各种电磁阀
不同类型电磁阀有哪些特点和适用场合

不同类型电磁阀有哪些特点和适用场合电磁阀是工业控制系统中常用的执行元件,它通过电磁力来控制流体的通断,具有响应迅速、控制精确等优点。
根据不同的结构和工作原理,电磁阀可以分为多种类型,每种类型都有其独特的特点和适用场合。
直动式电磁阀直动式电磁阀是一种较为简单的结构,其工作原理是电磁线圈直接驱动阀芯运动,从而实现阀的开启和关闭。
特点:1、响应速度快:由于电磁力直接作用于阀芯,所以动作响应迅速,适用于对响应时间要求较高的场合。
2、结构简单:相对其他类型的电磁阀,直动式的结构较为简单,易于安装和维护。
3、压力范围较小:通常适用于低压力的流体控制系统。
适用场合:1、小型仪器设备:如小型的气动工具、实验室设备等,对流量和压力要求不高,但对响应速度有一定要求。
2、真空系统:在真空环境下,直动式电磁阀能够较好地实现流体的控制。
先导式电磁阀先导式电磁阀则是通过先导阀的先导作用来驱动主阀芯运动。
特点:1、适用压力范围广:能够在较高的压力下正常工作,适用于中高压的流体控制系统。
2、功耗低:由于先导阀的作用,主阀芯的开启所需的电磁力较小,从而降低了功耗。
3、流量较大:可以通过较大的流量,满足一些大流量的需求。
适用场合:1、工业自动化生产线:如大型的机械加工设备、化工生产装置等,对压力和流量有较高要求。
2、液压系统:在液压控制中,先导式电磁阀能够有效地控制液压油的流动。
分步直动式电磁阀分步直动式电磁阀结合了直动式和先导式的部分特点。
特点:1、既有直动式的快速响应,又能在一定程度上承受较高的压力。
2、可靠性较高:结构相对较为稳定,故障发生率较低。
适用场合:1、燃气控制系统:在燃气输送和控制中,能够确保安全可靠地控制燃气的通断。
2、暖通空调系统:调节冷媒或热媒的流量,保证系统的正常运行。
二位二通电磁阀二位二通电磁阀只有两个工作位置,即“通”和“断”。
特点:1、控制简单:功能明确,操作简单易懂。
2、成本较低:结构相对简单,制造成本相对较低。
4v330c和330e的区别电磁阀工作原理

4v330c和330e的区别电磁阀工作原理随着工业自动化水平的不断提高,电磁阀作为控制元件在生产、加工等领域中发挥着越来越重要的作用。
在众多型号的电磁阀中,4v330c和330e是比较常见的两种类型,它们在工作原理、结构设计上有哪些区别呢?本文将就此展开详细介绍。
1. 结构设计4v330c和330e在结构设计上存在显著的差异。
4v330c采用了气动控制电磁阀的设计,它具有四位三通和五通两种结构。
而330e则是电气控制电磁阀,适用于直流和脉冲电磁阀。
2. 工作原理(1) 4v330c的工作原理4v330c电磁阀在正常情况下是处于关闭状态的,在需要进行控制时,通电激磁线圈,通过电磁力的作用使得阀芯移动,实现对气路的控制。
它主要由电磁铁(线圈)、阀芯、阀体、弹簧、密封圈等部件组成。
在没有电流通入时,电磁铁不产生吸引力,阀芯由于受到弹簧的作用而关闭。
当电流通过线圈时,产生磁场,使得阀芯受到吸引力而打开,气路实现通断控制。
(2) 330e的工作原理330e电磁阀是一种用于直流或脉冲电磁阀的控制元件,它的工作原理相对复杂一些。
在330e中,通过控制电磁铁的通断以及电磁铁的极性变化来实现对气路的控制。
这种电磁阀的工作原理较为灵活,可以根据具体的控制要求灵活调整控制参数。
3. 使用场景由于4v330c和330e在工作原理和结构设计上的差异,它们在使用场景上也有所不同。
(1) 4v330c4v330c适用于对气路进行简单控制的场景,例如空压机的控制、气缸的控制等。
由于其结构简单、稳定性高,因此在工业领域中得到广泛应用。
(2) 330e330e适用于对气路进行复杂控制的场景,例如需要频繁切换控制信号、需要进行精确控制的场合等。
由于其灵活性高、响应速度快,因此在特定场景中表现出色。
4. 总结4v330c和330e作为常见的电磁阀型号,在工作原理、结构设计和使用场景上都有着明显的差异。
在实际应用中,选择合适的电磁阀型号,需要根据具体的控制要求和环境条件来综合考虑。
电磁阀的原理和分类

电磁阀的原理和分类电磁阀是工业自动化领域中常见的控制元件,广泛应用于液压、气动系统中。
本文将介绍电磁阀的原理和分类,并详细阐述每一类电磁阀的特点和应用。
一、电磁阀的原理电磁阀是一种利用电磁力控制液体或气体流动的装置。
其工作原理基于电磁感应和磁力作用。
当通电时,电磁铁内部产生磁场,使电磁铁的铁芯吸引阀芯,从而改变阀芯的位置,使介质通路打开或关闭。
二、电磁阀的分类根据控制介质的种类和控制方式,电磁阀可以分为多个不同的类别。
下面将详细介绍几种常见的电磁阀分类。
1. 按介质分类(1) 水电磁阀:主要用于控制水的流动,广泛应用于给排水系统、制冷空调系统等。
(2) 气电磁阀:主要用于控制气体的流动,广泛应用于气动系统、燃气系统等。
(3) 油电磁阀:主要用于控制液压油的流动,广泛应用于液压系统、润滑系统等。
2. 按控制方式分类(1) 二位二通电磁阀:具有两个工作状态,通常用于控制流体的开关。
(2) 二位三通电磁阀:具有两个工作状态和一个中间状态,常用于控制流体的转向。
(3) 三位二通电磁阀:具有三个工作状态,常用于控制流体的正反转。
(4) 四位二通电磁阀:具有四个工作状态,常用于控制流体的正反转和停止。
3. 按工作方式分类(1) 直动式电磁阀:阀芯直线运动,可根据需要分为单向直动和双向直动。
(2) 带导向式电磁阀:阀芯固定在阀体内,并通过导向部件来改变流体通路。
(3) 锥阀式电磁阀:阀芯的底部为锥形设计,通过锥阀与阀座之间的间隙来控制流体流动。
(4) 薄板式电磁阀:阀芯为薄板状,主要用于微型电磁阀或高频开关。
三、电磁阀的应用电磁阀在工业自动化领域中起到关键的控制作用,广泛应用于各种控制系统中。
下面列举几个常见的应用场景。
1. 液压系统:电磁阀用于控制液压油的流动、压力和方向,广泛应用于工程机械、冶金设备等。
2. 气动系统:电磁阀用于控制气体的流动和压力,广泛应用于气动机械、工业自动化等。
3. 制冷系统:电磁阀用于控制制冷剂的流动和压缩机的启停,广泛应用于冷藏冷冻设备、空调系统等。
不同类型的电磁阀各有哪些特点

不同类型的电磁阀各有哪些特点电磁阀是工业控制系统中常用的一种执行元件,它通过电磁力来控制流体的通断,具有结构简单、响应迅速、可靠性高等优点。
根据不同的结构和工作原理,电磁阀可以分为多种类型,每种类型都有其独特的特点和适用场景。
直动式电磁阀是一种常见的类型。
它的工作原理相对简单直接,电磁线圈通电时,产生的电磁力直接推动阀芯移动,从而实现阀口的开启或关闭。
这种电磁阀的优点是响应速度快,因为它不需要通过介质压力来辅助动作。
所以在一些对响应速度要求较高的场合,比如小型的精密控制系统中,直动式电磁阀常常是首选。
然而,它也有一定的局限性。
由于电磁力需要直接克服阀芯的阻力,所以通常只适用于通径较小、压力较低的场合。
一旦口径较大或者压力较高,所需的电磁力会急剧增加,导致线圈尺寸和功耗过大,不太经济实用。
先导式电磁阀则与直动式有所不同。
它是由先导阀和主阀两部分组成。
电磁线圈通电时,先打开先导阀,使主阀上下腔产生压力差,然后在介质压力的推动下,主阀芯移动,实现阀的开启或关闭。
先导式电磁阀的优点是能够承受较大的工作压力和通径。
因为它利用了介质压力来辅助阀芯动作,所以在大口径、高压的工况下,其所需的电磁力相对较小,从而降低了线圈的功耗和成本。
不过,相应地,先导式电磁阀的响应速度会比直动式稍慢一些,而且在一些低压力或者无压力的介质环境中,可能无法正常工作。
分步直动式电磁阀可以看作是直动式和先导式的结合体。
它在初始阶段类似于直动式,电磁力直接推动阀芯移动一小段距离,打开一个小的通道,使介质通过这个通道进入主阀的上腔或下腔,形成压力差,然后在压力差的作用下,阀芯进一步移动,实现阀的完全开启或关闭。
分步直动式电磁阀兼具了直动式响应快和先导式能承受较大压力的优点,但结构相对复杂,成本也会稍高一些。
在实际应用中,选择哪种类型的电磁阀需要综合考虑多个因素。
首先是工作压力。
如果系统工作压力较低,直动式电磁阀可能就能够满足要求;而如果压力较高,先导式或分步直动式则更为合适。
常见电磁阀原理及应用

常见电磁阀原理及应用电磁阀是一种利用电磁力控制液体或气体流动的装置。
它由电磁线圈和阀体组成,通过控制电磁线圈的通断来控制阀体的开关状态,从而实现对液体或气体流动的控制。
电磁阀具有结构简单、操作方便、可靠性高等特点,广泛应用于工业自动化领域。
电磁阀的工作原理是基于电磁力的作用。
当电磁线圈通电时,会产生磁场,磁场会引起阀体上的磁性部件(如铁芯)发生磁化,使得阀体的通道打开或关闭。
当电磁线圈断电时,磁场消失,阀体的磁性部件恢复非磁化状态,通道恢复原来的状态。
通过控制电磁线圈的通断,就可以实现对液体或气体流动的控制。
电磁阀的应用非常广泛。
以下是几个常见的应用领域:1.工业自动化控制:电磁阀广泛应用于各种工业自动化控制系统中,如液压系统、气动系统、制冷系统等。
通过控制电磁阀的开关状态,可以实现对液体或气体的流量、压力、温度等参数的控制。
2.农业灌溉系统:电磁阀在农业灌溉系统中起到关键作用,可以控制灌溉水源的开关,根据需要灌溉不同地块或作物,提高灌溉效率,节约水资源。
3.医疗设备:电磁阀在医疗设备中的应用也很常见,如呼吸机、输液泵等。
通过控制电磁阀的开关状态,可以实现对氧气、液体药物等的流量控制,保证医疗设备的正常运行。
4.汽车工业:电磁阀在汽车工业中应用广泛,如发动机控制系统、变速器控制系统等。
通过控制电磁阀的开关状态,可以实现对汽车发动机的启动、停止,以及变速器的换挡等功能。
5.环境监测:电磁阀在环境监测领域中也有应用,如空气质量监测仪器中的气体采样系统。
通过控制电磁阀的开关状态,可以实现对不同位置的气体采样,确保采样的准确性。
总之,电磁阀是一种非常重要的控制元件,广泛应用于各个领域。
通过控制电磁阀的开关状态,可以实现对液体或气体流动的精确控制,提高工业自动化的效率,保证设备的正常运行。
三位五通气动电磁阀分类

三位五通气动电磁阀分类气动电磁阀可分为五通、四通、三通等各种类型。
本文主要介绍三位五通气动电磁阀,包括它们的基本原理、构造和应用等方面的知识。
三位五通气动电磁阀是一种特殊的气动阀门,其工作原理基于五通阀门的基础上,通过电磁力控制来实现阀门的操作。
三位五通气动电磁阀的结构由多个气路组成,其中心部为阀芯。
当阀芯处于不同位置时,可实现阀体内多种不同的流道连接组合,从而实现气流的控制。
三位五通气动电磁阀由阀体、阀芯、弹簧、电磁铁等部分组成。
阀体通常采用优质铝合金或不锈钢制造,以保证其强度和耐腐蚀性。
而阀芯则采用高精度加工工艺制造,以保证其密封性和精度。
该气动电磁阀的弹簧主要用于控制阀芯的位置,使其处于稳定状态。
电磁铁作为电磁力的传动器,通过控制电力信号来产生吸合或者推断的力量,从而实现对阀芯的操作。
三位五通气动电磁阀广泛应用于工业自动化控制系统中,特别是在液压、气动系统环境下的流量控制和转换方面。
在通常的工作状态下,该电磁阀常常用于控制气流和液体的平稳流动和停止,以便控制设备和机器的功能。
相较于其他阀门,三位五通气动电磁阀具有多种优点:1、操作灵活:三位五通气动电磁阀可根据不同的操作方式进行控制,实现多种不同的气路类型。
2、性能稳定:由于其构造复杂,制造过程需要精细加工,因此具有较高的精度和密封性能。
3、使用范围广泛:三位五通气动电磁阀适用于多种行业,如机械、化工、冶金、食品等等。
5、容易维护:该电磁阀的多种部件均可拆卸和更换,易于维护和保养。
因此,在现代工业自动化控制系统中,三位五通气动电磁阀装置具有重要作用,为各种自动化系统的顺利运行提供了重要的保障。
阀门产品样本——国标电磁阀

阀门产品样本——国标电磁阀
简介
本文档旨在介绍国标电磁阀的产品样本。
国标电磁阀是一种常
用的阀门产品,用于控制流体介质的流动。
本文将描述国标电磁阀
的特点、技术参数以及适用范围。
特点
- 国标电磁阀采用先进的电磁控制技术,具有快速响应、高效
可靠的特点。
- 该阀门产品结构简单、操作灵活,能够适应各种应用场景。
- 国标电磁阀具有良好的耐腐蚀性能和密封性能,可以在恶劣
的工作环境下长时间运行。
技术参数
- 额定压力:国标电磁阀的额定压力通常为0.6MPa或1.0MPa,可根据用户需求进行定制。
- 工作介质:国标电磁阀适用于液体和气体介质的控制,如水、油、蒸汽等。
- 温度范围:国标电磁阀的常用温度范围为-10℃至80℃,可根据需要进行升级。
- 电源电压:国标电磁阀一般使用交流电源,常见的电压为220V或380V。
适用范围
国标电磁阀广泛应用于各个行业,包括但不限于以下领域:
- 工业自动化控制系统
- 建筑给排水工程
- 供热系统
- 化工工艺控制
- 食品加工生产线
以上内容仅为国标电磁阀样本的简要介绍,详细的产品信息请参考具体的产品样本或联系相关厂商。
电磁阀的分类及结构原理介绍

电磁阀的分类及结构原理介绍简介电磁阀是一种控制液压、气压、油压等介质流通的一种机电装置,被广泛应用于各种领域中。
电磁阀的分类和结构原理多种多样,下面将介绍其中的主要分类和结构原理。
分类根据控制介质不同,电磁阀可以分为气控电磁阀、液控电磁阀和油控电磁阀三类。
气控电磁阀气控电磁阀是一种用于空气、气体或吸尘机等的开关装置,它可以将电气信号转换为机械振动,使得气流进出,起到开关的作用。
它的工作原理就是在电流作用下,使得电磁铁的铁芯与活动阀芯之间相互吸引,以改变它们之间的位置关系,从而实现气路的通断、转向和增减等控制功能。
液控电磁阀液控电磁阀是用来控制液压系统中流量或压力的一种装置。
它的工作原理是由控制电器发出信号,驱动电磁铁,使阀芯相应地运动,从而改变阀门的通路,控制油液的流通方向、流量和压力大小。
油控电磁阀油控电磁阀是液控电磁阀的一种变种,它是用来控制流经液压系统的油液的流量或压力大小,同时还可以控制油液的流向和压力的稳定性。
它的工作原理与液控电磁阀基本相同,只不过它控制的介质是润滑油、液压油、液态燃料等。
结构原理电磁阀的基本结构主要由电磁铁和阀体构成。
在电磁阀的内部设有阀门,用于控制流动通道的开启和关闭。
电磁铁由铁芯、线圈和外壳组成,线圈由绕在铁芯上的导线构成,当电流经过线圈时,导线中的电子开始运动,产生一个强磁场作用于铁芯上。
阀门一般由活动芯和底座组成,活动芯与电磁铁铁芯相连,受到磁力吸引而向内移动,当活动芯移动到一定位置时,阀芯与阀体之间的密封面便断开,流体开始流动。
当电流断开时,阀门会自动关闭。
电磁阀的通电和断电操作可以由手动、自动、脉冲和其他方式实现。
除了基本结构外,电磁阀还存在不同的辅助装置,如压力开关、温度传感器等。
总结电磁阀作为一种常用的控制装置,具有分类多、结构复杂的特点。
不同的电磁阀在不同的控制介质下有不同的应用。
通过了解电磁阀的基本分类和结构原理,可以帮助我们更好地理解其应用原理和维修方法,从而更好地使用电磁阀这一装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两位三通和两位五通电磁阀的特点两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。
两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理。
在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。
两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作出气孔(分别提供给目标设备的一正一反动作的气源)、1个正动作排气孔和1个反动作排气孔(安装消声器)。
对于小型自动控制设备,气管一般选用8~12mm的工业胶气管。
电磁阀一般选用日本SMC(高档一点,不过是小日本的产品)、台湾亚德客(实惠,质量也不错)或其它国产品牌等等。
在电气上来说,两位三通电磁阀一般为单电控(即单线圈),两位五通电磁阀一般为双电控(即双线圈)。
线圈电压等级一般采用DC24V、AC220V等。
两位三通电磁阀分为常闭型和常开型两种,常闭型指线圈没通电时气路是断的,常开型指线圈没通电时气路是通的。
常闭型两位三通电磁阀动作原理:给线圈通电,气路接通,线圈一旦断电,气路就会断开,这相当于“点动”。
常开型两位三通单电控电磁阀动作原理:给线圈通电,气路断开,线圈一旦断电,气路就会接通,这也是“点动”。
两位五通双电控电磁阀动作原理:给正动作线圈通电,则正动作气路接通(正动作出气孔有气),即使给正动作线圈断电后正动作气路仍然是接通的,将会一直维持到给反动作线圈通电为止。
给反动作线圈通电,则反动作气路接通(反动作出气孔有气),即使给反动作线圈断电后反动作气路仍然是接通的,将会一直维持到给正动作线圈通电为止。
这相当于“自锁”。
基于两位五通双电控电磁阀的这种特性,在设计机电控制回路或编制PLC程序的时候,可以让电磁阀线圈动作1~2秒就可以了,这样可以保护电磁阀线圈不容易损坏。
电磁阀二位是指电磁阀的阀芯有两个不同的工作位置(开、关)。
电磁阀二通、三通指电磁阀的阀体上有两个、三个通道口;比如二位二通电磁阀是一进一出(二个通道、最普通常见)二位三通电磁阀控制液体是一进二出(两出分别是一个常开一个常闭);气动换向电磁阀是一进一出一排气;液压一进一出一回油。
国内外的电磁阀从原理上分为三大类(即:直动式、分步直动式、先导式),而从阀瓣结构和材料上的不同与原理上的区别又分为六个分支小类(直动膜片结构、分步重片结构、先导膜式结构、直动活塞结构、分步直动活塞结构、先导活塞结构)。
直动式电磁阀:原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。
特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。
分布直动式电磁阀:原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。
当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。
特点:在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。
先导式电磁阀:原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。
特点:流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。
首页当前位置:电子教案第4章气动控制阀4.1 概述一、气动控制阀的分类气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。
控制和调节压缩空气压力的元件称为压力控制阀。
控制和调节压缩空气流量的元件称为流量控制阀。
改变和控制气流流动方向的元件称为方向控制阀。
除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。
在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。
近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。
从控制方式来分,气动控制可分为断续控制和连续控制两类。
在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。
气动控制阀分类如图4.1。
二、气动控制阀和液压阀的比较(一)使用的能源不同气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。
液压阀都设有回油管路,便于油箱收集用过的液压油。
气动控制阀可以通过排气口直接把压缩空气向大气排放。
(二)对泄漏的要求不同液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。
对气动控制阀来说,除间隙密封的阀外,原则上不允许内部泄漏。
气动阀的内部泄漏有导致事故的危险。
对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境的污染。
(三)对润滑的要求不同液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。
阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。
(四)压力范围不同气动阀的工作压力范围比液压阀低。
气动阀的工作压力通常为10bar以内,少数可达到40bar以内。
但液压阀的工作压力都很高(通常在50Mpa以内)。
若气动阀在超过最高容许压力下使用。
往往会发生严重事故。
(五)使用特点不同一般气动阀比液压阀结构紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。
气动阀正向低功率、小型化方向发展,已出现功率只有0.5W的低功率电磁阀。
可与微机和PLC可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气动工业机械手、复杂的生产制造装配线等场合。
三、气动控制阀的结构特性气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。
阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。
(一)截止式阀的结构及特性截止式阀的阀心沿着阀座的轴向移动,控制进气和排气。
图4.2所示为二通截止式阀的基本结构。
图4.2a中,在阀的P口输入工作气压后,阀芯在弹簧和气体压力作用下紧压在阀座上,压缩空气不能从A口流出;图4.2b为阀杆受到向下的作用力后,阀芯向下移动,脱离阀座,压缩空气就能从P口流向A口输出。
这就是截止式阀的切换原理。
图4.2 二通截止阀(常闭型)图4.3 二通截止阀(常通型)图4.3所示的阀为常通型结构。
图4.3a为初始状态,与图4.2a相反,阀心在弹簧力作用下离开阀座,压缩空气从P口流向A口输出。
图4.3b为工作状态,阀杆在向上的力作用下,阀心紧压在阀座上关闭阀口,流道被关断,A口没有压缩空气流出。
图 4.4所示为三通截止式阀的结构,阀有P 、A 、0三个孔口。
图4.4a 为阀的初始状态,阀心紧压在上阀座上,P 口和A 口通路被关断,A 口和0口相通。
阀的输出A 口没有输出。
图4.4b 为工作状态。
阀杆受力后使阀心离开上阀座而紧压在下阀座上,关闭排气O 口,打开P 口至A 口之间的通道,压缩空气从P 口流向A 口输出。
图4.4c 所示为阀在切换过程中阀心所处的瞬态位置。
此时,P 、A 、0三个孔口同时相通,而发生串气现象。
实际上,对于快速切换的阀,这种串气现象对阀的动作不存在什么影响。
但缓慢切换时,应予以注意。
截止式阀的结构决定了其开启所需的时间较短,但开启大口径的阀则需较大的开启力。
因此截止式阀多用于小口径的阀。
需要大流量或高压时,往往采取先导式的结构。
其方法是增加一个控制活塞,先导控制气压作用在活塞上产生的较大操纵力,以弥补上述缺点。
为了使截止式阀密封可靠,操纵方便,另一种方法是采用压力平衡的方法,如图4.5所示,在阀杆两侧增加了活塞,活塞受气压作用面积和阀心受压面积相等,这种阀称为压力平衡式阀。
由于初始状态时,工作气压作用在阀杆上的合力为零,使开启阀门的操作力大大降低。
(二)滑柱式阀的结构及特性滑柱式阀是用圆柱状的阀心在圆筒形阀套内沿轴向移动,从而切换气路。
图4.6所示为滑柱式阀的基本结构。
图4.6左图为阀的初始状态,滑柱在弹簧力的作用下右移。
此时,压缩空气从输人口P 流向输出口A ,A 口有气压输出,B 口无气压输出。
图4.6右图为阀的工作状态;滑柱在操纵力作用下克服弹簧力左移,关断P 口和A 口通路,接通P 口和B 口。
于是,B 口有输出,A 口无输出。
滑柱式阀在结构上只要稍稍改变阀套或滑柱的尺寸、形状就能实现两位四通和两位五通阀的功能。
4.2 方向控制阀一、方向控制阀概述 初始状态 工作状态 瞬时状态 图4.4所示为三通截止式阀的结构图4.5 压力平衡式阀 图4.6 滑拄式阀的基本结构(一)操作方式种获得轴向力的方式叫做换向阀的操作方式,或控制方式。
通常可分为气压、电磁、人力和机械四种操作方式。
1.气压操作用气压力来获得轴向力使阀心迅速移动换向的操作方式叫做气压操作。
它按施加压力的方式可分为加压控制、卸压控制、差压控制和时间控制。
1)加压控制是指施加在阀心控制端的压力逐渐升到一定值时,使阀心迅速移动换向的控制,阀心沿着加压方向移动。
2)卸压控制是指施加在阀心控制端的压力逐渐降到一定值时,阀心迅速换向的控制,常用作三位阀的控制。
3)差压控制是指阀心采用气压复位或弹簧复位的情况下,利用阀心两端受气压作用的面积不等(或两端气压不等)而产生的轴向力之差值,使阀心迅速移动换向的控制。
其原理如图4.7所示,K 1为控制气压口。
这种控制方式只需一个控制信号,故得到广泛的应用,可应用于各种结构的主阀.。
气压复位省去了弹簧,提高了可靠性。
差压控制的特点是所控制的主阀不具有记忆功能,且控制信号和复位信号均须为长信号。
4)时间控制是指利用气流向由气阻(节流孔)和气容构成的阻容环节充气,经过一定时间后,当气容内压力升至一定值时,阀心在差压力作用下迅速移动换向的控制。