商业银行-大数据建设规划
银行数据运营工作计划范文

银行数据运营工作计划范文
根据银行数据运营工作的需要,制定以下工作计划:
一、数据汇总与整理
1. 收集各部门的业务数据,并进行汇总整理。
2. 对汇总整理后的数据进行清洗和处理,确保数据准确完整。
二、数据分析与挖掘
1. 使用数据分析工具进行对汇总整理后的数据进行分析,发现数据中的规律和趋势。
2. 利用数据挖掘技术,发现潜在的商业机会和风险点。
三、制定数据运营策略
1. 根据数据分析的结果,制定针对性的数据运营策略,提升业务效率和质量。
2. 设计数据监控体系,确保数据运营策略的有效实施和效果评估。
四、数据安全与风险控制
1. 建立数据安全管理规范,确保数据的安全和保密。
2. 针对数据运营过程中可能存在的风险,制定相应的风险控制措施。
五、数据运营团队建设
1. 培训团队成员,提升数据处理和分析能力。
2. 激励团队成员,促进团队合作和分享,共同提升数据运营水平。
六、持续优化与改进
1. 监测数据运营效果,及时发现问题并进行优化改进。
2. 跟踪行业发展趋势和技术创新,持续优化数据运营工作流程和方法。
大数据在商业银行中的运用与发展论文

大数据在商业银行中的运用与发展论文大数据在商业银行中的运用与发展摘要:随着科技的不断进步和信息化发展的推动,商业银行作为金融行业的中枢,也面临着巨大的变革。
大数据作为一种新兴的技术和工具,对商业银行的发展具有重要的意义。
本文将着重探讨大数据在商业银行中的运用和发展。
1. 引言商业银行作为金融行业的中枢,具有信息量大、特定行业和客户群体的特点。
随着金融行业的不断发展,商业银行面临着巨大的挑战和机遇。
大数据的兴起为商业银行带来了新的发展机遇。
2. 大数据在商业银行中的运用2.1 风控和欺诈检测商业银行需要不断进行风控和欺诈检测以确保金融交易的安全和稳定。
大数据可以帮助银行分析海量的交易数据,识别潜在的风险和欺诈行为,提前做出预警和处理。
2.2 客户分析和营销商业银行拥有大量的客户数据,通过对这些数据的分析,可以更好地了解客户的需求和喜好,为客户提供个性化的金融产品和服务,并提高客户的满意度和忠诚度。
2.3 信用评估和贷款审批商业银行需要对客户的信用评估和贷款审批进行准确和高效的处理。
大数据可以帮助银行从海量的数据中提取有用的信息,为信用评估和贷款审批提供更准确和全面的依据。
3. 大数据在商业银行中的发展3.1 技术支持和人才培养商业银行需要持续投入资金和资源来推动大数据技术的应用和发展,并培养专业人才来应对大数据的挑战和机遇。
3.2 数据安全和隐私保护商业银行需要加大对大数据的安全和隐私保护的力度,确保客户信息的安全和保密,避免数据泄露和滥用。
3.3 合作与共享商业银行可以与科技公司、数据公司和其他金融机构进行合作,共享和交流数据和技术,提高数据的利用价值和商业化程度。
4. 面临的挑战和机遇大数据在商业银行中的运用和发展不仅面临着各种技术和安全问题,还需要应对监管政策和商业模式的变革等多重挑战。
但同时也带来了更大的机遇,可以提高银行的效率、降低成本,并且创造更多的商业机会。
5. 结论大数据在商业银行中的运用和发展具有重要的意义和潜力。
浅谈大数据在商业银行中的运用与发展

浅谈大数据在商业银行中的运用与发展随着信息化与数字化的快速发展,大数据技术已经成为商业银行发展的重要驱动力之一。
大数据技术的应用为商业银行带来了许多创新性的解决方案,能够提升服务水平、降低成本、改善风险管理和提高客户满意度。
本文将从大数据在商业银行中的应用情况、发展趋势和面临的挑战等方面进行浅谈。
一、大数据在商业银行中的应用情况1. 金融风控商业银行通过大数据技术的应用,可以对客户的信用状况、资产情况、还款能力等进行更加全面、深入的分析和评估,从而提高风险管理的水平,有效降低信用风险和资产损失。
2. 个性化营销商业银行通过大数据技术可以对客户的消费行为、偏好等信息进行深入挖掘,实现精准营销,提供个性化的金融产品和服务,提高客户满意度,增加银行的盈利能力。
3. 精准定价大数据技术可以帮助商业银行更准确地评估客户的风险,进而制定更合理的利率和定价策略,提高盈利能力。
4. 智能客服商业银行可以通过大数据技术构建智能客服系统,实现自动化的客户服务,提高服务效率,降低人力成本。
5. 风险控制大数据技术可以帮助商业银行更好地监控风险,准确预测市场变化,并及时调整风险管理策略,保障资产安全。
6. 反欺诈通过大数据技术的应用,商业银行可以更好地识别和防范欺诈行为,提高金融交易的安全性。
1. 数据治理与安全随着大数据规模的不断增长,数据治理和安全问题愈发凸显。
商业银行需要建立完善的数据治理体系,加强数据安全防护,确保客户隐私不受侵犯。
2. 人工智能与机器学习商业银行将进一步探索人工智能与机器学习在大数据中的应用,实现更加智能化的风控和客户服务,提升业务效率。
3. 云计算与边缘计算云计算和边缘计算技术的发展将为商业银行提供更加灵活和高效的大数据处理和存储方案,降低运营成本,提升数据处理能力。
4. 区块链技术区块链技术的应用将为商业银行提供更加安全和可靠的数据交换和存储方式,促进金融业务的创新和发展。
5. 多维度数据应用商业银行将进一步深入挖掘多维度数据,实现更全面、深入的客户分析,提供更加个性化和精准的金融服务。
城市商业银行数据中心建设与管理分析

现在,国内大小企业的数据中心已 经开始注重全面发展,逐渐地由单向的 横向发展转变为横向纵向共同发展。数 据计算中心的虚拟化也开始向更多的方 向发展,随着这项技术的发展越来越成 熟,也逐渐推动了云数据中心的发展, 这种技术建立在多种数据中心的基础 上,能够更加科学合理地综合考虑多个 数据中心的资源配置、运行效率和用户 感受,并且能够通过改变资源管理和服 务管理的核心综合提升数据中心的运作 效率和服务质量。
财经管理
Financial Management
城市商业银行数据中心建设与管理分析
王少强
(泉州银行股份有限公司,福建 泉州 362000)
摘要:这些年来,金融行业的数据已经逐渐向业务方面开始整合,并且逐渐地向着围绕业务发展需要的方向展开。 随着计算机技术的发展,以信息技术为基础的新型金融业务不断出现,对数据持续进行安全稳定的优化已经成 为金融行业发展与创新的必要手段。由于信息化程度在银行等金融企业中的应用越来越广泛,城市商业银行中 的数据量越来越大,而大数据的合理运用对于这些金融企业在未来的发展至关重要。本文详细介绍了云数据中 心的基本概念和特征,并相应地介绍了云数据的基本结构和管理构建云数据的方法,希望能够对未来国内金融 行业的城市商业银行数据中心发展提供一定的参考。 关键词:云计算 云数据中心 虚拟化 超融合 资源池 中图分类号:TP308;F832.2 文献标识码:A
· 158 ·
Financial Management
财经管理
用率越来越高。
己的需求来定制服务,其中某些需求也 2.2.6 安全保障
2.1.3 异构平台支持
要支付一定的费用。如果在云用户已经
由于数据中心需要持续进行运行,
随着云用户对于云数据中心的逐步 使用了一段时间之后,该系统以及硬件 所以数据和系统要能够时刻可用,这就
商业银行的大数据应用及发展建议

商业银行的大数据应用及发展建议摘要:本文综合分析了大数据时代,商业银行信息化建设发展的情况、存在的问题及对未来商业银行在信息化建设提出现实可行的建议。
关键词:大数据时代;商业银行;数据应用;信息化发展引言现阶段,我国商业银行的发展面临着新的问题,变量主要来自社会的发展和信息技术的进步,一方面,先进技术代表的生产力进步给社会生活造成了巨大的冲击,尤其是大数据技术,创新了商业经营模式,拓宽了人类的行动空间。
在商业银行业,大数据技术的出现淡化了传统行业之间的界限,当前商业银行的金融生态朝着更加开放化的方向变革,并且,金融生态的发展速度前所未有地提升,得到了社会各界的普遍认同。
以大数据为代表的信息技术发展是金融创新的根本。
另一方面,商业银行的经营内容与外部政策环境之间存在着不可分割的关系,支付结算开放就是其中重要的一点。
目前,微信支付和支付宝支付等独立于商业银行之外的第三方支付公司纷纷与各个商业银行之间展开了合作,建立起支付结算的通道,以网络融资产品为代表的互联网金融产品层出不穷。
鉴于此,传统商业银行需要积极展开变革,革新经营管理理念、创新运营的业务。
只有充分利用以大数据为代表的信息技术,朝着信息化的方向发展,才能在当下的环境下提高商业银行的竞争能力。
1.信息化及大数据信息化并非独立进行,其是经济社会逐渐发展过程中的产物,并且信息化处于一种动态变化的过程中,信息化作为一种先进的生产力代表,正在主导着经济社会的发展演变,以大数据为代表的新技术正在加速这一进程。
被广泛认可的“大数据”概念,最早是2001年由高德纳咨询公司的分析师道格拉斯·兰尼提出。
2011年,麦肯锡在发布的研究报告中提到大数据时代已到来。
目前公认的大数据特征有以下四点。
(1)规模性。
大数据最为明显的一个特征就是量大,需要我们有强大的数据处理技术,对信息进行统计和分析。
随着信息化技术的高速发展,数据开始爆发性增长。
大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
商业银行数字化转型思路及建设方案

主要内容 1 以客户为中心的智能互动机制建立 2 员工赋能及替代人工 3 新技术带来流程变革,推动科技金融生态繁荣 2 数据转型融入业务创新
建立 以客户为中心的互动机制
以客户为中心的智能互动机制建立
大数据
其他相 关信息
银行信 息系统
服务
产品
员工赋能及替代人工
员工赋能及替代人工
知识库和搜索引擎
• 各类员工知识库的建立和动态更新 • 检索方式人性化
工作助手智能化
• 员工需要帮助的人系统能智能连接 • 管理者能根据系统信息推断出什么人需要
帮助
新技术带来流程变革,推动科 技金融生态繁荣
新技术带来流程变革,推动科技金融生态繁荣
互联网金 融大环境
的影响
内容多样 化
流程不断 变革升级
云技术/ 物联网/ 区块链
全方位场 景
将数字化 融入金融产品创新
数据型融入业务创新
数字化使得许多产品交易方式变成 随时随地:多渠道的接入使产品设计更灵 活;客户对产品的选择更方便。
产品与产品之间的连接无缝化:信息 系统对产品与产品之间的引用智能化,无 缝化;产品设计方式多样化。
银行企业数据战略实施方案

银行企业数据战略实施方案01 商业银行数据战略框架商业银行的数据战略是指在商业银行行业范围内及单个商业银行中,通过新建、梳理、优化新旧数据、数据载体、数据生产者(业务流程、交易行为等)、数据使用者(数据分析团队、业务人员等)、支撑体系之间的关系,建立商业银行数据全景;继而通过全局统筹,协调商业银行数据工作,利用数据达成助力经营业绩,提高客服质量等经营目标,在行业内获得战略优势。
在探讨商业银行数据战略框架时,可以参考军事战略。
军事战略需要师出有名,以便号召多方力量,为共同的战略目标努力。
在战略愿景的大旗下,将军需要告诉他的军队,本次战役要实现哪几个目标,是要获取粮马、收复失地,还是要攻城掠池。
有了清晰的战略目标,军队就有了行动纲领。
除了清晰的战略目标,军队行动的总体原则、每次战役举措的制定及每次行动的战术策略也是致胜的关键。
在拥有了战略愿景、战略目标、战略原则、战役举措及相应战术后,确保战略顺利落实还离不开军规军纪、后勤保障、粮草营地、充满战斗力的军队文化等基础保障。
相似地,在商业银行数据战略制定的初期,一个满足多方高阶诉求的愿景极为重要,战略愿景下要有明确的战略目标及战略原则承接,为了实现战略目标,制定相应的战略举措和实施策略。
商业银行数据战略的框架,自上而下分别为数据发展愿景、数据战略目标、数据战略建设总体原则、数据能力建设的关键举措、数据战略实施策略,以及数据战略的评估体系。
数据战略愿景位于整个数据战略规划的最高层,是整个数据战略的最高指引,是商业银行所有利益相关者本质诉求的有机结合,是商业银行发展的“诗和远方”。
数据战略愿景可以是完全围绕数据的,对数据本身的管理、发展做出展望,也可以是以数据作为重要战略手段,实现更高层次、全局性的业务愿景。
数据战略目标在整个数据战略规划中位于承上启下的位置,是战略愿景的承接和拆解,是战略举措的指引纲领。
为了呼应战略愿景,商业银行可能需要制定若干个、分阶段的战略目标,分别对应商业银行不同阶段自身的政策能力及外部的形势环境。
大数据在商业银行中的运用与发展

大数据在商业银行中的运用与发展【摘要】大数据技术在商业银行中的应用越来越广泛,已成为银行业的重要发展趋势之一。
本文首先介绍了商业银行大数据技术的发展历程,包括技术应用的演进和创新。
探讨了大数据在商业银行风险管理、智能营销、客户服务和创新业务中的具体应用方式和效果。
结合实际案例,分析了大数据技术对商业银行提升运营效率、降低风险、优化客户体验和创造新的商业价值的重要作用。
展望了商业银行大数据技术未来的发展趋势,强调了大数据在商业银行中的重要性和价值。
总结指出,商业银行应积极应用大数据技术,不断创新业务模式,以提升竞争力和服务质量,促进行业持续发展。
【关键词】大数据、商业银行、发展历程、风险管理、智能营销、客户服务、创新业务、未来发展趋势、重要性、价值、总结1. 引言1.1 大数据在商业银行中的运用与发展大数据在商业银行中的运用与发展,是当前金融行业中一个备受关注的话题。
随着信息技术的快速发展,商业银行也在不断探索如何利用大数据技术来提升自身的经营效率和服务质量。
大数据技术的广泛应用,不仅为商业银行带来了巨大的商机和挑战,也为银行业的发展带来了新的思路和路径。
商业银行通过大数据技术的运用,可以更加全面地了解客户的需求和行为,从而更好地为客户提供个性化的金融产品和服务。
在风险管理、智能营销、客户服务和创新业务等方面,大数据技术都有着广泛的应用空间和潜力。
通过对大数据的分析和挖掘,商业银行可以更加准确地识别和评估风险,提高信贷审核的效率和准确性;可以更好地理解客户的需求,提供更具吸引力的产品和服务;可以更好地与客户进行互动,提升客户满意度和忠诚度;可以更快地推出新的创新产品和服务,保持市场竞争力。
大数据在商业银行中的运用和发展,不仅可以帮助银行降低成本、提高效率,还可以为银行带来新的盈利机会和市场优势。
商业银行在不断探索和应用大数据技术的过程中,需要不断提升自身的数据治理和技术能力,加强对数据的安全和隐私的保护,以更好地服务于客户,推动金融行业的数字化转型和创新发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX银行大数据建设规划一、项目背景随着信息化程度的加深,以及移动互联网、物联网的崛起,人们产生的数据急剧膨胀,传统的数据处理技术难以支撑数据大量的增长和处理能力。
经过近几年的发展,大数据技术逐步成熟,可以帮助企业整合更多的数据,从海量数据中挖掘出隐藏价值。
大数据已经从“概念”走向“价值”,逐步进入实施验证阶段。
人们越来越期望能实现海量数据的处理,从数据中发现价值。
数据越来越成为一种重要的资产。
在2014年Gartner技术炒作曲线的报告中也体现了大数据技术将走向实际应用。
我行已深刻认识到数据战略对企业运营以及企业未来发展方向的重要性。
互联网金融的本质是金融,核心是数据,载体是平台,关键是客户体验,发展趋势是互联网与金融的深度融合,要提升大数据贡献度。
因此,要深化互联网思维理念,稳步推进互联网金融产品和服务模式创新,积极利用移动互联网、大数据等新技术新手段,沉着应对冲击和挑战,实现传统金融与互联网金融的融合发展。
做好海量异构数据的专业化整合集成、关联共享、安全防护和维护管理,深度挖掘数据内含的巨大价值,探索银行业务创新,实现数据资源的综合应用、深度应用,已成为提升企业核心竞争力,实现企业信息化可持续发展的关键途径。
按照行领导部署,信息科技部组织力量对大数据技术进行研究,完成对市场上主流的大数据平台及应用技术预研,征求业务部门建议,提出项目建设要求。
二、建设目标以大数据项目建设作为契机,凝聚我行优势力量,全面梳理数据资源,完善数据体系架构,自主掌握大数据关键技术,加速大数据资源的开发利用,将数据决策化贯穿到经营管理全流程,建设智慧银行,提升核心竞争力。
(一)建设大数据基础设施,完善全行数据体系架构构建大数据平台,实现更广泛的半结构化、非结构化数据集中采集、存储、加工、分析和应用,极大地丰富我行的信息资源,同现有的企业级数据仓库和历史数据存储系统一起,形成基础数据体系,提供支撑经营管理的各类数据应用。
(二)开发大数据资源,支撑全行经营管理创新建设离线数据分析、实时数据/流数据分析集群和各类数据分析集市,提供高性能可扩展的分布式计算引擎,通过数据挖掘、计量分析和机器学习等手段,对丰富的大数据资源进行开发使用,并将数据决策化过程结合到风控、营销、营运等经营管理活动。
(三)培养大数据人才队伍,建立大数据分析能力结合大数据项目的落地实施,建立起一支大数据技术和分析人员队伍,具备自主运营和开发大数据的能力,以更好推动业务创新,提升我行核心竞争力。
三、发展趋势近年来,银行业大力发展面向客户的新一代核心业务系统,信息系统建设日趋完备,电子银行等在线金融服务大幅增长,在提升客户体验和风险管控能力、满足监管各项要求的同时,形成并储存了庞大的可用数据资源。
银行业的数据资源不仅包括存贷汇等结构化数据,也包括客户浏览痕迹、在线交易记录等非结构化数据,还包含客户电话语音、网点视频等非结构化数据。
2012年,银行业的电话记录数据、业务数据、数据仓库数据、结构化数据和非结构化数据的数据规模分别达到938T、1688T、3125T、5313T 和3938T。
Celent公司预计未来5年将增长7倍。
除数据本身的快速增长外,银行业面临的更大的挑战是大数据带来的业务挑战,这包括:小微贷市场上,银行与互联网小额贷款公司难以竞争;支付市场中,网银支付所占比重越来越低,这使得银行越来越难以知道客户的消费行为;各种互联网融资模式的出现,在未来可能会超过以银行为中心的间接融资。
所有这些挑战,本质上是银行对于客户的了解程度相对越来越弱。
麦肯锡指出,在大数据时代,不能充分形成大数据使用能力的竞争者将被淘汰。
(一)同业案例情况国内领先的商业银行已经启动大数据平台的建设,并应用于精准营销、风险管理和业务创新等领域,以获得竞争优势。
工商银行通过构建大数据平台,收集网银用户的行为轨迹并进行分析,精准营销,扩大销售,优化网银服务模块的质量,提升客户体验。
招商银行通过大数据平台构建全量数据分析和挖掘平台,推出在线明细,实时征信,精准营销等创新业务,提升小微贷获客率。
上海银行构建大数据平台,用于对客户的资金的流入流出分析。
中信银行、光大银行、平安银行、民生银行都在建设自身的大数据平台。
(二)业务应用场景大数据技术在银行业的应用范围包括:客户洞察、营销支撑、风险管控和营运优化等领域。
客户洞察分析用户的各种数据,包括电话语音、网络的监控录像、商城交易信息、金融业务信息以及外部的社交信息、第三方履约行为等多方面信息,从而实现对客户进行分类和服务。
对现有CRM系统中的客户分层的数据要素进行延伸。
●营销支撑实时营销:是根据客户的实时状态来进行营销,如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销。
社交网络营销:主要是微博营销,这主要是捕捉用户的言论和行为,并有针对地开展相关营销活动。
事件式营销:将改变生活的事件视为营销机会,如换工作、改变婚姻状况、置业等。
●风险管控信用评级:运用社交网络、行为特征、交易网、基本社会特征、人行征信等多个维度对客户综合评级,运用大量的指标构建多重模型,以识别客户的信用风险。
反欺诈:通过监控客户、账户和渠道等,提高银行在交易、转账和在线付款等领域防御欺诈的能力。
在监控客户行为时,可以识别出潜在的违规客户,提示工作人员对其予以重点关注,从而节省反欺诈监控资源。
●营运优化改善用户体验:运用大数据能够处理海量数据的能力,将传统数据统计分析等业务切换到数据处理能力更强的平台,来解决查询历史数据的困难,提升用户体验。
客服中心优化:通过对客服中心的数据分析,允许银行提前预测用户需求用以快速地解决问题,能够快速满足用户的需求。
降低运营成本:大数据平台采用普通的PC服务器和廉价存储,相对原有的小型机的硬件架构,可以有效的降低IT运营成本。
四、平台建设原则平台是大数据的基础实施,其建设、设计和系统实现过程中,应遵循如下指导原则:●经济性:基于现有场景分析,对三年内的数据量进行合理评估,确定大数据平台规模,后续根据实际情况再逐步优化扩容。
●可扩展性:架构设计与功能划分模块化,考虑各接口的开放性、可扩展性,便于系统的快速扩展与维护,便于第三方系统的快速接入。
●可靠性:系统采用的系统结构、技术措施、开发手段都应建立在已经相当成熟的应用基础上,在技术服务和维护响应上同用户积极配合,确保系统的可靠;对数据指标要保证完整性,准确性。
●安全性:针对系统级、应用级、网络级,均提供合理的安全手段和措施,为系统提供全方位的安全实施方案,确保企业内部信息的安全。
大数据技术必须自主可控。
●先进性:涵盖结构化,半结构化和非结构化数据存储和分析的特点。
借鉴互联网大数据存储及分析的实践,使平台具有良好的先进性和弹性。
支撑当前及未来数据应用需求,引入对应大数据相关技术。
●平台性:归纳整理大数据需求,形成统一的大数据存储服务和大数据分析服务。
利用多租户, 实现计算负荷和数据访问负荷隔离。
多集群统一管理。
●分层解耦:大数据平台提供开放的、标准的接口,实现与各应用产品的无缝对接。
五、分析应用规划大数据项目实施在保持核心账务系统稳定同时,实现外围IT架构逐步向开放架构演进,同时逐步吸纳互联网技术创新,应对大数据技术的快速发展和进化。
以全行三年战略发展规划和十三五规划为导向,借鉴同业和互联网企业的先进经验,分步实施分析应用,基础平台、外围系统改造以及业务流程优化相应地进行配套调整。
规划的大数据平台及应用的整体架构如下:大数据平台重点功能模块定位如下:●基础数据集群使用分布式文件系统和数据库等组件实现全量结构化数据和非结构化数据存储,并提供标准接口或Rest标准接口,上层业务以只读方式访问。
数据使用平台集成的工具批量导入导出。
●在线处理集群基础数据集群中的存放的往往是低价值密度的数据,经过加工处理后,提取出高价值密度的数据,放入在线查询集群,支撑实时业务、自助查询等高并发,低时延的数据查询。
●离线处理集群离线数据处理集群主要用于海量数据的分析处理,提供数据挖掘、数据探索功能框架,从海量数据中提取高密度价值的数据。
适用于对海量用户行为数据挖掘、建模,以支撑以客户为中心的精准营销、决策分析等应用场景。
流式处理集群使用流式处理组件,将实时数据接入。
通过注入实时业务处理规则,对事件做分析处理,实时决策。
流事件处理过程中,需要访问基础集群或在线处理集群,获取必要的支撑信息,如风险信息表、黑白名单、历史交易信息等,要求支持每秒万级别并发数据访问。
适用于信用卡授权风险控制、移动在线支付、在线统计分析等对实时性要求较高的场景。
大数据平台的数据来源及应用场景规划如下:计划分三步进行实施,如下:(一)2015年完成大数据基础平台的搭建,构建简单的查询分析应用,科技人员熟悉平台关键技术和开发技能。
●基础平台完成大数据平台的搭建,实现平台的基础功能和基础数据集群。
完成HDS历史数据、科技运维日志、网银日志、智能营销网页信息数据的存储。
构建多种数据挖掘算法库。
完成基础数据平台对外数据服务的标准化接口。
●分析应用完成资金流向分析主题和历史数据内部查询交易。
提出直销银行、手机银行、微信银行的数据采集点数据要求。
提出用于支撑营销的个人信息的数据采集要求。
●外围系统改造完成直销银行、手机银行、微信银行的数据采集点改造,将行为日志数据记录下来。
(二)2016-2017年完善大数据基础平台,增加离线数据处理集群,采集行内各系统产生的客户行为数据,第三方合作机构(含同业)的外部数据,丰富客户营销、风险管理方面的数据信息,探索大数据同云计算平台的结合,构建相应的分析应用系统,将数据决策融入营销和风控过程。
科技人员掌握平台关键技术,能够自主营运开发。
●基础平台增加离线数据处理集群,完善多种数据挖掘算法库,用于对海量数据进行加工处理,分析应用。
采集客户行为数据,包括直销银行、手机银行、微信银行等。
迁移影像平台的历史数据。
采集同业产品信息,我行网上舆论信息,特定客户和行内的互联网舆情信息,第三方合作机构、银银合作平台的外部数据。
●分析应用构建数据分析应用云计算平台,实现半结构化、非结构化数据的解析功能,完善支撑数据分析应用集市,提供更多的数据服务,实现灵活深入的客户细分、专业化的营销与销售、优化管理流程,提升运作效率、降低管理成本。
主要应用方向包括:客户画像分析(个性化理财、交叉销售、客户挽留)。
舆情分析(对产品的比较、评价等反馈,进行营运优化)。
网站分析(手机终端、微信、直销银行等),分析客户行为。
科技运维优化(结合ITSM、系统运维日志分析事件、问题的关联性、各类统计等)。
信用风险(在现有的信用评级体系中,增加外部数据来源,优化评级结果),完善自动化授信审批,尤其是针对小微企业或特定产品,推出信贷差异化定价体系,做到对不同产品、不同行业、不同区域实施差别化定价。