交流电动机的工作原理及特性

合集下载

第5章交流电动机的工作原理及特性

第5章交流电动机的工作原理及特性
在定子每相绕组中也要感应出
电动势e1。
☞ 设定子和转子每相绕组的匝数分别为N1和N2,图
5.19所示是三相异步电动机的一相电路图。
☞ 旋转磁场的磁感应强度沿定子与转子间空气隙的 分布是近于按正弦规律分布的,因此,当其旋转 时,通过定子每相绕相的磁通也是随时间按正弦 规律变化的,即:
m sin t
转子电路的功率因数cosφ2、转子绕组的感抗X2。
☞ 旋转磁场在转子每相绕组中感应出的电动势为:
e2

N2
d
dt
其有效值为 : E2 4.44 f2N2 4.44SfN2
式中,f2为转子电动势e2或转子电流i2相对于旋转
磁场的频率。
重点
☞ 因为旋转磁场和转子间的相对转速为 n0-n。
☞ 假设每相绕组只有一个线匝,分别嵌放在定子 内圆周的6个凹槽之中。现将三相绕组的末端X、 Y、Z相连,首端A、B、C接三相交流电源。且三相 绕组分别叫做A、B、C相绕组。如P.52图5.7所示。
定子绕组与转子绕组
转子绕组
A+
定子绕组
+Z Y
+B
CX
设:电流的流入端用 + 表示 电流的流出端用 • 表示
iB Im sin(
t 2 )
3
iC Im sin(
t 4 )
3
(1)t =0 时
☞ iA=0; ☞ iB为负,电流实际方向与正方向相反,即电流从
Y端流到B端; ☞ iC为正,电流实际方向与正方向一致,即电流从
C端流到Z端。
☞ 按右手螺旋法则确定三相电流产生的合成磁场, 如图5.9(a)箭头所示。
(2)J02-21-4,功率1.1kW,连接方法,电压 380V,电流6.27A,转速1410 r/min, 功率因数0.79。

交流电动机的工作原理及特性

交流电动机的工作原理及特性

交流电动机的工作原理及特性一、工作原理:交流电动机的工作原理基于法拉第电磁感应定律和洛伦兹力定律。

当直流电通过一对线圈时,该线圈产生一个恒定的磁场,而根据法拉第电磁感应定律,当有导体运动在磁场中时,导体内部会产生电动势。

利用这一原理,交流电动机在电动机定子内放置线圈,称为“定子绕组”,同时在电动机转子上绕上线圈,称为“转子绕组”。

1.启动阶段:当电流通过定子绕组时,该绕组产生一个旋转磁场,引起转子绕组中的电流。

由于转子上的线圈与定子绕组的磁场互相作用,形成转子上的电磁力,从而使转子开始转动。

2.运行阶段:一旦转子开始旋转,电动机将进入运行阶段。

在这个阶段,定子绕组的磁场将持续转动,而转子绕组的电流将继续随着旋转的磁场作用毛糙转子旋转。

由于交流电流的不断变化,电动机将保持连续的旋转运动。

3.停止阶段:当电源关闭时,定子绕组的电流将停止,并且定子的磁场也会逐渐消失。

由于缺乏动力,转子将停止旋转。

二、特性:1.转速控制范围广:对于交流电动机而言,可以通过调整电源的频率来实现转速的控制。

通过改变电源的频率,可以改变旋转磁场的频率,从而调整电动机的转速。

这使得交流电动机在许多应用中具有灵活的转速控制能力。

2.启动和停止平稳:交流电动机的启动和停止过程非常平稳。

相比之下,直流电动机的启动和停止过程可能会产生较大的冲击和震荡。

这使得交流电动机非常适合对运动平稳性要求较高的应用。

3.维护成本低:交流电动机的维护要求相对较低。

由于没有刷子和对电动机结构的摩擦,交流电动机的故障率较低。

此外,交流电动机没有需要定期更换的刷子,使得维护成本较低。

4.效率较高:交流电动机具有较高的效率。

交流电动机的功率因数通常大于0.9,而功率因数越高,电动机的效率越高。

这使得交流电动机在能量转换时具有更高的效率,降低能源消耗。

5.成本相对较低:与直流电动机相比,交流电动机的成本相对较低。

这是因为交流电动机的设计和制造过程相对简单,没有直流电动机复杂的结构和零部件。

220交流电动机工作原理

220交流电动机工作原理

220交流电动机工作原理
220交流电动机的工作原理是基于冠状结构的互感原理和旋转
磁场的产生。

它包含一个定子和一个转子。

定子由绕组构成,连接在供电电源上。

当交流电源通电时,电流流过定子绕组,产生一个旋转磁场。

这个旋转磁场的频率与供电电源的频率相同。

转子由绕组构成,通过机械结构与定子连接起来。

转子绕组中的电流被电源供电,产生一个相对于定子旋转的磁场。

定子和转子之间的磁场相互作用,导致转子发生旋转运动。

由于电流方向定时地改变,所以旋转方向也会不断地改变,使转子能够持续地旋转。

电动机的效率取决于电流、电压、绕组的布置以及机械摩擦和电磁阻力的损耗等因素。

通过调整供电电流和电压,可以控制电动机的转速和扭矩。

总的来说,220交流电动机的工作原理是基于旋转磁场的产生,通过磁场相互作用来实现转子的旋转运动。

这种电动机在家庭和工业领域中广泛应用于驱动各种机械设备。

交流电动机工作原理及特性

交流电动机工作原理及特性

n=0 即转差率S=1时转子切割磁力线最剧烈 f 2=f 1, 即转差率S=1时转子切割磁力线最剧烈 n=n0 即S=0时转子不切割磁力线f 2=0, S=0时转子不切割磁力线 =0, 时转子不切割磁力线f 额定工况下S=1.5~6%, =50Hz时 额定工况下S=1.5~6%,f1=50Hz时,f2=0.75~3Hz
交流 电动机
三相异步电动机的结构和工作原理 §4.1 三相异步电动机的结构和工作原理 一. 结构 1.定子 三相绕组 A ----X ----X B ----Y ----Y C---- Z
鼠笼式:如铸铝形成转子绕组 鼠笼式: 2.转子 绕线式 鼠笼转子
二. 工作原理 1.旋转磁场的产生(1对磁极) 旋转磁场的产生( 对磁极) 定子三相绕组通入 三相交流电
2.旋转磁场的旋转方向 . 任意调换两根电源进 线就使磁场反转。 线就使磁场反转。
Im Im
0 o
i i A
iB iC
ωt
A A
iA
A Z X Y C B
B A A
S
Z
Y Z C
Y
iB
iC
S
N
B X
C
N
X
ωt = 0
ω t = 60°
3.磁极对数P与磁场转速n0 3.磁极对数 与磁场转速n 磁极对数P 若定子每相绕组由两个线圈串联 ,绕组的始端之间互 差60°,将形成两对磁极(P=2,即4极)旋转磁场。 60° 将形成两对磁极(P=2, 两对磁极 旋转磁场。
R2与X2对电机影响均大
4. 转子电流 I2
R2 + (SX20 )2 2 E 20 s = 1(n = 0) → I2max = 2 2 R 2+ X 20 s = 0(n = n0 ) → I2 = 0 n ↓→S ↑→I2 ↑ ϕ 5. 转子电路的功率因数 cosϕ2 R2 R2 cosϕ2 = = 2 2 2 2 R2 + X2 R2 + (SX20 )

交流电动机工作原理及特性

交流电动机工作原理及特性

交流电动机工作原理及特性交流电动机是一种将电能转换为机械能的电动机。

它是通过交流电源供电,并且运行时由于电磁原理产生了旋转的磁场,从而实现了电能和机械能之间的转换。

交流电动机可分为感应电动机和同步电动机两种类型,下面将分别介绍这两种交流电动机的工作原理和特性。

首先是感应电动机。

感应电动机是一种广泛应用的交流电动机,它的工作原理基于法拉第电磁感应定律。

感应电动机的主要构成部分有定子、转子和绕组。

由于感应电动机是基于电磁感应原理工作的,所以在定子中加入的绕组称为励磁绕组,而导致转子产生电流的感应电动势称为感应电势。

当感应电机通电后,励磁绕组产生磁场,引起转子中感应电动势,从而导致转子中产生电流。

根据洛伦兹力定理,转子中的电流受到磁场的作用力,从而引起转子旋转,完成了能量转换。

感应电动机具有以下特性:1.高效率:感应电动机由于工作过程中没有电刷和电火花产生,因此转化效率较高。

在合适的负载下,感应电机的效率可以达到90%以上。

2.动态响应快:感应电动机的转子质量较轻,可以快速运转,对负载的变化可以有较快的响应。

3.负载适应性强:感应电动机对负载变化的适应性较强,可以在一定范围内改变负载时的输出功率和速度。

4.成本较低:感应电机的制造成本较低,维修和维护也比较方便。

5.转速稳定:感应电动机的转速随着负载的变化而变化较小,具有较好的转速稳定性。

6.占用空间小:感应电动机的体积较小,安装方便,适用于各种场合。

接下来是同步电动机。

同步电动机是另一种常见的交流电动机,它的主要特点是转子的转速始终与电源频率同步。

同步电动机的主要构成部分有定子和转子。

当同步电机通电后,定子绕组中产生磁场,而转子中的绕组则由外部直流电源供电。

根据磁场的相互作用,定子的磁场和转子的磁场会发生磁相位差,从而产生力矩。

这个力矩使得转子始终与电源的磁场同步转动。

同步电动机具有以下特性:1.与电源同步:同步电动机始终与电源的频率同步转动,转速非常稳定。

交流换向器电动机的原理

交流换向器电动机的原理

交流换向器电动机的原理交流换向器电动机是一种常见的电动机类型,它的工作原理基于交流电的特性和换向器的作用。

在本文中,我将详细介绍交流换向器电动机的原理和工作过程。

交流换向器电动机是一种将电能转化为机械能的装置。

它由定子和转子两部分组成。

定子是电动机的固定部分,通常由一组线圈组成。

而转子则是电动机的旋转部分,通常由一个磁体或磁铁组成。

当电动机通电时,定子中的线圈会产生一个旋转磁场,这个旋转磁场将作用在转子上,从而使转子开始旋转。

然而,要使交流换向器电动机能够持续旋转,还需要解决一个问题,即换向。

换向是指在电动机旋转过程中,定子线圈的电流方向需要及时改变,以保持转子的旋转方向不变。

这就需要用到换向器。

换向器是交流换向器电动机的关键部分,它能够在电动机旋转过程中改变定子线圈的电流方向,从而实现换向。

通常,换向器由一组机械刷子和换向环组成。

机械刷子与定子线圈接触,而换向环则与电源相连。

当电动机通电后,电流通过换向环进入定子线圈。

此时,机械刷子与换向环的接触点会随着转子的旋转而移动。

当接触点移动到一定位置时,机械刷子会自动改变接触方向,从而改变定子线圈的电流方向。

通过换向器的作用,交流换向器电动机能够持续旋转。

当电流方向改变时,转子的旋转方向也会相应改变,从而实现了电动机的正常运转。

除了换向器,交流换向器电动机还需要一个外部电源来提供电能。

通常,电源会提供交流电,因此交流换向器电动机也被称为交流电动机。

电源的电压和频率对电动机的运行速度和功率有直接影响。

总结起来,交流换向器电动机的工作原理是基于交流电的特性和换向器的作用。

通过定子线圈产生的旋转磁场以及换向器的换向功能,电动机能够将电能转化为机械能,并实现持续的旋转运动。

这使得交流换向器电动机成为工业和家庭中常用的电动机类型之一。

三相交流永磁同步电机工作原理

三相交流永磁同步电机工作原理

一、概述三相交流永磁同步电机是一种广泛应用于工业和家用领域的电动机,其具有高效率、高可靠性和良好的动态特性等优点。

了解其工作原理对于工程师和技术人员来说十分重要。

本文将介绍三相交流永磁同步电机的工作原理及其相关知识。

二、三相交流永磁同步电机的结构1. 三相交流永磁同步电机由定子和转子两部分组成。

2. 定子上布置有三组对称的绕组,相位角相互相差120度,通过三个外接电源输入相位相同但是相位差120°的交流电,产生一个与该交流电相位速度同步的旋转磁场。

3. 转子上有一组永磁体,产生一个恒定的磁场。

三、三相交流永磁同步电机的工作原理1. 三相交流电源提供了旋转磁场,使得转子上的永磁体受到作用力。

2. 转子上的永磁体受到旋转磁场的作用力,产生转矩,驱动机械装置工作。

3. 根据洛伦兹力的作用原理,当转子转动时,永磁体受到旋转磁场的作用力,产生转矩,这就是永磁同步电机产生动力的原理。

四、三相交流永磁同步电机的控制方法1. 空载时,调节供电频率和电压等参数,使得永磁同步电机的转速等于旋转磁场的转速。

2. 负载时,通过改变电源提供的电压和频率,调节永磁同步电机的转速。

五、三相交流永磁同步电机的应用领域1. 工业生产线上的传动设备,如风机、泵、压缩机等。

2. 家用电器,如洗衣机、空调、电动车等。

六、结语通过本文的介绍,我们可以了解到三相交流永磁同步电机的结构、工作原理和控制方法等方面的知识。

掌握这些知识可以帮助工程师和技术人员更好地设计、应用和维护三相交流永磁同步电机,促进其在工业和家用领域的广泛应用。

七、三相交流永磁同步电机的优势1. 高效性能:三相交流永磁同步电机的永磁体产生恒定磁场,与旋转磁场同步工作,因此具有高效率和较低的能耗。

2. 高动态响应:由于永磁同步电机的磁场是固定且稳定的,因此可以实现快速响应和高动态性能,适用于需要频繁启动和变速的场合。

3. 高可靠性:永磁同步电机不需要外部激励,减少了绕组的损耗,使得其具有较高的可靠性和长寿命。

交流电机结构及原理

交流电机结构及原理

负载特性:交流电机的负载特性是指电机在负载变化时其输出特性的变化情况。
负载类型:交流电机的负载类型包括恒转矩负载、恒功率负载和变转矩负载。
负载变化:交流电机的负载变化会影响电机的输出特性如转速、转矩、功率等。
负载特性曲线:交流电机的负载特性可以通过负载特性曲线来表示该曲线描述了电机在不同 负载条件下的输出特性。
交流电机的调速范围广可 以实现无级调速
交流电机的调速性能好可 以实现平滑调速
交流电机的调速效率高可 以实现高效调速
交流电机的调速稳定性好 可以实现稳定调速
PRT SIX
交流电机在工业自动化中广泛应用 于各种机械设备如传送带、泵和压 缩机等。
交流电机具有高效、可靠和稳定的 性能能够保证工业自动化设备的长 期稳定运行。
鼠笼式电机:结构简单成本低维护方便适用于低速、大扭矩场 合
绕线式电机:结构复杂成本高维护困难适用于高速、小扭矩场 合
鼠笼式电机:转子为笼型结构定子为绕组结构转子与定子之间 存在间隙
绕线式电机:转子为绕组结构定子为笼型结构转子与定子之间 存在间隙
鼠笼式电机:转子与定子之间存在电磁感应产生旋转磁场带动 转子旋转
交流电机工作原理: 通过交流电产生旋 转磁场带动电机转 子旋转
交流电机结构:定 子、转子、绕组、 磁铁等
交流电机控制:通 过控制电流频率和 相位来控制电机转 速和转矩
转矩的产生:由定子绕组产生的旋转磁场与转子绕组相互作用产生 转矩的传输:通过定子与转子之间的气隙传递到转子 转矩的大小:与定子绕组电流、转子绕组电流、气隙大小等因素有关 转矩的方向:与定子绕组电流、转子绕组电流、气隙大小等因素有关
轨道交通:交流电机广泛应用于地铁、轻轨、高铁等轨道交通领域提供动力和牵引力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题及思考题5.1 有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转差率为0.02求电动机的同步转速、转子转速和转子电流频率。

n0=60f/p S=(n0-n)/ n0=60*50/2 0.02=(1500-n)/1500=1500r/min n=1470r/min电动机的同步转速1500r/min. 转子转速1470 r/min, 转子电流频率.f2=Sf1=0.02*50=1 H Z5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么?如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反.5.3 有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。

设在额定负载下运行,试求:①定子旋转磁场对定子的转速;1500 r/min②定子旋转磁场对转子的转速;30 r/min③转子旋转磁场对转子的转速;30 r/min④ 转子旋转磁场对定子的转速;1500 r/min⑤ 转子旋转磁场对定子旋转磁场的转速。

0 r/min5.4 当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?因为负载增加n 减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,。

定子的感应电动使因为转子的电流增加而变大,所以定子的电流也随之提高。

5.5 三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的转矩、电流及转速有无变化?如何变化?若电源电压降低, 电动机的转矩减小, 电流也减小。

转速不变。

5.6 有一台三相异步电动机,其技术数据如下表所示。

试求:①线电压为380V 时,三相定子绕组应如何接法?②求n 0,p,S N ,T N ,T st ,T max 和I st ;③额定负载时电动机的输入功率是多少?① 线电压为380V 时,三相定子绕组应为Y 型接法。

② T N =9.55P N /n N =9.55*3000/960=29.8Nm 型号P N /kWU N /V 满载时 I st /I N Tst /T N T max /T N n N /r ·min -1 I N /A ηN ×100 cos φ Y132S-63220/ 380 960 12.8/7.2 83 0.75 6.5 2.0 2.0Tst/ T N=2 Tst=2*29.8=59.6 NmT max/ T N=2.0 T max=59.6 NmI st/I N=6.5 I st=46.8A一般n N=(0.94-0.98)n0n0=n N/0.96=1000 r/minSN= (n0-n N)/ n0=(1000-960)/1000=0.04P=60f/ n0=60*50/1000=3③η=P N/P输入P输入=3/0.83=3.615.7三相异步电动机正在运行时,转子突然被卡住,这时电动机的电流会如何变化?对电动机有何影响?电动机的电流会迅速增加,如果时间稍长电机有可能会烧毁。

5.8 三相异步电动机断了一根电源线后,为什么不能启动?而在运行时断了一线,为什么仍能继续转动?这两种情况对电动机将产生什么影响?三相异步电动机断了一根电源线后,转子的两个旋转磁场分别作用于转子而产生两个方向相反的转矩,而且转矩大小相等。

故其作用相互抵消,合转矩为零,因而转子不能自行启动,而在运行时断了一线,仍能继续转动转动方向的转矩大于反向转矩,这两种情况都会使电动机的电流增加。

5.9 三相异步电动机在相同电源电压下,满载和空载启动时,启动电流是否相同?启动转矩是否相同?三相异步电动机在相同电源电压下,满载和空载启动时,启动电流和启动转矩都相同。

T st=KR2u2/(R22+X220) I=4.44f1N2/R 与U,R2,X20有关5.10 三相异步电动机为什么不运行在T max或接近T max的情况下?根据异步电动机的固有机械特性在T max或接近T max的情况下运行是非常不稳定的,有可能造成电动机的停转。

5.11有一台三相异步电动机,其铭牌数据如下:P N/kW n N/r·min-1U N/V ηN×100 cosφNI st/I N Tst/T N T max/T N接法40 1470 380 90 0.9 6.5 1.2 2.0 △①当负载转矩为250N·m时,试问在U=U N和U`=0.8U N两种情况下电动机能否启动?T N=9.55 P N/ n N=9.55*40000/1470=260NmTst/T N=1.2 Tst=312NmTst=KR2U2/(R22+X202)=312 Nm312 Nm>250 Nm 所以U=U N时电动机能启动。

当U=0.8U时Tst=(0.82)KR2U2/(R22+X202)=0.64*312=199 NmTst<T L所以电动机不能启动。

②欲采用Y-△换接启动,当负载转矩为0.45 T N和0.35 T N两种情况下, 电动机能否启动?Tst Y=Tst△/3=1.2* T N /3=0.4 T N当负载转矩为0.45 T N时电动机不能启动当负载转矩为0.35 T N时电动机能启动③若采用自耦变压器降压启动,设降压比为0.64,求电源线路中通过的启动电流和电动机的启动转矩。

I N= P N/ U NηN cosφN√3 =40000/1.732*380*0.9*0.9 =75AI st/I N=6.5 I st=487.5A降压比为0.64时电流=K2 I st =0.642*487.5=200A电动机的启动转矩T= K2 Tst=0.642312=127.8 Nm5.12 双鼠笼式、深槽式异步电动机为什么可以改善启动性能?高转差率鼠笼式异步电动机又是如何改善启动性能的?因为双鼠笼式电动机的转子有两个鼠笼绕组,外层绕组的电阻系数大于内层绕组系数,在启动时S=1,f2=f,转子内外两层绕组的电抗都大大超过他们的电阻,因此,这时转子电流主要决定于转子电抗,此外外层的绕组的漏电抗小于内层绕组的漏电抗,因此外笼产生的启动转矩大,内层的启动转矩小,启动时起主要作用的是外笼。

深槽式异步电动机的启动性能得以改善的原理。

是基于电流的集肤效应。

处于深沟槽中得导体,可以认为是沿其高度分成很多层。

各层所交链漏磁通的数量不同,底层一层最多而顶上一层最少,因此,与漏磁通相应的漏磁抗,也是底层最大而上面最小,所以相当于导体有效接面积减小,转子有效电阻增加,使启动转矩增加。

高转差率鼠笼式异步电动机转子导体电阻增大,即可以限制启动电流,又可以增大启动转矩,转子的电阻率高,使转子绕组电阻加大。

5.13线绕式异步电动机采用转子串电阻启动时,所串电阻愈大,启动转矩是否也愈大?线绕式异步电动机采用转子串电阻启动时,所串电阻愈大,启动转矩愈大。

5.14 为什么线绕式异步电动机在转子串电阻启动时,启动电流减小而启动转矩反而增大?T st=KR2U2/(R22+X202)当转子的电阻适当增加时,启动转聚会增加。

5.15 异步电动机有哪几种调速方法?各种调速方法有何优缺点?①调压调速这种办法能够无级调速,但调速范围不大②转子电路串电阻调速这种方法简单可靠,但它是有机调速,随着转速降低特性变软,转子电路电阻损耗与转差率成正比,低速时损耗大。

③改变极对数调速这种方法可以获得较大的启动转矩,虽然体积稍大,价格稍高,只能有机调速,但是结构简单,效率高特性高,且调速时所需附加设备少。

④变频调速可以实现连续的改变电动机的转矩,是一种很好的调速方法。

5.16 什么叫恒功率调速?什么叫恒转矩调速?恒功率调速是人为机械特性改变的条件下,功率不变。

恒转矩调速是人为机械特性改变的条件下转矩不变。

5.17 异步电动机变极调速的可能性和原理是什么?其接线图是怎样的?假设将一个线圈组集中起来用一个线圈表示,但绕组双速电动机的定子每组绕组由两各项等闲圈的半绕组组成。

半绕组串联电流相同,当两个半绕组并联时电流相反。

他们分别代表两中极对数。

可见改变极对数的关键在于使每相定子绕组中一般绕组内的电流改变方向。

即改变定子绕组的接线方式来实现。

5.18串级调速的基本原理是什么?串级调速引入转子回路的电势,其频率有何特点?串级调速就是在异步电动机转子电路内引入附加电势Ead,以调节异步电动机的转速。

引入电势的方向可与转子电动势E2方向相同或相反,其频率则与转子频率相同。

原理:如果电动机的转速仍在原来的数值上,即S值未变动,则串入附加电势后,电流I2必然减小,从而使电动机产生的转矩T也随之减小。

T小于负载转矩T2时,电动机的转速不得不减小下来,随着电动机转速减小,转子电流I2也将增加。

当I2增加到时电动机产生的转矩T又重新等于T2后,电动机又稳速运行,但此时的转速以较原来的为低,这样就达到了调速的目的。

5.25 异步电动机有哪几种制动状态?各有何特点?异步电动机有三种反馈制动,反接制动和能耗制动。

反馈制动:当电动机的运行速度高于它的同步转速,即n1>n0时一部电动机处于发电状态。

这时转子导体切割旋转磁场的方向与电动机状态时的方向相反。

电流改变了方向,电磁转矩也随之改变方向。

反接制动:电源反接改变电动机的三相电源的相序,这就改变了旋转磁场的方向,电磁转矩由正变到负,这种方法容易造成反转。

倒拉制动出现在位能负载转矩超过电磁转矩时候,例如起重机放下重物时,机械特性曲线如下图,特性曲线由a到b,在降速最后电动机反转当到达d时,T=T L系统到达稳定状态,能耗制动:首先将三项交流电源断开,接着立即将一个低压直流电圆通入定子绕组。

直流通过定子绕组后,在电动机内部建立了一个固定的磁场,由于旋转的转子导体内就产生感应电势和电流,该电流域恒定磁场相互作用产生作用方向与转子实际旋转方向相反的转矩,所以电动机转速迅速下降,此时运动系统储存的机械能被电动机转换成电能消耗在转子电路的电阻中。

5.26 试说明鼠笼式异步电动机定子极对数突然增加时,电动机的降速过程。

N0=60f/p p增加定子的旋转磁场转速降低,定子的转速特随之降低。

5.27 试说明异步电动机定子相序突然改变时,电动机的降速过程。

2 1b ac异步电动机定子相序突然改变,就改变了旋转磁场的方向,电动机状态下的机械特性曲线就由第一象限的曲线1变成了第三象限的曲线2但由于机械惯性的原因,转速不能突变,系统运行点a只能平移到曲线2的b点,电磁转矩由正变到负,则转子将在电瓷转矩和服在转矩的共同作用下迅速减速,在从点b到点c的整个第二相限内,电磁转矩和转速方向相反,。

相关文档
最新文档