2003数学二真题

合集下载

考研数学二历年真题(2003—2012)题目

考研数学二历年真题(2003—2012)题目

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。

2003-2017年考研数学二真题及解析

2003-2017年考研数学二真题及解析

2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为 (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( )(A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。

2003年数二真题、标准答案及解析

2003年数二真题、标准答案及解析

2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01x dx x02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰;(3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1]1(1{[1)1(1231023-++=++n n n n n n n x n,可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4t a n 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200x ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x a x ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u 所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由tet t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dt dx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故.)c o s (s i n 21s i n C t t e t d t e t t +-=⎰因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有 (22dy dx dy d dyx d ==dy dx y dx d ⋅'1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X y y Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ 曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l=【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a b a a a dt t f x dt t f dt t f a b a g b g a F b F ))(()()()()()()()(222, 即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。

2003西藏考研数学二真题及答案

2003西藏考研数学二真题及答案

2003西藏考研数学二真题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.[ ](5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a参考答案1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a.注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】 因为 2ln 2x y =',2)2(ln 2xy ='',nx x y )2(ln 2,)(= ,于是有nn y )2(ln )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=完全类似例题见《数学复习指南》P.389 【例2.11】和《西藏考研数学大串讲》P.162 【例13】.6.. 【分析】 先化简分解出矩阵B ,再取行列式即可.【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《西藏考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有4tan 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

考研数二历年真题答案

考研数二历年真题答案

考研数二历年真题答案为了帮助考研数学二科目的学生更好地备考,以下整理了近几年的考研数学二历年真题及其详细答案。

通过仔细研究和解析这些真题,考生们可以更好地了解考试内容和出题思路,从而更有针对性地复习和备考。

一、2000年考研数学二真题及答案(下面是2000年考研数学二的真题及其答案,请考生查看。

)二、2001年考研数学二真题及答案(下面是2001年考研数学二的真题及其答案,请考生查看。

)三、2002年考研数学二真题及答案(下面是2002年考研数学二的真题及其答案,请考生查看。

)四、2003年考研数学二真题及答案(下面是2003年考研数学二的真题及其答案,请考生查看。

)五、2004年考研数学二真题及答案(下面是2004年考研数学二的真题及其答案,请考生查看。

)六、2005年考研数学二真题及答案(下面是2005年考研数学二的真题及其答案,请考生查看。

)七、2006年考研数学二真题及答案(下面是2006年考研数学二的真题及其答案,请考生查看。

)八、2007年考研数学二真题及答案(下面是2007年考研数学二的真题及其答案,请考生查看。

)九、2008年考研数学二真题及答案(下面是2008年考研数学二的真题及其答案,请考生查看。

)十、2009年考研数学二真题及答案(下面是2009年考研数学二的真题及其答案,请考生查看。

)十一、2010年考研数学二真题及答案(下面是2010年考研数学二的真题及其答案,请考生查看。

)十二、2011年考研数学二真题及答案(下面是2011年考研数学二的真题及其答案,请考生查看。

)十三、2012年考研数学二真题及答案(下面是2012年考研数学二的真题及其答案,请考生查看。

)十四、2013年考研数学二真题及答案(下面是2013年考研数学二的真题及其答案,请考生查看。

)十五、2014年考研数学二真题及答案(下面是2014年考研数学二的真题及其答案,请考生查看。

)十六、2015年考研数学二真题及答案(下面是2015年考研数学二的真题及其答案,请考生查看。

(完整word)2003-2017年考研数学二真题及解析

(完整word)2003-2017年考研数学二真题及解析
又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0。
且由于A必可相似对角化,则可设其对角矩阵为

(II)由(1) ,知 ,即 的基础解系只有1个解向量,
由 可得 ,则 的基础解系为 ,
又 ,即 ,则 的一个特解为 ,
综上, 的通解为
(23)(本题满分11分)设二次型 在正交变换 下的标准型 ,求 的值及一个正交矩阵 。
一、选择题 1—8小题.每小题4分,共32分.
1.当 时,若 , 均是比 高阶的无穷小,则 的可能取值范围是( )
(A) (B) (C) (D)
2.下列曲线有渐近线的是
(A) (B) (C) (D)
【详解】对于 ,可知 且 ,所以有斜渐近线
应该选(C)
3.设函数 具有二阶导数, ,则在 上( )
(A)当 时, (B)当 时,
(2)求可逆矩阵 ,使 为对角阵。
一、选择题 1—8小题.每小题4分,共32分.
1.设 ,当 时, ( )
(A)比 高阶的无穷小 (B)比 低阶的无穷小
(C)与 同阶但不等价无穷小 (D)与 等价无穷小
2.已知 是由方程 确定,则 ( )
(A)2 (B)1 (C)—1 (D)—2
3.设 , 则( )
【答案】B
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
(3)设数列 收敛,则( )
当 时, 当 时,
当 时, 当 时,
【答案】D
【解析】特值法:(A)取 ,有 ,A错;
取 ,排除B,C.所以选D。
(4)微分方程的特解可设为
(A) (B)
(C) (D)
【答案】A

考研数学二历年真题2003-2016(无答案考生练习版)

考研数学二历年真题2003-2016(无答案考生练习版)

2003年全国硕士研究生入学统一测试数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若时, 和是等价无穷小,则a= .(2) 设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是 . (3) 的麦克劳林公式中项的系数是__________. (4) 设曲线的极坐标方程为 ,则该曲线上相应于从0变到的一段弧和极轴所围成的图形的面积为__________.(5) 设为3维列向量,是的转置. 若,则= .(6) 设三阶方阵A,B 满足,其中E 为三阶单位矩阵,若,则________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设均为非负数列,且,,,则必有(A) 对任意n 成立. (B) 对任意n 成立.(C) 极限不存在. (D) 极限不存在. [ ](2)设, 则极限等于 (A) . (B) .(C) . (D) . [ ](3)已知是微分方程的解,则的表达式为 0→x 1)1(412--ax x x sin 4ln 2y x xy =+xy 2=nx )0(>=a e a θρθπ2αTαα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T ααααT E B A B A =--2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A B =}{},{},{n n n c b a 0lim =∞→n n a 1lim =∞→n n b ∞=∞→n n c lim n n b a <n n c b <n n n c a ∞→lim n n n c b ∞→lim dx x xa n n nn n +=⎰+-123101n n na ∞→lim 1)1(23++e 1)1(231-+-e 1)1(231++-e 1)1(23-+e x x y ln =)(yxx y y ϕ+=')(y x ϕ(A ) (B)(C) (D) [ ](4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ]yO x(5)设则(A) (B)(C) (D) [ ] (6)设向量组I :可由向量组II :线性表示,则 (A) 当时,向量组II 必线性相关. (B) 当时,向量组II 必线性相关.(C) 当时,向量组I 必线性相关. (D) 当时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?.22xy -.22x y .22yx -.22y x ),(+∞-∞⎰1tan πxx dx x x⎰02tan π.121>>I I .121I I >>.112>>I I .112I I >>r ααα,,,21 s βββ,,,21 s r <s r >s r <s r >,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax四 、(本题满分9分)设函数y=y(x)由参数方程所确定,求五 、(本题满分9分)计算不定积分六 、(本题满分12分)设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u.922=x dx y d .)1(232arctan dx x xe x ⎰+),(+∞-∞)(,0y x x y =≠'0))(sin (322=++dy dx x y dyx d 23)0(,0)0(='=y y七 、(本题满分12分)讨论曲线和的交点个数.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线和y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在上的弧长为,试用表示曲线y=f(x)的弧长s.九 、(本题满分10分)有一平底容器,其内侧壁是由曲线绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以的速率向容器内注入液体时,液面的面积将以的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 和之间的关系式;(2) 求曲线的方程.(注:m 表示长度单位米,min 表示时间单位分.)k x y +=ln 4x x y 4ln 4+=)21,22(],0[πl l )0)((≥=y y x ϕmin /33m min /2m π)(y ϕ)(y x ϕ=十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 若极限存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点,使; (3) 在(a,b) 内存在和(2)中相异的点,使十 一、(本题满分10分)若矩阵相似于对角阵,试确定常数a 的值;并求可逆矩阵P 使十二 、(本题满分8分)已知平面上三条不同直线的方程分别为, , . 试证这三条直线交于一点的充分必要条件为.0)(>'x f ax a x f ax --+→)2(lim ξ)(2)(22ξξf dxx f a b ba=-⎰ξη⎰-=-'ba dx x f aa b f .)(2))((22ξξη⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A Λ.1Λ=-AP P :1l 032=++c by ax :2l 032=++a cy bx :3l 032=++b ay cx .0=++c b a2004年全国硕士研究生入学统一测试数学二真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设, 则的间断点为 .(2)设函数由参数方程 确定, 则曲线向上凸的取值范围为____..(3)_____.. (4)设函数由方程确定, 则______. (5)微分方程满足的特解为_______.(6)设矩阵 , 矩阵满足 , 其中为的伴随矩阵, 是单位矩阵, 则______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把时的无穷小量,,排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ) (B )(C ) (D )(8)设, 则(A )是的极值点, 但不是曲线的拐点. (B )不是的极值点, 但是曲线的拐点. (C )是的极值点, 且是曲线的拐点. (D )不是的极值点, 也不是曲线的拐点.(9)等于(A ). (B ).(C ). (D )(10)设函数连续, 且, 则存在, 使得(A )在内单调增加. (B )在内单调减小. (C )对任意的有.(D )对任意的有.(11)微分方程的特解形式可设为2(1)()lim1n n xf x nx →∞-=+()f x x =()y x 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩()y y x =x 121x x +∞=-⎰(,)z z x y =232x zz ey -=+3z z x y∂∂+=∂∂3()20y x dx xdy +-=165x y ==210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 2ABA BA E **=+A *A E B =0x +→2cos xt dt α=⎰20tan x t β=⎰30x t dt γ=⎰,,.αβγ,,.αγβ,,.βαγ,,.βγα[]()(1)f x x x =-0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =[]22212lim (1)(1)(1)n n nnnn→∞+++221ln xdx ⎰212ln xdx ⎰212ln(1)x dx +⎰221ln (1)x dx +⎰[]()f x (0)0f '>0δ>()f x (0,)δ()f x (,0)δ-(0,)x δ∈()(0)f x f >(,0)x δ∈-()(0)f x f >[]21sin y y x x ''+=++(B ). (C ).(D )(12)设函数连续, 区域, 则等于(A ). (B ).(C ).(D )(13)设是3阶方阵, 将的第1列和第2列交换得, 再把的第2列加到第3列得, 则满足的可逆矩阵为(A ). (B ).(C ). (D ).(14)设,为满足的任意两个非零矩阵, 则必有(A )的列向量组线性相关,的行向量组线性相关. (B )的列向量组线性相关,的列向量组线性相关. (C )的行向量组线性相关,的行向量组线性相关.(D )的行向量组线性相关,的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限.(16)(本题满分10分)设函数在()上有定义, 在区间上, , 若对任意的都满足, 其中为常数.(Ⅰ)写出在上的表达式; (Ⅱ)问为何值时, 在处可导.2(sin cos )y x ax bx c A x B x *=++++2sin y ax bx c A x *=+++2cos y ax bx c A x *=+++[]()f u {}22(,)2D x y x y y =+≤()Df xy dxdy ⎰⎰221111()x x dx f xy dy ---⎰⎰222002()y y dy f xy dx -⎰⎰2sin 200(sin cos )d f r dr πθθθθ⎰⎰2sin 200(sin cos )d f r rdr πθθθθ⎰⎰[]A A B B C AQ C =Q 010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭011100001⎛⎫ ⎪⎪ ⎪⎝⎭[]A B 0AB =A B A B A B A B []3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()f x ,-∞+∞[0,2]2()(4)f x x x =-x ()(2)f x k f x =+k ()f x [2,0]-k ()f x 0x =(17)(本题满分11分) 设,(Ⅰ)证明是以为周期的周期函数;(Ⅱ)求的值域.(18)(本题满分12分)曲线和直线及围成一曲边梯形. 该曲边梯形绕轴旋转一周得一旋转体,其体积为, 侧面积为, 在处的底面积为.(Ⅰ)求的值; (Ⅱ)计算极限.(19)(本题满分12分)设, 证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为的飞机,着陆时的水平速度为.经测试,减速伞打开后,飞机所受的总阻力和飞机的速度成正比(比例系数为).问从着陆点算起,飞机滑行的最长距离是多少?注 表示千克,表示千米/小时. 2()sin x xf x t dt π+=⎰()f x π()f x 2x x e e y -+=0,(0)x x t t ==>0y =x ()V t ()S t x t =()F t ()()S t V t ()lim ()t S t F t →+∞2e a b e <<<2224ln ln ()b a b a e ->-9000kg 700/km h 66.010k =⨯kg /km h(21)(本题满分10分)设,其中具有连续二阶偏导数,求.(22)(本题满分9分) 设有齐次线性方程组试问取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵的特征方程有一个二重根, 求的值, 并讨论是否可相似对角化.22(,)xyz f x y e =-f 2,,z z z x y x y∂∂∂∂∂∂∂1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩a 12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭a A2005年全国硕士研究生入学统一测试数学二试题二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy= .(2)曲线xx y 23)1(+=的斜渐近线方程为 .(3)=--⎰1221)2(xxxdx.(4)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为 .(5)当0→x 时,2)(kx x =α和x x x x cos arcsin 1)(-+=β是等价无穷小,则k= . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线和x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ](A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行和第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则 [ ](A) 交换*A 的第1列和第2列得*B . (B) 交换*A 的第1行和第2行得*B . (C) 交换*A 的第1列和第2列得*B -. (D) 交换*A 的第1行和第2行得*B -. 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 和x l 所围图形的面积为)(1x S ;32,C C 和y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 和2l 分别是曲线C 在点(0,0)和(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2Ta -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2006年全国硕士研究生入学统一测试数学二试题三、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)曲线 的水平渐近线方程为(2)设函数在处连续,则 .(3)广义积分.(4)微分方程的通解是(5)设函数由方程确定,则(6)设矩阵,为2阶单位矩阵,矩阵满足,则=B .二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量和微分,若,则[ ](A) . (B) .(C) . (D) .(8)设是奇函数,除外处处连续,是其第一类间断点,则是(A )连续的奇函数. (B )连续的偶函数(C )在间断的奇函数(D )在间断的偶函数. [ ](9)设函数可微,,则等于(A ). (B ) (C )(D )[ ](10)函数满足的一个微分方程是(A ) (B )(C )(D ) [ ](11)设为连续函数,则等于 (A). (B ).(C). (D). [ ](12)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是 [ ](A) 若,则.4sin 52cos x xy x x+=-2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 0x =a =220d (1)x xx +∞=+⎰(1)y x y x-'=()y y x =1e yy x =-0d d x y x==2112A ⎛⎫=⎪-⎝⎭E B 2BA B E =+()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =0x =0()d x f t t ⎰0x =0x =()g x 1()()e ,(1)1,(1)2g x h x h g +''===(1)g ln31-ln3 1.--ln 2 1.--ln 2 1.-212e e e x x xy C C x -=++23e .xy y y x '''--=23e .xy y y '''--=23e .xy y y x '''+-=23e .xy y y '''+-=(,)f x y 140d (cos ,sin )d f r r r r πθθθ⎰⎰2210(,)d x x x f x y y -2210(,)d x x f x y y -2210(,)d y yy f x y x -2210(,)d y y f x y x -(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=(B) 若,则. (C) 若,则.(D) 若,则. (13)设均为维列向量,为矩阵,下列选项正确的是 [ ](B) 若线性相关,则线性相关. (C) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关.(14)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ] 三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定的值,使得,其中是当时比高阶的无穷小.(16)(本题满分10分)求 .(17)(本题满分10分)设区域, 计算二重积分00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααn A m n ⨯12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A αααA A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =TC PAP =,,A B C 23e (1)1()xBx Cx Ax o x ++=++3()o x 0x →3x arcsin e d exxx ⎰{}22(,)1,0D x y x y x =+≤≥221d d .1Dxyx y x y +++⎰⎰(18)(本题满分12分)设数列满足(Ⅰ)证明存在,并求该极限;(Ⅰ)计算.(19)(本题满分10分) 证明:当时,.(20)(本题满分12分)设函数在内具有二阶导数,且满足等式.(I )验证; (II )若,求函数的表达式.{}n x 110,sin (1,2,)n n x x x n π+<<==lim n n x →∞211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++()f u (0,)+∞22z f x y=+22220z zx y∂∂+=∂∂()()0f u f u u'''+=(1)0,(1)1f f '==()f u(21)(本题满分12分)已知曲线L 的方程(I )讨论L 的凹凸性;(II )过点引L 的切线,求切点,并写出切线的方程;(III )求此切线和L (对应于的部分)及x 轴所围成的平面图形的面积.(22)(本题满分9分)已知非齐次线性方程组有3个线性无关的解.(Ⅰ)证明方程组系数矩阵的秩;(Ⅰ)求的值及方程组的通解.(23)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.(Ⅰ) 求的特征值和特征向量;(Ⅰ) 求正交矩阵和对角矩阵,使得.221,(0)4x t t y t t⎧=+≥⎨=-⎩(1,0)-00(,)x y 0x x ≤1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩A ()2r A =,a b A ()()T T121,2,1,0,1,1αα=--=-0Ax =A Q ΛTQ AQ =Λ2007年全国硕士研究生入学统一测试数学二试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当(A)(B)(C(D)[ ](2)函数在上的第一类间断点是[ ](A)0 (B)1 (C)(D)(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是:(A)(B)(C)(D)[ ](4)设函数在处连续,下列命题错误的是:(A)若存在,则(B)若存在,则.(C)若存在,则(D)若存在,则.[ ](5)曲线的渐近线的条数为(A)0. (B)1. (C)2. (D)3. [ ](6)设函数在上具有二阶导数,且,令,则下列结论正确的是:(A) 若,则必收敛. (B) 若,则必发散(C) 若,则必收敛. (D) 若,则必发散. [ ](7)二元函数在点处可微的一个充要条件是[ ](A).(B).x+→x1e x-ln1x-11x+1x-1(e e)tan()e exxxf xx+=⎛⎫-⎪⎝⎭[],ππ-x=2π-2π()y f x=[][]3,2,2,3--[][]2,0,0,2-()()dxF x f t t=⎰3(3)(2)4F F=--5(3)(2)4F F=3(3)(2)4F F=5(3)(2)4F F=--()f x0x=()limxf xx→(0)0f=()()limxf x f xx→+-(0)0f=()limxf xx→(0)0f'=()()limxf x f xx→--(0)0f'=()1ln1e xyx=++()f x(0,)+∞()0f x''>()nu f n=12u u>{}n u12u u>{}n u12u u<{}n u12u u<{}n u(,)f x y()0,0()[](,)0,0lim(,)(0,0)0x yf x y f→-=00(,0)(0,0)(0,)(0,0)lim0,lim0x yf x f f y fx y→→--==且(C ).(D ).(8)设函数连续,则二次积分等于(A ) (B ) (C )(D )(9)设向量组线性无关,则下列向量组线性相关的是 线性相关,则(A)(B)(C) .(D) . [ ](10)设矩阵,则和(A) 合同且相似 (B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) __________.(12)曲线上对应于的点处的法线斜率为_________.(13)设函数,则________.(14) 二阶常系数非齐次微分方程的通解为________.(15) 设是二元可微函数,,则 __________.(16)设矩阵,则的秩为 .三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分10分)设是区间上单调、可导的函数,且满足,其中是的反函数,求.(22(,)0,0lim 0x y x y→=+00lim (,0)(0,0)0,lim (0,)(0,0)0x x y y x y f x f f y f →→⎡⎤⎡⎤''''-=-=⎣⎦⎣⎦且(,)f x y 1sin 2d (,)d xx f x y y ππ⎰⎰10arcsin d (,)d y y f x y x ππ+⎰⎰1arcsin d (,)d y y f x y x ππ-⎰⎰1arcsin 02d (,)d yy f x y x ππ+⎰⎰1arcsin 02d (,)d yy f x y x ππ-⎰⎰123,,ααα122331,,αααααα---122331,,αααααα+++1223312,2,2αααααα---1223312,2,2αααααα+++211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B 30arctan sin limx x xx →-=2cos cos 1sin x t t y t⎧=+⎨=+⎩4t π=123y x =+()(0)n y =2432e xy y y '''-+=y =(,)f u v ,y x z f x y ⎛⎫=⎪⎝⎭z zx y x y ∂∂-=∂∂0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A ()f x 0,4π⎡⎤⎢⎥⎣⎦()100cos sin ()d d sin cos f x x t t f t t t t t t --=+⎰⎰1f -f ()f x(18)(本题满分11分) 设是位于曲线下方、轴上方的无界区域. (Ⅰ)求区域绕轴旋转一周所成旋转体的体积;(Ⅰ)当为何值时,最小?并求此最小值.(19)(本题满分10分)求微分方程满足初始条件的特解.(20)(本题满分11分)已知函数具有二阶导数,且,函数由方程所确定,设,求.(21) (本题满分11分)设函数在上连续,在内具有二阶导数且存在相等的最大值,,证明:存在,使得.D 2(1,0)xay xaa x -=>≤<+∞x D x ()V a a ()V a 2()y x y y ''''+=(1)(1)1y y '==()f u (0)1f '=()y y x =1e1y y x --=()ln sin z f y x =-2002d d ,d d x x z z xx ==(),()f x g x [],a b (,)a b ()(),()()f a g a f b g b ==(,)a b ξ∈()()f g ξξ''''=(22) (本题满分11分) 设二元函数,计算二重积分,其中.(23) (本题满分11分)设线性方程组和方程有公共解,求的值及所有公共解.(24) (本题满分11分)设三阶对称矩阵的特征向量值,是的属于的一个特征向量,记,其中为3阶单位矩阵.(I )验证是矩阵的特征向量,并求的全部特征值和特征向量; (II )求矩阵.222,||||1(,)1||||2x x y f x y x y x y ⎧+≤⎪=⎨<+≤⎪+⎩D (,)d f x y σ⎰⎰(){},||||2D x y x y =+≤123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩12321x x x a ++=-a A 1231,2,2λλλ===-T1(1,1,1)α=-A 1λ534B A A E =-+E 1αB B B2008年全国硕士研究生入学统一测试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设,则的零点个数为( )0 1. 2 3(2)曲线方程为函数在区间上有连续导数,则定积分( )曲边梯形ABOD 面积.梯形ABOD 面积.曲边三角形面积.三角形面积.(3)在下列微分方程中,以(为任意常数)为通解的是( )(5)设函数在内单调有界,为数列,下列命题正确的是( )若收敛,则收敛. 若单调,则收敛. 若收敛,则收敛.若单调,则收敛.(6)设函数连续,若,其中区域为图中阴影部分,则(7)设为阶非零矩阵,为阶单位矩阵. 若,则( )不可逆,不可逆. 不可逆,可逆. 可逆,可逆.可逆,不可逆.2()(1)(2)f x x x x =--'()f x ()A ()B ()C ()D ()y f x =[0,]a 0()at af x dx ⎰()A ()B ()C ACD ()D ACD 123cos 2sin 2xy C e C x C x =++123,,C C C ()A ''''''440y y y y +--=()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=()f x (,)-∞+∞{}n x ()A {}n x {}()n f x ()B {}n x {}()n f x ()C {}()n f x {}n x ()D {}()n f x {}n x f 2222(,)uvD F u v dxdy x y =+⎰⎰uv D Fu∂=∂()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u uA n E n 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +(8)设,则在实数域上和合同的矩阵为( ) .. ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数连续,且,则.(10)微分方程的通解是.(11)曲线在点处的切线方程为. (12)曲线的拐点坐标为______.(13)设,则.(14)设3阶矩阵的特征值为.若行列式,则.三、解答题:15-23题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限.(16)(本题满分10分)设函数由参数方程确定,其中是初值问题的解.求.1221A ⎛⎫=⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫ ⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭()f x 21cos[()]lim1(1)()x x xf x e f x →-=-(0)____f =2()0xy x e dx xdy -+-=____y =()()sin ln xy y x x +-=()0,1 23(5)y x x =-xyy z x ⎛⎫= ⎪⎝⎭(1,2)____z x ∂=∂A 2,3,λ248A =-___λ=()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦()y y x =20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰()x t 0200x t dx te dt x --⎧-=⎪⎨⎪=⎩22y x ∂∂(17)(本题满分9分)求积分 .(18)(本题满分11分)求二重积分其中(19)(本题满分11分)设是区间上具有连续导数的单调增加函数,且.对任意的,直线,曲线以及轴所围成的曲边梯形绕轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数的表达式.(20)(本题满分11分)(1) 证明积分中值定理:若函数在闭区间上连续,则至少存在一点,使得(2)若函数具有二阶导数,且满足,证明至少存在一点121dx x-⎰max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x [)0,+∞(0)1f =[)0,t ∈+∞0,x x t ==()y f x =x x ()f x ()f x [,]a b [,]a b η∈()()()baf x dx f b a η=-⎰()x ϕ32(2)(1),(2)()x dx ϕϕϕϕ>>⎰(1,3),()0ξϕξ''∈<使得(21)(本题满分11分)求函数在约束条件和下的最大值和最小值.(22)(本题满分12分) 设矩阵,现矩阵满足方程,其中,,(1)求证;(2)为何值,方程组有唯一解,并求; (3)为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足, (1)证明线性无关; (2)令,求.222u x y z =++22z x y =+4x y z ++=2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A AX B =()1,,Tn X x x =()1,0,,0B =()1nA n a =+a 1x a A 12,ααA 1,1-3α323A ααα=+123,,ααα()123,,P ααα=1P AP -2009年全国硕士研究生入学统一测试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数,则( )1.2. 3.无穷多个.(2)当时,和()()2ln 1g x x bx =-是等价无穷小,则( ). . . . (3)设函数的全微分为,则点( )不是的连续点. 不是的极值点. 是的极大值点. 是的极小值点.(4)设函数连续,则( ).()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间上的图形为:则函数的图形为( )()3sin x x f x nx-=()A ()B ()C ()D 0x →()sin f x x ax =-()A 11,6a b ==-()B 11,6a b ==()C 11,6a b =-=-()D 11,6a b =-=(),z f x y =dz xdx ydy =+()0,0()A (),f x y ()B (),f x y ()C (),f x y ()D (),f x y (),f x y ()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰()A ()2411,xdx f x y dy -⎰⎰[]1,3-()()0xF x f t dt =⎰1-2 0 2 3 -1O....(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B的伴随矩阵。

考研数学二历年真题及答案详解(2003—2014)

考研数学二历年真题及答案详解(2003—2014)

2013年全国硕士研究生入学统一考试数学二试题一、选择题 1—8小题.每小题4分,共32分.1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价无穷小 (D )与x 等价无穷小2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点.(C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导.4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 5.设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( ) (A )01>I (B )02>I (C )03>I (D )04>I 7.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.8.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 1)1ln(2lim . 10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 .13.已知xx x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .14.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,. 16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离. 20.(本题满分11) 设函数xx x f 1ln )(+= ⑴求)(x f 的最小值; ⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.21.(本题满分11) 设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标. 22.本题满分11分) 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .23(本题满分11分)设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 TTββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +.2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)曲线221x xy x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++=⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题一、 选择题:1~8小题,每小题4分,共32分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T =
(6)
. 设三阶方阵 A,B 满足 A B A B E ,其中 E 为三阶单位矩阵,若
2
1 0 1 A 0 2 0 ,则 B 2 0 1
.
二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内) (1)设 {a n }, {bn }, {c n } 均为非负数列,且 lim a n 0 , lim bn 1 , lim c n ,则必
2 3
2 1 , ) ,其上任一点 P(x,y)处的法线与 y 轴的 2 2
容器内无液体). (1) 根据 t 时刻液面的面积,写出 t 与 ( y ) 之间的关系式; (2) 求曲线 x ( y ) 的方程.
3
文硕考研教育
(注:m 表示长度单位米,min 表示时间单位分.) 十 、 (本题满分 10 分) 设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 f ( x) 0. 若极限
文硕考研教育
2003 年考研数学(二)真题评注
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)
1
(1) 若 x 0 时, (1 ax ) 4 1 与 x sin x 是等价无穷小,则 a=
2
.
(2) 方程是
设函数 y=f(x)由方程 xy 2 ln x y 所确定,则曲线 y=f(x)在点(1,1)处的切线
l1 : l2 :
ax 2by 3c 0 , bx 2cy 3a 0 , cx 2ay 3b 0 .
l3 :
试证这三条直线交于一点的充分必要条件为 a b c 0.
真题答案解析
1. 【分析】 根据等价无穷小量的定义,相当于已知 lim
x 0
(1 ax ) 1 ,反过来求 a. x sin x
4
.
x
n
(3) y 2 的麦克劳林公式中 x 项的系数是 (4) 设曲线的极坐标方程为 e 一段弧与极轴所围成的图形的面积为
T
.
a
(a 0) ,则该曲线上相应于 从 0 变到 2 的
.
T
1 1 1 (5) 设 为 3 维列向量, 是 的转置. 若 1 1 1 ,则 1 1 1
n n n
有 (A) a n bn 对任意 n 成立. (C) 极限 lim a n c n 不存在.
n
(B) bn c n 对任意 n 成立. (D) 极限 lim bn c n 不存在.
n
[
]
(2)设 a n
3 n 1 n 1 x 1 x n dx , 则极限 lim na n 等于 n 2 0
【评注】
y ( n ) (0) (ln 2) n . n! n!
本题属常规题型,在一般教材中都可找到答案. 利用极坐标下的面积计算公式 S
4.. 【分析】 【详解】
1 2 ( )d 即可. 2
所求面积为
S
1 2 2 1 2 ( )d e 2 a d 2 0 2 0 1 2 a 2 1 4a e (e 1) . = 0 4a 4a
(B),(C),因此正确选项为(D). 【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179. 8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为
5
文硕考研教育
1 1 1 1 1 【详解】 由 1 1 1 = 1 1 1 1,知 1 ,于是 1 1 1 1 1
T
1 1 1 1 1 3. 1
xa
lim
f (2 x a) 存在,证明: xa
(1) 在(a,b)内 f(x)>0; (2) 在(a,b)内存在点 ,使
b2 a2

b
a
f ( x)dx

2 ; f ( )
(3) 在(a,b) 内存在与(2)中 相异的点 ,使
f ( )(b 2 a 2 )
x 1 2t 2 , d2y u 1 2 ln t e 设函数 y=y(x)由参数方程 (t 1) 所确定,求 2 y du dx 1 u
五 、 (本题满分 9 分) 计算不定积分
x 9
.

xe arctan x (1 x 2 )
3 2
dx.
六 、 (本题满分 12 分) 设函数 y=y(x)在 ( ,) 内具有二阶导数,且 y 0, x x( y ) 是 y=y(x)的反函数.
y 1 1 ( x 1) ,即
x y 0.
【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似 例题见《数学复习指南》P.55 【例 2.13】和【例 2.14】. 3.. 【分析】 本题相当于先求 y=f(x)在点 x=0 处的 n 阶导数值 f
(n)
(0) ,则麦克劳林公
f ( n ) (0) 式中 x 项的系数是 . n!
n
【详解】
因为 y 2 ln 2 , y 2 (ln 2) , L , y
x x 2
( x)
2 x (ln 2) n ,于是有
y ( n ) (0) (ln 2) n ,故麦克劳林公式中 x n 项的系数是
2
由 A B A B E 知,
( A 2 E ) B A E ,即
易知矩阵 A+E 可逆,于是有 再两边取行列式,得
( A E )( A E ) B A E , ( A E ) B E.
A E B 1,
1 2
因为
0 0 1 A E 0 1 0 2 , 所以 2 0 0
n
而极限 lim a n c n 是 0 型未定式,可能存在也可能不存在,举反例说明即可;
极限 lim bn c n 属 1 型,必为无穷大量,即不存在.
n
【详解】 用举反例法,取 a n
2 1 , bn 1 , c n n( n 1,2, L ) ,则可立即排除(A), n 2
三 、 (本题满分 10 分)
ln(1 ax 3 ) , x 0, x arcsin x 6, x 0, 设函数 f ( x) ax 2 e x ax 1 x 0, , x x sin 4
2
文硕考研教育
问 a 为何值时,f(x)在 x=0 处连续;a 为何值时,x=0 是 f(x)的可去间断点? 四 、 (本题满分 9 分)
(B)
(A)
y2 . x2
y2 . x2
(C)
x2 2. y
(D)
x2 . y2
[
]
(4)设函数 f(x)在 ( ,) 内连续,其导函数的图形如图所示,则 f(x)有 (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点. y
[
]
O
x
(5)设 I 1 (A) (C)


4 0
tan x x dx , I 2 4 dx , 则 0 tan x x
(B) (D)

I 1 I 2 1. I 2 I 1 1.
1 I1 I 2 . 1 I 2 I1 .
[ ]
(6)设向量组 I: 1 , 2 , L , r 可由向量组 II: 1 , 2 , L , s 线性表示,则 (A) 当 r s 时,向量组 II 必线性相关. (C) 当 r s 时,向量组 I 必线性相关. (B) 当 r s 时,向量组 II 必线性相关. (D) 当 r s 时,向量组 I 必线性相关. [ ]
【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算 过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例 7.38】. 5.. 【分析】 本题的关键是矩阵 的秩为 1,必可分解为一列乘一行的形式,而行
T
向量一般可选第一行(或任一非零行) ,列向量的元素则为各行与选定行的倍数构成.
4
八 、 (本题满分 12 分) 设位于第一象限的曲线 y=f(x)过点 ( 交点为 Q,且线段 PQ 被 x 轴平分. (1) 求曲线 y=f(x)的方程; (2) 已知曲线 y=sinx 在 [0, ] 上的弧长为 l ,试用 l 表示曲线 y=f(x)的弧长 s. 九 、 (本题满分 10 分) 有一平底容器,其内侧壁是由曲线 x ( y )( y 0) 绕 y 轴旋转而成的旋转曲面(如图) ,容器的底面圆的半径为 2 m. 根据设计要求,当以 3m / min 的速率向容器内注入液体时, 液面的面积将以 m / min 的速率均匀扩大(假设注入液体前,
十 一、 (本题满分 10 分)
2 b f ( x)dx. a a
2 2 0 若矩阵 A 8 2 a 相似于对角阵 ,试确定常数 a 的值;并求可逆矩阵 P 使 0 0 6
P 1 AP .
十二 、 (本题满分 8 分) 已知平面上三条不同直线的方程分别为
2
1 4
4
文硕考研教育
注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简. 【详解】 当 x 0 时, (1 ax ) 1 ~
相关文档
最新文档