-1 )
因此数列 {a n+1-a n} 是公比为 3 的等比数列,其首项为 a2-a 1=( 3× 1+2)-1=4
an
an 1
可裂项为:
1
an an 1
11 (
d an
1) , an 1
1
1
an
an 1
( d
an 1
an )
等差数列前 n 项和的最值问题 :
1、若等差数列 an 的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最大值。
(ⅰ)若已知通项 an ,则 Sn 最大
an
0
;
an 1 0
(ⅱ)若已知 Sn
如: a n 满足 1 a1 2
1 22
a2
……
1 2n
an
2n 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1)因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得: ∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴nn nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
求n a 。
3(6)递推式为S n 与a n 的关系式关系;(2)试用n 表示a n 。
∴)2121()(1211--++-+-=-n n n n n n a a S S∴11121-+++-=n n n n a a a ∴n n n a a 21211+=+ 上式两边同乘以2n+1得2n+1a n+1=2na n +2则{2na n }是公差为2的等差数列。
∴2na n = 2+(n-1)·2=2n数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和1n n a a +⎧⎫⎨⎬+⎪⎪⎩⎭(其中{}n a 等差)可裂项为:111111()n n n n a a d a a ++=-⋅,111()n n n n a a da a ++=-+等差数列前n 项和的最值问题:41、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。
(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p-的非零自然数时n S 最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小;数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
已知12()n a a a f n =g g L g 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
⑷若1()n n a a f n +-=求na 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-L1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以nk 得到一个等差数列后,再求n a 。
(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
(3)形如1kn n a a +=的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
(8)当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式。
数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是5等差数列前n 和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法:1、公式法2、n n a S 求由(时,,时,)n a S n a S S n n n ==≥=--12111 3、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式6由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x dc -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n ·7∴a n n =+212.数列求和问题的方法 (1)、应用公式法等差、等比数列可直接利用等差、等比数列的前n 项和公式求和,另外记住以下公式对求和来说是有益的。