对顶角试题1
余角、补角、对顶角(1)

其理由是___等__角__的__补__角__相__等__.
课堂小结
两角间的 数量关系
对应图形
互余
1 2 90
互补
1 2 180 (1 180 2)
性质 同角或等角的余角相等 同角或等角的补角相等
45°
30°
(90-n) °
动手操作
➢请你借助直角三角板,在原图上画出∠1所有的余角。
(1)图中有哪几对互余的角?
A
1与2; 1与3
(2)猜想:图中∠2、∠3的大小有什么关系?
2
O3
2=3
(3)你的猜想正确吗?
B (4)你能用一句话概括以上规律吗?
同角的余角相等。
思考:如果两个角相等,它们的余角相等吗?
∠1是∠2的余角,还可以说 ∠2是∠1的余角语言:
因为∠α+∠β=90°,
所以∠α与∠β互余.
反之:因为∠α与∠β互余,
所以∠α+∠β=90°
即∠α=90°-∠β, 或∠β=90°-∠α.
课堂互学
填写下面的表格
∠α的度数 500
450
600
n0 (0<n<90)
∠α的余角 40°
6.3.1 余角、补角
观察思考
如图所示,∠α与∠β 的度数之间有怎样的关系?
α
β
旋转上面这块三角板, ∠α、∠β 有怎样的变化? ∠α + ∠β有怎样的变化?
∠α+∠β=90°
概念生成
余角的概念
如果两个角的和等于 一个直角 ,就说这两个角互为余角, 简称互余,即其中的一个角是另外一个角的余角.
春七年级数学下册 第10章 相交线、平行线和平移 10.1 相交线 第1课时 对顶角及其性质课时作业

第10章相交线、平行线与平移10.1相交线第1课时对顶角及其性质知识要点基础练知识点1对顶角的概念1.如图,∠1和∠2是对顶角的是(B)2.如图,在所标识的角中,互为对顶角的两个角是(A)A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2知识点2对顶角的性质3.直线AB,CD相交于点O,OE平分∠BOC.已知∠BOE=65°,则∠AOD的度数是(D)A.32.5°B.65°C.110°D.130°4.如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=32°,则∠BOE=53°.5.直线AB,CD,EF相交于点O,如图.(1)写出∠AOD,∠EOC的对顶角;(2)已知∠AOC=50°,求∠BOD的度数;(3)若∠BOD+∠COF=140°,求∠BOE的度数.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.(2)∠BOD=50°.(3)因为∠BOE=∠EOD+∠BOD,∠EOD=∠COF,所以∠BOE=∠BOD+∠COF=140°.综合能力提升练6.如图,当光线从空气射入水中,光线的传播发生了改变,这就是折射现象.∠1的对顶角是(A)A.∠AOBB.∠BOCC.∠AOCD.都不是7.下列说法:①两条直线相交,有公共顶点的角是对顶角;②对顶角相等;③相等的两个角是对顶角;④两个角互为对顶角,这两个角度数之和不会超过180°.其中正确的有(A) A.1个 B.2个 C.3个 D.4个8.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠BOE=4∶1,则∠AOF 等于(B) A.130° B.120° C.110° D.100°9.如图,直线AB,CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF的度数为62°.10.如图,有两堵墙,要测量地面上形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外.如何测量?并说明理由.解:延长AO,BO分别至点C,点D,测量∠COD的度数即可.理由:对顶角相等.11.如图,直线AB与CD相交于点O,OD恰为∠BOE的平分线.(1)请直接写出和∠AOD互补的角;(把符合条件的角都写出来)(2)若∠AOD=142°,求∠AOE的度数.解:(1)∠AOC,∠BOD,∠EOD.(2)由(1)知∠DOE=∠BOD=180°-∠AOD=38°,∴∠AOE=∠AOD-∠DOE=104°.12.如图,直线AB,CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE∶∠EOC=2∶3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.解:(1)∠AOE=30°.(2)OB是∠DOF的平分线.理由:∵∠AOE=30°,∴∠BOE=180°-∠AOE=150°,∵OF平分∠BOE,∴∠BOF=75°,又∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠DOF的平分线.13.如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.解:(1)∵OE平分∠BOD,∠BOE=40°,∴∠BOD=80°,∴∠BOC=100°.∵OF平分∠AOB,∴∠AOF=∠BOF=90°,∴∠COF=100°-90°=10°.(2)∠COF=180°-2x-90°=90°-2x.拓展探究突破练14.观察下列图形,寻找对顶角(不含平角).(1)两条直线相交于一点,如图①,共有2对对顶角;(2)三条直线相交于一点,如图②,共有6对对顶角;(3)四条直线相交于一点,如图③,共有12对对顶角;…(4)根据填空结果探究:当n条直线相交于一点时,所构成的对顶角的对数与直线条数之间的关系;(5)根据探究结果,求2019条直线相交于一点时,所构成的对顶角的对数.解:(4)n(n-1).(5)2018×2019=4074342.。
沪科版(2024)数学七年级下册+第10章+10.1 相交线-第1课时 对顶角

解得 = .
12.阅读并补全解答过程.
如图所示,直线,,两两相交,
∠ = ∠,∠ = ∘ ,求∠的度数.
解:因为∠ = ∠,(已知)
∠ = ∠
_________,(对顶角相等)
所以∠ = ∠.(等量代换)
对顶角相等
又因为∠ = ∠,(____________)
12
4条直线相交于一点,有____对对顶角.
(2)根据(1)总结规律,写出条直线相交于一点,有多少对对
顶角( ≥ ,为正整数).
解:有( − )对对顶角.
(3)根据(2)中发现的规律,求10条直线相交于一点,有多少对
对顶角.
× ( − ) = (对),即有90对对顶角.
7.[2024·安庆期末] 如图是利用量角
器测量角的示意图,则图中∠的度
数为( A
A.∘
)
B.∘
C.∘
D.∘
(第7题)
8.
[2024·宿州期中] 如图,当
光线从空气中射入某种液体中时,光线的传
播方向发生了变化,在物理学中这种现象叫
作光的折射.如图,垂直于液面于点
(第8题)
等量代换
所以∠ = ∠.(__________)
又因为∠ = ∘ ,(已知)
. ∘
所以∠ = ∠ =_______.(等式的性质)
3星题 提升练
13.[几何直观]观察图形(如图),回答下列问题(平角除外):
2
(1)2条直线相交于一点,有___对对顶角;
6
3条直线相交于一点,有___对对顶角;
(第10题)
根据题意,易得
∠ = ∠ = ∘ .因为射线平分∠,所以
∠ =
对顶角课件(1)

北京菜户营立交桥
每相邻的两个角有公共的顶点、有一条公共边,且另一 不相邻的两个角有公共顶点,且一个角的两边 在两条直线相交所得的四个角中,每两个角在 条边在同一直线上,这样的两个角叫做邻补角. ∠1与∠2、 是另一个角两边的反向延长线。这样的两个角叫 顶点、边上各有什么特点? ∠2与∠3、∠1与∠4、∠3与∠4是邻补角。
做对顶角。 ∠1与∠3,∠2与∠4是对顶角 A 2O D
1
C 4
)3
B
下图中的∠1和∠2是对顶 角吗?为什么?
练习1
C 1 A O 2 B
图1
D
下图中的∠1和∠2是对顶 角吗?为什么?
练习1
1
2 图3
下图中的∠1和∠2是对顶 角吗?为什么?
练习1
1 图3
2ห้องสมุดไป่ตู้
下图中的∠1和∠2是对顶 角吗?为什么?
A E O C B D
因为OE平分∠AOC, A 所以∠AOE= ∠EOC=25O E ∠AOC=2 ∠AOE=50O C 因为∠AOC与∠BOD是对顶角, 所以∠BOD= ∠AOC=50O 又∠AOE与∠BOE互补, ∠COE与∠DOE互补, ∠AOC与∠COB互补 所以∠BOE=180O- ∠AOE=155O ∠DOE=180O- ∠COE=155O ∠COB=180O- ∠AOC=130O 因为∠AOD与∠BOC是对顶角, 所以∠BOC= ∠AOD=130O
例题
A C O
D
B
如图,直线AB、CD交于点O, (1)指出∠AOD的对顶角与邻补角. (2)如果∠AOD =105°,求其余各角. (3) ∠AOD的邻补角有什么关系?如果说:
“两个角是对顶角,那么它们的邻补角一
【小学】人教版四年级数学上册第三章《角的度量》模拟卷(第一套)

人教版四年级数学上册第三章《角的度量》考前卷(第一套)一.选择题(共10小题,共20211.量角器使用正确的是()A.B.C.2.六时整,钟面上分针与时针所成的角是()A.90°B.180°C.270°3.下面哪个角不能用一副三角尺拼出()A.75 B.25 C.1354.图中∠1的度数是()A.12021B.80°C.60°5.斜面与地面大约成()角时,物体从斜面上向下滚得远一些.A.30°B.45°C.60°6.度量一个角,角的一条边对着量角器上“180”的刻度,另一条边对着刻度“90”,这个角是()A.平角B.直角C.锐角D.钝角7.如图所示,观察用量角器测量∠AOC的度数是()A.125°B.65°C.55°8.能直接用一套三角板画出的度数有()A.75°B.115°C.80°D.35°9.从3点15分到3点45分这段时间里,分针旋转了()A.12021B.180°C.30°10.把半圆平均分成180份,每一份所对的角的度数是()A.10 B.1 C.18二.填空题(共5小题,共14分)11.钟面上9时整,钟面上的时针和分针所成的角是度;从5时到6时,分针转动了度.12.求角的度数.(如图)∠1=45°,∠2=度,∠3=度,∠4=度,∠5=度.13.上午9时整,时针和分针所组成的角是度,是角;下午6时整,时针和分针所组成的角是度,是角.14.如图中∠1=60°那么∠2=°,∠3=°.15.3时整,时针与分针夹角是度,7时整,时针与分针较小的夹角是.三.计算题(共2小题,共22分)16.如图,已知∠1=35°,求∠2、∠3、∠4的度数.17.如图,∠2的度数是∠1的5倍,求∠2的度数.18.量角器是把半圆分成等份制成的,如果想知道如图∠1的度数,我们应该先用量角器量出的度数,然后用度减去的度数,那么∠1是度.19.量出如图两个角的度数.2021图一张长方形纸,把它的一角折叠过来,已知∠1=30°你能求出∠2等于多少度吗?21.求三角形中∠1的度数.图1:∠1=图2:∠1=图3:∠1=.人教版四年级数学上册第三章《角的度量》考前卷(第一套)参考答案与试题解析一.选择题(共10小题)1.【分析】用量角器量角的方法是:先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.另外,量角器上有两圈刻度,一个是内圈刻度,一个外圈刻度,要看清角的一条边是和量角器的内圈的还是外圈的0刻度线对齐,据此判断即可.【解答】解:A、量角器的中心没有和角的顶点对齐,所以A不正确;B、量角器的中心和角的顶点对齐,但量角器的另一条边和应该指向外圈的刻度,所以B不正确;C、正确;故选:C.【点评】本题主要考查了学生对使用量角器测量角的方法的掌握情况,注意要看清角的一条边是和量角器的内圈的还是外圈的0刻度线对齐.2.【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,6时整,分针与时针相差6个整大格,所以钟面上时针与分针形成的夹角是:30°×6=180°,由此根据平角的定义即可解答.【解答】解:30°×6=180°.答:6时整,钟面上时针与分针所成的角是平角.故选:B.【点评】本题要在了解钟面结构的基础上进行解答.3.【分析】一副三角板,锐角三角板的角有30°、60°、90°,等腰直角三角板的角有45°、90°,用它们进行拼组,即可解答.【解答】解:A、30°45°=75°;B、任意两个角不能拼成25度角;C、90°45°=135°;故选:B.【点评】本题考查了学生用一副三角尺拼成角度情况的掌握,关键是明确三角板上的角的度数.4.【分析】用平角的度数﹣左边的刻度=右边的刻度,即可求出图中∠1的度数.【解答】解:180°﹣60°=12021答:图中∠1的度数是12021故选:A.【点评】本题考查了角的度量,关键是熟悉量角器量角的方法.5.【分析】根据斜坡的角度为45度时,物体从上面滚下来的距离最远即可作出选择.【解答】解:斜面与地面大约成45°角时,物体从斜面上向下滚得远一些.故选:B.【点评】考查了物体从斜面上滚下的距离,不仅与斜面的长度有关,而且跟斜面与地面所成的角度有关.6.【分析】测量角的度数时:第一步:点重合,量角器的中心点与顶点重合.第二步:线重合,量角器的零刻度线与角的一边重合.第三步:读度数,看角的另一边落到量角器的哪个刻度线上,这个刻度数是这个角的度数.【解答】解:180°﹣90°=90°.答:这个角是90°,90°的角叫做直角.故选:B.【点评】此题主要考查角的度量,注意正确使用量角器:角的顶点和量角器的中心点重合,0刻度线和一条边重合.7.【分析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.【解答】解:根据图示可得,用量角器测量角的度数是55°.故选:C.【点评】本题考查了学生测量角的能力,注意测量中的两个重合.8.【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】解:A、75°的角,45°30°=75°;B、115°的角,无法用三角板中角的度数拼出;C、80°的角,无法用三角板中角的度数拼出;D、35°的角,无法用三角板中角的度数拼出.故选:A.【点评】用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.9.【分析】从圆心角的角度看,钟面圆周一周是360°,分针一小时(60分)转一周,那么每分钟转:360°÷60=6°;又由于从3时15分到3时45分经过了:45﹣15=30分钟,形成的角是30×6=180度;据此解答.【解答】解:360°÷60=6°,6×(45﹣15),=6×30,=180(度).答:分针旋转了180°.故选:B.【点评】本题考查了钟面知识:本题还可以从“数格子”的角度解答,钟面圆周一周是360°,时钟的钟面被均分成12个大格,每个大格又被均分成5个小格;这样钟面圆被均分成60个小格,每个大格所对的圆心角是:360÷12=30°,每个小格是:360÷60=6°.10.【分析】半圆下边的两条半径组成平角,平角的度数为180°,将一个半圆平均分成180等份,则相应圆心角也平分成180份,据此即可求解.【解答】解:把半圆分成180等份,每一份所对的角的大小是1度角,记作:1°.故选:B.【点评】解答此题应结合题意,根据平角的知识进行解答即可.二.填空题(共5小题)11.【分析】(1)9时时,分针指向12,时针指向9,中间有3个大格,每个大格所对的角度是30度,所以3个大格是3×30°=90°;(2)从5时到6时是1小时,1小时分针转一圈,所以是360度.据此解答即可.【解答】解:(1)3×30°=90°.即钟面上9时整,钟面上的时针和分针所成的角是90度.(2)从5时到6时是1小时,1小时分针转一圈,所以是360度.故答案为:90,360.【点评】解决本题的关键是明确时针和分针的位置和每个大格所对的角度是30度.12.【分析】由图可知:∠1和∠2互余,∠2和∠3互补,根据互为余角的两个角的和为90度,互为补角的两个角的和是180度;且∠2和∠4是对顶角,所以∠2和∠4相等;∠5是直角,是90度;据此解答即可.【解答】解:由题意可知:∠1是45°,∠1∠2=90°,所以∠2=90°﹣45°=45°;因为:∠2∠3=180°,所以∠3=180°﹣45°=135°;因为∠2和∠4是对顶角,所以∠2=∠4=45°;∠5是直角,是90度;故答案为:45,135,45;90.【点评】解答此题应明确:互为余角的两个角的和为90度.互为补角的两个角的和是180度,对顶角相等.13.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:上午9时整,钟面上的时针和分针组成的角是30°×3=90°,所以这个角是直角;下午6时整,钟面上的时针和分针组成的角是30°×6=180°,所以这个角是平角.故答案为:90,直;180,平.【点评】本题考查了学生钟面上时针和分针夹角大小的求法及角的分类的知识.14.【分析】根据平角的定义可求∠2的度数,再根据平角的定义可求∠3的度数.【解答】解:因为∠1=60°,所以∠2=180°﹣∠1=180°﹣60°=12021∠3=180°﹣∠2=180°﹣1202160°.故答案为:120210.【点评】本题考查了平角的定义:平角的度数等于180°.15.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:3点整,时针指向3,分针指向12,钟表12个数字,每相邻两个数字之间的夹角为30°,因此3点整分针与时针的夹角正好是3×30°=90°;7点整,时针指向7,分针指向12,因此7点整分针与时针的夹角正好是5×30°=150°.故答案为:90;150度.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,利用时针和分针的位置关系建立角的图形.16.【分析】∠1和∠2组成一个平角,用180度减去∠1的度数就是∠2的度数;∠1和∠3是相对的两个角(对顶角),度数相等;∠3和∠4组成一个直角,用90度减去∠3的度数就是∠4的度数;据此解答即可.【解答】解:∠2=180°﹣∠1=180°﹣35°=145°∠3=∠1=35°∠4=90°∠3=90°﹣35°=55°答:∠2的度数是145°,∠3的度数是35°,∠4的度数是55°.【点评】解决本题的关键是熟练运用直角、平角的特点及对顶角的性质.17.【分析】可设∠1的度数是度,则∠2的度数是5度,根据∠1∠2=180°列出方程即可求解.【解答】解:设∠1的度数是度,则∠2的度数是5度,依题意有5=180,6=180=305=5×30=150答:∠2的度数150°.【点评】考查了角的度量,关键是熟悉平角的度数是180°的知识点.18.【分析】依据角的初步认识可知:角的度量单位是度,用符号“°”表示,因为一个圆的度数是360°,则半圆的度数是180°,把半圆分成180等份,则每份是(180÷180)=1°;因为∠1∠2=360°,用量角器量出∠2的度数,用减法即可求出∠1的度数.【解答】解:量角器是把半圆分成180等份制成的,先用量角器量出∠2的度数,然后用360度减去∠2的度数,那么∠1是度.∠2=130°,∠1=360°﹣130°=230°;故答案为:180,∠2,360,∠2,230.【点评】解答此题应结合题意,根据周角的知识及角的度量方法进行解答即可.19.【分析】用量角器的圆心和角的顶点重合,0刻度线和其中一条边重合,另一条边指向的刻度,就是角的度数.【解答】解:如图所示:【点评】本题考查了角的测量.用量角器测角度数时要注意量角器的放置及两个重合,即量角器的圆心和角的顶点重合,0刻度线和角的一条边重合.2021分析】根据折叠的方法可得:∠1=∠3=30°,因为∠1、∠2、∠3的和是90°,所以∠2=90°﹣30°﹣30°=30°.【解答】解:根据题干分析可得:∠2=90°﹣30°﹣30°=30°.答:∠2=30°.【点评】抓住图中的特殊角,即90度的角,根据折叠的方法得出图中∠1=∠3,即可解答问题.21.【分析】(1)因为三角形的内角和是180度,用180度减去已知的两个角的和就是剩下的角的度数;(2)在直角三角形中两个锐角的和是90度,用90度减去已知锐角就是剩下的锐角的度数;(3)因为三角形的内角和是180度,用180度减去已知的两个角的和就是剩下的角的度数;据此计算即可.【解答】解:(1)∠1=180°﹣35°×2,=180°﹣70°,=110°;(2)∠1=90°﹣28°=62°;(3)∠1=180°﹣(27°68°),=180°﹣95°,=85°;故答案为:110°;62°;85°.【点评】此题主要考查三角形内角和是180度的灵活运用.。
《对顶角》PPT课件 (公开课获奖)2022年青岛版 (1)

根据题意可知
抛物线经过(0,0),(20,16)和(40,0)三点
可得方程组
评价 通过利用给定的条件
列出a、b、c的三元 一次方程组,求出a、 b、c的值,从而确定 函数的解析式. 过程较繁杂,
封面 练习
例题选讲
例4
有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m.现把它的图形放在坐标系里 (如下图),求抛物线的表达式.
A
4
D
O
1
2
3
B C
• 结论:如果两个角是对顶角,那么这两个
角 .简单的说:
相等.
• 2、如图,直线 AB与CD 相交于点O ,射线
OE是∠BOD 的角平分线,
∠
AOD=110 ° ,
• 求∠COB , ∠ BOE, ∠EOD 的度数.
A D
O C
E
B
三、稳固练
习
• 1 、说出以下图中的对顶角.
A H
O
F
B D
CME G
A H
O FN
B …… D
(1)
(2)
(3)
(4) ……
2
6
12
20
假设有n条直线相交于一点O,那么有(n-1)n 对对顶角
… …
三、自主探索:
如图,∠1、∠3有怎样的大小关系?
m
2 31
对
4
顶
这个推理过程可以写成:
n
角 相
等 ∵ ∠1+∠2=180 ° , ∠3+∠2=180 ° 〔平角定义〕
解: 设所求的二次函数为 y=ax2+bx+c
将A、B、C三点坐标代入得:
苏科版七年级上《6.3余角、补角、对顶角》同步测试含答案(共2份)第1课时余角和补角
第 1 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可6.3 第1课时 余角和补角知识点 1 余角、补角的概念1.2017·广东已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°2.下列选项中,能与30°角互补的是( )图6-3-13.如图6-3-2,点O 在直线AB 上,若∠1=40°,则∠2的度数是( )图6-3-2A .50°B .60°C .140°D .150°4. 如果一个角是36°,那么( )A .它的余角是64°B .它的补角是64°C .它的余角是144°D .它的补角是144°5.现有下列说法:①锐角的余角是锐角;②钝角没有余角;③直角的补角是直角;④两个锐角互余.其中正确说法的个数是( )A .4B .3C .2D .16.52°34′的余角是__________,补角是__________.7.若一个锐角的余角与这个角相等,则这个角等于________°.8.已知∠1和∠2互余,∠2和∠3互补,如果∠1=63°,那么∠3=________°.9.一个角的补角比它的余角的4倍少15°,求这个角的度数.第 2 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可知识点 2 余角、补角的性质10.若∠1+∠2=90°,∠1+∠3=90°,则________=________,理由是__________________________________;若∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,则________=________,理由是_________________________________________________.11.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于( )A .50°B .130°C .40°D .140°12.如图6-3-3所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOC =65°,则∠BOD 等于( )图6-3-3A .45°B .55° C.60° D .65°13.下列说法错误的是( )A .若两角互余,则这两角均为锐角B .若两角相等,则它们的补角也相等C .互为余角的两个角的补角相等D .两个钝角不能互补14.如图6-3-4,已知∠BOC =90°,∠DOA =90°,∠1=50°,求∠2的度数.第 3 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可图6-3-415.如图6-3-5所示,点A ,O ,E 在一条直线上,从点O 引射线OB ,OC ,OD ,∠AOC =∠COE =∠BOD =90°,那么图中互补的角有哪几对?图6-3-516.如果一个角等于它的余角的2倍,那么这个角是它的补角的( )A .2倍 B.12 C .5倍 D.1517.已知:如图6-3-6,∠AOB =∠COD =90°,则∠1与∠2的关系是( )图6-3-6A .互余B .互补第 4 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可C .相等D .无法确定18.如图6-3-7,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为( )图6-3-7A.12(α+β)B.12α C.12(α-β) D.12β 19.如图6-3-8,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC =________°.图6-3-8 20.如图6-3-9,将一副三角尺的直角顶点重合在一起.(1)若∠DOB 与∠DOA 的度数之比是2∶11,求∠BOC 的度数;(2)若叠合所成的∠BOC =n °(0<n <90),则∠DOA 的补角的度数与∠BOC 的度数之比是多少?图6-3-921.如图6-3-10,O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)写出与∠AOE互补的角;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.图6-3-1022.如图6-3-11,已知O为直线AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°.(1)∠COD与∠AOB相等吗?请说明理由;(2)试求∠AOC与∠AOB的度数.第 5 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可图6-3-11第 6 页共9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可第 7 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可详解详析1.A 2.D 3.C4.D [解析] 如果一个角是36°,那么它的余角是90°-36°=54°,补角是180°-36°=144°.故选D.5.B6.37°26′ 127°26′ [解析] 90°-52°34′=37°26′,180°-52°34′=127°26′.7.458.153 [解析] 因为∠1和∠2互余,所以∠1+∠2=90°.又因为∠1=63°,所以∠2=27°.因为∠2和∠3互补,所以∠2+∠3=180°,即27°+∠3=180°,所以∠3=153°.9.解:设这个角为x °,由题意得180°-x °=4(90°-x °)-15°,解得x =55.即这个角的度数为55°.10.∠2 ∠3 同角的余角相等 ∠2 ∠4等角的补角相等11.A12.D [解析] ∵∠AOC 和∠BOD 都是∠BOC 的余角,∴∠AOC =∠BOD .∵∠AOC =65°,∴∠BOD =65°.故选D.13.C [解析] 若两角互余,则这两角均为锐角,选项A 正确;若两角相等,则它们的补角也相等,选项B 正确;30°与60°的角互余,30°角的补角是150°,60°角的补角是120°,则互为余角的两个角的补角不一定相等,选项C 错误;两个钝角不能互补,选项D 正确.14.解:因为∠AOD =90°,所以∠1+∠BOD =90°.因为∠BOC =90°,所以∠2+∠BOD =90°.根据同角的余角相等,可得∠2=∠1=50°.15.解:∠AOD 与∠DOE 互补,∠BOC 与∠DOE 互补,∠BOE 与∠AOB 互补,∠DOC 与∠AOB 互补,∠AOC 与∠BOD 互补,∠AOC 与∠COE 互补,∠BOD 与∠COE 互补.16.B [解析] 设这个角为α,它的余角为β,它的补角为γ,则α=2β,∵α+β=90°,∴α+12α=90°,∴α=60°.∵α+γ=180°,∴γ=120°,∴α=12γ.故选B.第 8 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可17.B18.C [解析] 由邻补角的定义,得α+β=180°,两边都除以2,得12(α+β)=90°,β的余角是12(α+β)-β=12(α-β).故选C. 19.30[解析] ∵∠AOB =∠COD =90°,∠AOD =150°,∴∠BOC =∠AOB +∠COD -∠AOD =90°+90°-150°=30°.20.解:(1)设∠DOB =2x ,则∠DOA =11x .因为∠AOB =∠COD =90°,所以∠AOC =∠DOB =2x ,∠BOC =7x .又因为∠DOA =∠AOB +∠COD -∠BOC =180°-∠BOC ,可得方程11x =180°-7x ,解得x =10°,所以∠BOC =70°.(2)因为∠DOA =∠AOB +∠COD -∠BOC =180°-∠BOC ,所以∠DOA 与∠BOC 互补,则∠DOA 的补角的度数是n °,则∠DOA 的补角的度数与∠BOC 的度数之比是1∶1.21.解:(1)∵OE 平分∠BOC ,∴∠BOE =∠COE .∵∠AOE +∠BOE =180°,∴∠AOE +∠COE =180°,∴与∠AOE 互补的角是∠BOE ,∠COE .(2)∵OD ,OE 分别平分∠AOC ,∠BOC ,第 9 页 共 9 页为了成功地生活,少年人必须学习自立,铲除埋伏各处的障碍,在家庭要教养他,使他具有为人所认可∴∠COD =∠AOD =36°,∠COE =∠BOE =12∠BOC ,∠AOC =2×36°=72°, ∴∠BOC =180°-72°=108°,∴∠COE =12∠BOC =54°, ∴∠DOE =∠COD +∠COE =90°.(3)当∠AOD =x °时,∠DOE =90°.22.解:(1)∠COD =∠AOB .理由:因为∠AOC 与∠AOB 互补,所以∠AOC +∠AOB =180°.又因为∠AOC +∠COD =180°,所以∠COD =∠AOB .(2)因为OM 和ON 分别是∠AOC 和∠AOB 的平分线,所以∠AOM =12∠AOC ,∠AON =12∠AOB , 所以∠MON =∠AOM -∠AON =12∠AOC -12∠AOB =12(∠AOC -∠AOB )=12∠BOC . 因为∠MON =40°,所以∠BOC =80°,所以∠COD +∠AOB =180°-80°=100°.又因为∠AOB =∠COD ,所以∠AOB =∠COD =50°,所以∠AOC =180°-∠COD =130°.。
人教版初中七年级下册数学第五章单元测试卷(1)(附答案解析)
单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.。
第六章《平面图形的认识(一)》综合测试卷(含解析)
第六章《平面图形的认识(一)》综合测试卷一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm 4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.49.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.①若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;②若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】C【解析】根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误,C是由两条直线相交构成的图形,正确,故选C.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°【解答】D【解析】∵∠AOB=60°,射线OC平分∠AOB,∴∠AOC=∠BOC AOB=30°,又∠COP=15°①当OP在∠BOC内,∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,②当OP在∠AOC内,∠BOP=∠BOC+∠COP=30°+15°=45°,综上所述:∠BOP=15°或45°.故选D.3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm【解答】C【解析】如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∵M、N分别为AB、BC的中点,∴BM=6cm,BN=5cm,①如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,②如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选C.4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个【解答】A【解析】①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选A.5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④【解答】D【解析】①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④90°+45°=135°,可以用一副三角板画出来;⑤145°不可以用一副三角板画出来;故选D.6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°【解答】D【解析】如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选D.7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.【解答】B【解析】∵AB=9,∴AC AB=3,∵M是AB的中点,∴AM AB∴MC=AM﹣AC3故选B.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.4【解答】C【解析】∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD∠ACD,∠DCH=∠HCB∠DCB,∠BCG=∠ECG∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,故④正确.故选C.9.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间【解答】A【解析】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故选A.10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【解答】C【解析】①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选C.11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个【解答】B【解析】①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故①正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE 和∠ADC互补,故②正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=90°+90°+90°+40°=310°,故③错误;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④错误.故选B.12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】A【解析】①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条【解答】D【解析】如图,共有5条.故选D.二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.【解答】25°或45°【解析】(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC,又∵∠AOB=70°,∴∠AOC35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.【解答】12cm【解析】∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为12cm.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.【解答】45°【解析】由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF∠ABC90°=45°,故答案为45°.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.【解答】(1)北偏东70°;(2)70°【解析】(1)由图知:∠AOB=15°+40°=55°,∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.故答案为北偏东70°;(2)∵∠BOC=∠AOB+∠AOC=55°×2=110°,∴∠COD=180°﹣∠BOC=180°﹣110°=70°故答案为70°18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.【解答】45【解析】两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为45.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.【解答】45°【解析】∵OM是∠DOC平分线,ON是∠COB的平分线,∴∠COM=∠DOM∠COD,∠BON=∠CON∠BOC,∵∠BOC+∠COD=∠BOD=90°,∴∠COM+∠CON∠BOD=45°=∠MON,故答案为45°20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.【解答】7.5【解析】如图,∵点C在线段AB上,AC BC,即BC=3AC,∴AC+BC=AB=12即4AC=12AC=3∴BC=9∵M为BC的中点,∴CM BC=4.5∴AM=AC+CM=7.5cm.故答案为7.5.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为【解答】18°52′或116°10′【解析】如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.【解答】110【解析】如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,故答案为110.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.【解答】110°或70°【解析】分两种情况进行讨论:①如图1所示,若OM在AC上方,∵OD平分∠BOC,∴∠COD=∠BOD,∵4∠BOE+∠BOC=180°,∠AOB+∠BOC=180°,∴∠AOB=4∠BOE,即∠AOE=3∠BOE,设∠BOE=α,则∠AOE=3α,∠BOD=70°﹣α=∠COD,∵∠AOC为平角,∴∠AOE+∠DOE+∠COD=180°,即3α+70°+70°﹣α=180°,解得α=20°,∴∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠BOE+∠MOB=20°+90°=110°;②如图2所示,若OM在AC下方,同理可得,∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠MOB﹣∠BOE=90°﹣20°=70°;综上所述,∠MOE的度数为110°或70°.故答案为110°或70°.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;(2)若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).【解答】(1)120°;(2)(160﹣x)【解析】(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°,故答案为120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°,故答案为(160﹣x).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【解答】150【解析】假设车站距离1号楼x米,则总距离S=|x|+2|x﹣50|+3|x﹣100|+4|x﹣150|+5|x﹣200|,①当0≤x≤50时,S=2000﹣13x,最小值为1350;②当50≤x≤100时,S=1800﹣9x,最小值为900;②当100≤x≤150时,S=1200﹣3x,最小值为750(此时x=150);当150≤x≤200时,S=5x,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.【解答】(1)33;(2)72【解析】(1)∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB=38°,∴∠COE=180°﹣∠DOE=142°,∵OF平分∠COE,∴∠COF=∠FOE∠COE=71°,∴∠BOF=∠FOE﹣∠EOB=33°.故答案为33°.(2))∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB,∵OF平分∠COE,∴∠COF=∠FOE∠COE,∵∠AOC=180°﹣∠COF﹣∠BOF=180°﹣(∠EOB+∠BOF)﹣∠BOF=108°﹣∠EOB=108°∠AOC∴∠AOC=72°.故答案为72°.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.【解答】(1)20°;(2);(3)见解析【解析】(1)∵∠BOD=40°,∠AOD+∠BOD=180°,∴∠AOD=180°﹣40°=140°,∵OE平分∠AOD,∴∠DOE∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣70°=20°;(2)∠COE.∵∠BOD=a,∠AOD+∠BOD=180°,∴∠AOD=180°﹣a,∵OE平分∠AOD,∴∠DOE∠AOD,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣();(3)∠AOC=360°﹣2∠DOF.理由:∵OF平分∠BOC,∴∠BOC=2∠COF,∵∠COD=90°,∴∠COF=∠DOF﹣90°,∵∠AOC+∠BOC=∠AOC+2∠COF=180°,∴∠AOC=180°﹣2∠COF,∴∠AOC=180°﹣2(∠DOF﹣90°)=360°﹣2∠DOF.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.【解答】(1)78°;(2);(3)t或【解析】(1)∵∠AOD=156°,∠BOD=96°,∴∠AOB=156°﹣96°=60°,∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=30°,∠BON=48°,∴∠MON=∠BOM+∠BON=78°;(2)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM∠AOB,∠BON∠BOD,∵∠MON=∠BOM+∠BON(∠AOB+∠BOD)∠AOD,∴;(3)∵∠BOC在∠AOD内绕点O以2°/秒的速度逆时针旋转t秒时,∴∠AOC=(52+2t)°,∠BOD(126﹣2t)°,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM═(26+t)°,∠DON=(63﹣t)°,当∠AOM=2∠DON时,26+t=2(63﹣t),则t;当∠DON=2∠AOM时,63﹣t=2(26+t),则t.故当t或时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.【解答】(1)30;(2)50;(3)见解析【解析】(1)∵∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∴∠AOC=∠BOD,∵∠AOD=120°,∠AOB=75°,∴∠AOC=∠BOD=120°﹣75°=45°,∴∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为50;(3)不变;∵∠COD=∠AOB=75°,∠AOC=∠BOD,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.【解答】(1)45°;(2)∠ACE=∠BCF;(3)45°【解析】(1)∵CF平分∠ACB,∴∠BCF=∠ACF∠ACB90°=45°,∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;(2)∠ACE=∠BCF,∵∠BCF+∠ACF=90°=∠ACE+ACF,∴∠ACE=∠BCF;(3)∠BCF﹣∠ACD=45°,∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,即:∠BCF﹣∠ACD=45°.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.【解答】(1)55°;(2)∠BOE=2∠COF;(3)20°【解析】(1)∵∠BOE=110°,∴∠AOE=180°﹣∠BOE=70°∵OF平分∠AOE∴∠EOF AOE=35°∵∠COE=90°∴∠COF=∠COE﹣∠EOF=55°答:∠COF的度数为55°;(2)∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF,理由如下:∵OF平分∠AOE∴∠AOE=2∠AOF∴∠BOE=180°﹣∠AOE=180°﹣2∠AOF=180°﹣2(∠AOC+∠COF)=180°﹣2(90°﹣∠BOE+∠COF)=2∠BOE﹣2∠COF∴∠BOE=2∠COF;答:∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF;(3)∵OF平分∠AOE∴∠FOE=∠AOF∴4∠COF﹣3∠BOE=20°4(∠COE+∠EOF)﹣3(180°﹣∠EOA)=20°4(90°+∠EOF)﹣3(180°﹣2∠EOF)=20°∴∠EOF=20°答:∠EOF的度数为20°.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【解答】(1)①相等,②∠BOD+∠COE=180°;(2)①相等,②依然成立【解析】(1)①∠COD=∠BOE,∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即:∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.。
1、下列各图中,∠1与∠2是对顶角的是( )
2010学年第二学期七年级期末模拟测试数学试卷总分:120分 考试时间:90分钟一、精心选一选,相信自己的判断力!(本题共10小题, 每小题3分)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .3121212122.点A (1,2)向右平移2个单位得到对应点A′,则点A′的坐标是( ). A .(1,4) B .(1,0) C .(-1,2) D .(3,2)3.不等式组1>-m x 的解集是x >2,则m 的值是( )A. m =0B. m =1C. m =-1D. m =2 4.若点P (m ,1-2m )的横坐标与纵坐标互为相反数,则P 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.有4根木条,长度分别为4cm ,6cm ,9cm ,11cm ,选其中三根组成三角形,则选择的方法有( ) A.1种 B.2种 C.3种 D.4种6.如图,下列推理中正确的有( )①∵∠1=∠4,∴BC ∥AD ; ②∵∠2=∠3,∴AB ∥CD ; ③∵∠BCD+∠ADC=180°,∴AD ∥BC ; ④∵∠1+∠2+∠C=180°,∴AD ∥BC ; A.1个 B.2个 C.3个 D.4个1432CAB分数人数010090807060501412842(第6题) (第7题) (第8题)7.在某次中考中,某班级的数学成绩统计图如图所示,下列说法错误的是( ) A .得分在70~80分之间的人数最多 B.该班的总人数为40C .得分在90~100分之间的人数最少 D.及格(≥60分)人数是268.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48º.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是 ( )A.⎩⎨⎧x -y =48y +x =90B.⎩⎨⎧x -y =48y +2x =90C.⎩⎨⎧x -y =48y =2xD.⎩⎨⎧y -x =48y +2x =90A班级 姓名_____________ 考试号_________ …………………………………………装……………………………………订………………………………线………………………………………321FH GCDBEAA9.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对( )道题,总分才不会低于60分.A.12B.13C.14D.15 10.如图,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )A.∠1=21(∠2-∠3) B. ∠1 = 2 (∠2-∠3) C.∠G=21(∠3-∠2) D. ∠G=21∠1(第10题)二、认真填一填,试试自己的身手!(本大题共10小题,每题3分,共30分)11. 写出一个以⎩⎨⎧-==12y x 为解的二元一次方程组,你写的是___________.12.“同角的余角相等”改写成“如果……,那么……”的形式是 . 13.已知方程ax +12=0的解是x =3,则不等式(a +2)x <-8的解集是 . 14.如图,AE ∥BD ,∠B =28°,∠A =95°,∠C 的度数为 . 15.已知点E (a ,1),F (2,b ),若EF ∥x 轴,且EF =3,则a = ,b = .16.要了解某地20000名初中学生的数学成绩,抽取了某一中学100名学生的数学成绩.在这个问题中,样本容量是 .17.如图,在∆ABC 中,已知点D 、E 、F 分别为BC 、AD 、BE 的中点,且∆ABC 的面积是8,则图中阴影部分∆CEF 的面积是________.EFDCBABC(第14题) (第17题) (第18题)18.工人师傅把一个如图所示的零件进行加工,把材料完成一个45°的锐角,然后准备在A 处第二次加工拐弯,要保证拐弯过来的部分与BC 保持平行,弯的角度应是 .19.一个多边形截去一个角后,形成的多边形的内角和为360°,那么原多边形的边数可能是 . 20.如图,在平面直角坐标系上有个点P(1,0),点P 第1次 向上跳动1个单位长度至点P 1(1,1),紧接着第2次向左跳动 2个单位长度至点P 2(―1,1),第3次向上跳动1个单位长度, 第4次向右跳动3个单位长度,第5次又向上跳动1个单位长度, 第6次向左跳动4个单位长度,……,依此规律跳动下去, 点P 第100次跳动至点P 100的坐标是 .(第20题)三、专心解一解,请认真读题,冷静思考.(本大题共6小题,满分 60分)21.(10分)(1)解方程组⎩⎨⎧+=-=-1)1(3223y x y x(2)解不等式组()4321213x x x x -<-⎧⎪⎨++>⎪⎩,并把解集表示在数轴上.22.(8分)求使方程组24562x y m x y m +=+⎧⎨+=+⎩的解x 、y 都是正数的m 的取值范围.23.(8分)已知如图, DE ⊥AC, ∠AGF=∠ABC, ∠1+∠2=1800, 试判断BF 与AC 的位置关系, 并说明理由.(第23题)24.(10分)小芳在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.户数18004812162060080010001200140016000元根据以上提供的信息,解答下列问题:(1)写出频数分布表中a 、b 、c 、d 的值. (第24题) (2)补全频数分布直方图.(3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?25.(12分)某汽车销售公司到某汽车制造厂选购A 、B 两种型号的轿车,用300万元可购进A 型轿车10辆,B 型轿车15辆,用300万元也可以购进A 型轿车8辆,B 型轿车18辆. (1)求A 、B 两种型号的轿车每辆分别为多少万元?(2)若该汽车销售公司销售1辆A 型轿车可获利8000元,销售1辆B 型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A 、B 两种型号的轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万,问有哪几种购车方案?(3)在这几种购车方案中,哪种方案获利最大?最大利润是多少?26.(12分)在直角坐标系中,A (a ,0),B (0,b ),且a ,b 满足(a +b -7)2+|2a -b -2|=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对顶角练习题
一、判断题,(1-4题每题3分,5题中的每小题3分,共24分)
1.顶点相对的角是对顶角()
2.由公共顶点并且相等的两个教师对顶角。
()
3.两条直线相交,有公共顶点的角是对顶角。
()
4. 两条直线相交,有公共顶点,没有公共边的两个角是对顶角。
()
5.判断下列图中,∠1,∠2是否是对顶角:
二、填空题:(每空4分,共44分)
6.一个角的两边分别是另一个角的两边的,这两个角叫做对顶角.
7. 如图,直线AB,CD,EF相交,则图中共有对对顶角。
8. 如图,图中共有对对顶角。
9.对顶角性质是:
10.如图,直线a, b相交于O点,∠1+∠3=100°,则∠2= ,
∠3= .∠4= .
11.如图,已知B点是∠DAE的AD边上任意一点,过点B作直线MN交AE于C,交AD 于B,且∠1=∠2,则图中对顶角有对,与∠1(不包括∠1)相等的角有个。
分别是:。
12.如图,直线AB,CD相交于O点,∠AOC=2∠COB,OE平分∠DOB,
则∠DOE= 度。
三、解答题:
13.如图,AB,CD相交于O,且∠1=∠2,问∠3=∠4吗?为什么?(此题7分)
14、已知:A B⊥CD于O点,直线EF过O点,∠EOC=15°,
求∠BOF的度数. (此题7分)
15. 如图,直线AB,CD相交于O点,O E⊥CD,O F⊥AB,图中有哪些相等的角?
请说明理由。
(此题9分)
16. 如图,直线AB,CD,EF相交于O点,已知∠AOE=20°,
∠DOB=52°,OG平分∠COF,求∠EOG的度数。
(此题9分)
试卷答案
1.答案:(×)
解析:此题考查对顶角概念,需要根据语言叙述自己画图进行判断,中等难度。
根据语句画出与对顶角不同的角,如
,
图中的∠1,∠2虽然顶点相对,但不符合对顶角的要求。
2. 答案:(×)
解析:根据语句画出图形,如
图中的∠1,∠2虽然有公共的顶点且相等,但不符合对顶角的要求。
3. 答案:(×)
解析:根据语句画出与对顶角不同的角,如
图中的直线AB,CD相交于O点,∠1,∠2虽然有公共的顶点,但是不能保证相等,所以错误。
4. 答案:(×)
解析:根据语句画出图形,如
图中∠1,∠2时对顶角,他们有公共点O,没有公共边,且∠1=∠2,
5. 答案:C
解析:变换图形,从不同角度认识对顶角,有了具体图形,辨认较为容易。
6. 答案:反向延长线
解析:此题较为容易,根据教材中的对顶角的概念就可以解答。
7. 答案:6对
解析:此题考查对顶角性质,中等难度。
由对顶角定义可知,对顶角有:∠AOC与∠BOD,∠AOE与∠BOF,∠DOE与∠COF,∠AOD与∠BOC,∠EOB与∠AOF,∠DOF与∠COE
8. 答案:4对
解析:此题考查对顶角性质,中等难度。
有∠AED与∠FEC,∠AEF与∠DEC,∠BCG 与∠ACH,∠ACB与∠HCG。
9. 答案:相等
解析:此题根据教材中的对顶角性质解答,较为容易,就是对顶角相等。
10. 答案:∠2=130°,∠3=50°,∠4=130°
解析:此题结合图形运用对顶角性质与平角定义进行计算,中等难度。
解:∵直线a, b相交于O点,∴∠1=∠3
∵∠1+∠3=100°,∴2∠1= 100°,
∴∠1= 50°,∴∠3= 50°。
∵∠1+∠2=180°∴∠2=130°,
∵∠2=∠4,∴∠4=130°
11.答案:对顶角有4对,与∠1相等的角有3 个。
解析:通过图形,辨认相等的角,运用对顶角性质与等量代换。
对顶角有有∠ACB与∠NCE,∠ACN与∠BCE,∠ABM与∠CBD,
∠ABC与∠DBM。
与∠1相等的角有∠DBM,∠NCE,∠ACB.
12. 答案:∠DOE =70°
解析:结合图形利用对顶角性质,平角定义进行计算,中等难度。
解:∵直线AB,CD相交于O点,∴∠AOC=∠BOD
∵∠AOC+∠BOC=180°,∠AOC=2∠COB
∴2∠BOC+∠BOC=180°,
∴∠BOC= 60°,∴∠AOC= 120°.
∴∠BOD=∠AOC =120°,
∵OE平分∠DOB,
∴∠DOE=∠BOE=60°
13.答案:∠3=∠4.
解析:此题容易错将∠3,∠4看成对顶角,直接写为∠3=∠4(对顶角相等)
.解:∵AB,CD相交于O(已知)
∴∠AOD=∠BOC(对顶角相等)
∴∠1+∠3=∠2+∠4
∵∠1=∠2(已知)
∴∠3=∠4(等量代换)
14. 答案:∠BOF=75°
解析:结合图形利用对顶角性质,直角定义进行计算,中等难度
解:∵A B⊥CD(已知)
∴∠AOC=∠BOD= 90°(垂直定义)
∵∠COE=∠DOF (对顶角相等)
∠COE= 15°(已知)
∴∠DOF= 15°(等量代换)
∴∠BOF=∠BOD -∠DOF=90°-15°=75°.
15. 答案:∠4=∠6=∠EOC=∠AOF= 90°,∠2=∠5,∠1=∠3,
∠AOD=∠BOC,∠EOB=∠FOD
解析:结合图形综合运用对顶角性质与平角定义、直角定义进行计算,此题偏难.
解:∵直线AB,CD相交于O点( 已知)
∴∠2=∠5 (对顶角相等)
(对顶角相等)
∵OE⊥CD ,A B⊥OF(已知)
∴∠4=∠6=∠EOC=∠AOF= 90°(垂直定义)
∵∠1=∠AOD-∠6
∠3=∠BOC-∠4
∴∠1=∠3
又∵∠EOB=∠5+∠6
∠DOF=∠5+∠4
∴∠EOB=∠FOD
16. 答案:∠EOG= 126°.
解析:结合图形运用对顶角性质与平角定义,角平分线定义进行计算,考查学生的观察能力及综合解题的能力. 此题偏难.
解:∵直线AB,CD,EF相交于O点( 已知)
∠AOE= 20°,∠DOB= 52°( 已知)
∴∠EOA=∠BOF= 20°,∠BOD=∠AOC= 52°(对顶角相等)
∵∠EOA+∠AOC+∠COF=180°(平角定义)
∴20°+52°+∠COF =180°
∴∠COF =108°
∵OG平分∠COF( 已知)
∴∠COG=0.5∠COF=54°(角平分线定义)
∴∠EOG=∠EOA+∠AOC+∠COG
=20°+52°+54°
=126°。