高中高考数学专题-立体几何复习

合集下载

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

核心考点2 空间几何体的表面积与体积核心知识·精归纳1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).多维题组·明技法角度1:空间几何体的表面积和侧面积1. (2023·大观区校级三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径AB =12 cm ,圆柱体部分的高BC =6 cm ,圆锥体部分的高CD =4 cm ,则这个陀螺的表面积(单位:cm 2)是( C )A .(144+1213)πB .(144+2413)πC .(108+1213)πD .(108+2413)π【解析】 由题意可得圆锥体的母线长为l =62+42=213,所以圆锥体的侧面积为12·12π·213=1213π,圆柱体的侧面积为12π×6=72π,圆柱的底面面积为π×62=36π,所以此陀螺的表面积为1213π+72π+36π=(108+1213)π(cm 2).故选C.2. (2023·黄浦区校级三模)已知正方形ABCD 的边长是1,将△ABC 沿对角线AC 折到△AB ′C 的位置,使(折叠后)A 、B ′、C 、D 四点为顶点的三棱锥的体积最大,则此三棱锥的表面积为 1+32. 【解析】 根据题意,正方形ABCD 中,设AC 与BD 交于点O ,在翻转过程中,当B ′O ⊥面ACD 时,四棱锥B ′-ACD 的高最大,此时四棱锥B ′-ACD 的体积最大,若B ′O ⊥面ACD ,由于OA =OB ′=OC ,则B ′D =B ′A =B ′C =1,则△DB ′C △DB ′A 都是边长为1的等边三角形,S △DB ′A =S △DB ′C =12×1×1×32=34,△ADC 中,AD =DC =1且AD ⊥DC ,则S △ADC =12×1×1=12,同理:S △AB ′C =S △ABC =S △ADC =12,此时,三棱锥的表面积S =S △DB ′A +S △DB ′C +S △ADC +S △AB ′C =1+32. 角度2:空间几何体的体积3. (2023·福州模拟)已知菱形ABCD 的边长为2,∠BAD =60°,则将菱形ABCD 以其中一条边所在的直线为轴,旋转一周所形成的几何体的体积为( B )A .2πB .6πC .43πD .8π【解析】 根据题意,旋转一周所形成的几何体如图,该几何体上部分为圆锥,下部分为在圆柱内挖去一个与上部分相同的圆锥,其体积等于中间圆柱的体积,且中间圆柱的高h =DC =2,底面圆的半径r =BC sin 60°=2×32=3,故要求几何体的体积V =πr 2h =6π.故选B.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AB ,BC 的中点,则多面体A 1C 1-AEFC 的体积为 53.【解析】 多面体A 1C 1-AEFC 的体积等于三棱柱ABC -A 1B 1C 1的体积与三棱台EBF -A 1B 1C 1的体积之差,其中三棱柱ABC -A 1B 1C 1的体积为12×2×2×2=4,三棱台EBF -A 1B 1C 1的体积为⎝ ⎛⎭⎪⎫12×1×1+12×2×2+12×1×1×12×2×2×2×13=73,所以多面体A 1C 1-AEFC 的体积为4-73=53. 方法技巧·精提炼1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点;(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法(1)公式法:直接根据常见柱、锥、台体等规则几何体的体积公式计算;(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积必等;(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为可计算体积的几何体.加固训练·促提高1. (2023·平罗县校级模拟)已知圆锥的底面半径为1,侧面展开图的圆心角为23π,则该圆锥的侧面积为( C )A .πB .2πC .3πD .4π【解析】 底面圆周长为2π,母线长为2π2π3=3,所以侧面积为12×2π×3=3π.故选C.2. (2023·普陀区校级模拟)如图,在正四棱锥P -ABCD 中,AP =AB =4,则正四棱锥的体积为 3223.【解析】 连接AC 与BD 交于O ,则O 是正方形ABCD 的中心,∴PO ⊥平面ABCD ,∵AB=4,∴AO =22,∵PA =4,∴PO =16-8=22,∴正四棱锥的体积为V =13S 正方形ABCD ·PO=13×16×22=3223.故答案为3223.3. (2023·琼山区四模)三棱锥A -BCD 中,AC ⊥平面BCD ,BD ⊥CD ,若AB =3,BD =1,则该三棱锥体积的最大值为 23.【解析】 如图所示,因为AC ⊥平面BCD ,即AC 为三棱锥A -BCD 的高,设为x ,又因为BC ⊂平面BCD ,所以AC ⊥BC ,在直角△ABC 中,由AB =3,AC =x ,可得BC =9-x 2,因为BD ⊥CD ,且BD =1,可得CD =BC 2-BD 2=8-x 2,所以三棱锥A -BCD 的体积为V =13S △BCD ·AC =13×128-x 2×1×x =168-x2·x 2≤16×8-x 2+x 22=23,当且仅当8-x 2=x 2时,即x =2时,三棱锥A -BCD 的体积取得最大值,最大值为23.。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

高考数学总复习《立体几何》部分试题及答案

高考数学总复习《立体几何》部分试题及答案

高考数学总复习试卷立体几何综合训练第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题正确的是()A.直线a,b与直线l所成角相等,则a//bB.直线a,b与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α//βD.直线a,b在平面α外,且a⊥α,a⊥b,则b//α2.空间四边形ABCD,M,N分别是AB、CD的中点,且AC=4,BD=6,则()A.1<MN<5 B.2<MN<10C.1≤MN≤5 D.2〈MN<53.已知AO为平面α的一条斜线,O为斜足,OB为OA在α内的射影,直线OC在平面α内,且∠AOB=∠BOC=45°,则∠AOC等于()A.30°B.45°C.60°D.不确定4.甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A.B.C.D.5.对已知直线a,有直线b同时满足下面三个条件:①与a异面;②与a成定角;③与a距离为定值d,则这样的直线b有()A.1条B.2条C.4条D.无数条6.α,β是不重合两平面,l,m是两条不重合直线,α//β的一个充分不必要条件是()A.,且l//β,m//βB.,且l//mC.l⊥α,m⊥β,且l//m D.l//α,m//β,且l//m7.如图正方体中,E,F分别为AB,的中点,则异面直线与EF所成角的余弦值为( )A.B.C.D.8.对于任一个长方体,都一定存在一点:①这点到长方体的各顶点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的是()A.①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2 B.3 C.4 D.610.正六棱柱的底面边长为2,最长的一条对角线长为,则它的侧面积为()A.24 B.12 C.D.11.异面直线a,b成80°角,P为a,b外的一个定点,若过P有且仅有2条直线与a,b所成的角相等且等于α,则角α属于集合()A.{α|0°〈α〈40°} B.{α|40°<α〈50°}C.{α|40°〈α<90°}D.{α|50°<α〈90°}12.从水平放置的球体容器的顶部的一个孔向球内以相同的速度注水,容器中水面的高度与注水时间t之间的关系用图象表示应为()第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上)13.正四棱锥S—ABCD侧棱长与底面边长相等,E为SC中点,BE与SA所成角的余弦值为_____________。

新高考立体几何知识点汇总

新高考立体几何知识点汇总

新高考立体几何知识点汇总立体几何,作为数学的一个重要分支,是高中数学中的一大重点。

随着新高考的实施,立体几何的知识点也发生了一些变化。

在这篇文章中,我们将对新高考立体几何的知识点进行汇总。

一、立体几何基本概念在开始具体讲解立体几何的知识点之前,我们先来回顾一下立体几何的基本概念。

立体几何是研究空间图形的数学学科,主要研究各种立体图形的性质和关系。

常见的立体图形有立方体、正方体、长方体、圆柱体、圆锥体和球体等。

二、立体几何的主要知识点1. 空间直线和平面的相交关系在立体几何中,一个重要的知识点就是空间直线和平面的相交关系。

我们会遇到直线与平面相交、直线与直线相交、平面与平面相交等情况。

相交关系会影响到图形的形态和性质。

2. 立体图形的三视图立体图形的三视图是指通过观察图形不同的方向,得到的平面图形。

常见的三视图有正视图、俯视图和侧视图。

通过三视图,我们可以更全面地了解一个立体图形的形态和结构。

3. 空间几何体的表面积和体积计算计算空间几何体的表面积和体积是立体几何的重要内容。

不同的立体图形有不同的计算公式。

例如,计算正方体的表面积就是6边长的平方,计算球体的体积就是4/3π半径的立方等。

4. 空间几何体的相似性相似性是立体几何的一个重要性质。

当两个几何体的形状相似的时候,它们的各种尺寸比也相等。

根据相似性原理,我们可以通过已知几何体的一些尺寸,推导出未知几何体的尺寸。

5. 空间几何体的截面与投影在现实生活中,我们常常会遇到截面和投影的情况。

截面是指一个空间几何体被一个平面截断的情况,而投影是指一个空间几何体在特定条件下的平行光线下的影子。

理解截面和投影对于空间几何体的认识和应用非常重要。

6. 空间几何体的切割与拼接空间几何体的切割与拼接是一种重要的几何操作。

通过将一个空间几何体切割成若干部分,然后进行重新组合,可以得到不同的几何体。

这种方法在解决一些复杂立体几何问题时非常有效。

三、新高考立体几何的考查形式在新高考中,立体几何的考查形式较之前发生了一些变化。

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。

解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。

侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。

所以表面积S=2S_{底}+S_{侧}=2√(3)+6。

2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。

解析:该几何体是一个四棱台。

上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。

根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。

江苏省2024高考数学二轮复习专题二立体几何2

江苏省2024高考数学二轮复习专题二立体几何2

立体几何中的计算A 组——抓牢中档小题1. 若圆锥底面半径为1,高为2,则圆锥的侧面积为 ________.解析:由题意,得圆锥的母线长l =12+22=5,所以S 圆锥侧=πrl =π×1×5=5π.答案:5π2.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为________cm 3. 解析:设正六棱柱的底面边长为x cm ,由题意得6x ×6=72,所以x =2,于是其体积V =34×22×6×6=363cm 3. 答案:36 33.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为________.解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,即R 2=⎝⎛⎭⎪⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π. 答案:64π4. 已知一个棱长为6 cm 的正方体塑料盒子(无上盖),上口放着一个半径为5 cm 的钢球,则球心到盒底的距离为________cm.解析:球心到正方体的塑料盒上表面(不存在)所在平面的距离为52-32=4,所以球心到盒底的距离为4+6=10(cm).答案:105.(2024·扬州期末)若圆锥的侧面绽开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.解析:设圆锥的底面半径为r ,高为h ,母线为l ,则由12·2π3·l 2=3π,得l =3,又由2π3·l =2πr ,得r =1,从而有h =l 2-r 2=22,所以V =13·πr 2·h =223π. 答案:223π6. 一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥形容器.当x =6 cm 时,该容器的容积为________cm 3.解析:由题意知,这个正四棱锥形容器的底面是以6 cm 为边长的正方形,侧面高为5 cm ,则正四棱锥的高为52-⎝ ⎛⎭⎪⎫622=4 cm ,所以所求容积V =13×62×4=48 cm 3.答案:487.已知一个正方体的全部顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π28.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________.解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π,即a 313πr 3=3π,得a =r ,从而S 1S 2=6a 22πr 2=62π=32π. 答案:32π9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为________.解析:设B ,C ,D 三点重合于点P ,得到如图所示的四面体P ­AEF .因为AP ⊥PE ,AP ⊥PF ,PE ∩PF =P ,所以AP ⊥平面PEF ,所以V 四面体P ­AEF =V 四面体A ­PEF =13·S △PEF ·AP =13×12×1×1×2=13.答案:1310.(2024·常州期末)已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.解析:设截得的小圆锥的高为h 1,底面半径为r 1,体积为V 1=13πr 21h 1;大圆锥的高为h=6,底面半径为r ,体积为V =13πr 2h =8.依题意有r 1r =h 1h ,V 1=1,V 1V =13πr 21h 113πr 2h =⎝ ⎛⎭⎪⎫h 1h 3=18,得h 1=12h =3,所以圆台的高为h -h 1=3.答案:311.如图,在直三棱柱ABC ­A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值是________.解析:连结A 1B ,沿BC 1将△CBC 1绽开,与△A 1BC 1在同一个平面内,如图所示,连结A 1C ,则A 1C 的长度就是所求的最小值.因为A 1C 1=6,A 1B =210,BC 1=2,所以A 1C 21+BC 21=A 1B 2,所以∠A 1C 1B =90°.又∠BC 1C =45°,所以∠A 1C 1C =135°,由余弦定理,得A 1C 2=A 1C 21+CC 21-2A 1C 1·CC 1·cos∠A 1C 1C =36+2-2×6×2×⎝ ⎛⎭⎪⎫-22=50,所以A 1C =52,即CP +PA 1的最小值是5 2.答案:5 212.(2024·苏中三市、苏北四市三调)现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为S 1,S 2,则S 1S 2的值为________.解析:设正四棱柱的高为a ,所以底面边长为8a ,依据体积相等,且底面积相等,所以正四棱锥的高为3a ,则正四棱锥侧面的高为3a2+4a2=5a ,所以S 1S 2=4×8a 24×12×8a ×5a =25. 答案:2513.已知圆锥的底面半径和高相等,侧面积为42π,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为________.解析:如图,设底面半径为r ,由题意可得:母线长为2r .又侧面绽开图面积为12×2r ×2πr =42π,所以r =2.又截面三角形ABD 为等边三角形,故BD =AB =2r ,又OB =OD =r ,故△BOD 为等腰直角三角形.设圆锥底面中心到截面的距离为d ,又V O ­ABD =V A ­BOD ,所以d ×S △ABD =AO ×S △OBD .又S △ABD =34AB 2=34×8=23,S △OBD =2,AO =r =2,故d =2×223=233.答案:23314. 底面半径为1 cm 的圆柱形容器里放有四个半径为12 cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没全部铁球,则须要注水________cm 3.解析:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,O 1O 2O 3O 4为正四面体,棱O 1O 2到棱O 3O 4的距离为22,所以注水高为1+22.故应注水体积为π⎝⎛⎭⎪⎫1+22-4×43π×⎝ ⎛⎭⎪⎫123=⎝ ⎛⎭⎪⎫13+22π.答案:⎝ ⎛⎭⎪⎫13+22πB 组——力争难度小题1.(2024·天津高考)已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为________.解析:如图,连结AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC ,因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC ,所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形,又点M 到平面EHGF 的距离为12,所以四棱锥M ­EFGH 的体积为13×222×12=112.答案:1122.(2024·苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽视不计,结果保留π).解析:设球形容器的最小半径为R ,则“十字立方体”的24个顶点均在半径为R 的球面上,所以两根并排的四棱柱体组成的长方体的八个顶点在这个球面上.球的直径就是长方体的体对角线的长度,所以2R =12+22+52=30,得4R 2=30.从而S 球面=4πR 2=30π.答案:30π3.已知三棱锥P ­ABC 的全部棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面绽开成一个平面图形,若这个平面图形外接圆的半径为26,则三棱锥P ­ABC 的体积为________.解析:由条件知,表面绽开图如图所示,由正弦定理得大正三角形的边长为a =2×26sin 60°=62,从而三棱锥的全部棱长均为32,底面三角形ABC 的高为326,故三棱锥的高为18-6=23,所求体积为V =13×34(32)2×23=9.答案:94.(2024·渭南二模)体积为4π3的球与正三棱柱的全部面均相切,则该棱柱的体积为________.解析:设球的半径为R ,由4π3R 3=4π3,得R =1,所以正三棱柱的高h =2.设底面边长为a ,则13×32a =1,所以a =2 3.所以V =12×23×3×2=6 3.答案:6 35.如图所示,在直三棱柱中,AC ⊥BC ,AC =4,BC =CC 1=2,若用平行于三棱柱A 1B 1C 1­ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.解析:用过AB ,AC 的中点且平行于平面BCC 1B 1的平面截此三棱柱,可以拼接成一个边长为2的正方体,其表面积为24;用过AB,BC的中点且平行于平面ACC1A1的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,1,2的长方体,其表面积为28;用过AA1,BB1,CC1的中点且平行于平面ABC的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,2,1的长方体,其表面积为28,因此所求的长方体表面积的最小值为24.答案:246.如图,在棱长为4的正方体ABCD­A1B1C1D1中,E,F分别为棱AA1,D1C1上的动点,点G为正方形B1BCC1的中心.则空间四边形AEFG在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.解析:四边形AEFG在前、后面的正投影如图①,当E与A1重合,F与B1重合时,四边形AEFG在前、后面的正投影的面积最大值为12;四边形AEFG在左、右面的正投影如图②,当E与A1重合,四边形AEFG在左、右面的正投影的面积最大值为8;四边形AEFG在上、下面的正投影如图③,当F与D重合时,四边形AEFG在上、下面的正投影的面积最大值为8.综上所述,所求面积的最大值为12.答案:12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多 为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面 体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体 现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正 方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长 为________(本题第一空2分,第二空3分).
解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以 是虚线,结合榫头的位置知选A. 答案 A
2.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截 该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A.12 2π
B.12π
C.8 2π
解析 (1)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为 2,底面周 长为 16.画出该圆柱的侧面展开图,如图②所示,连接 MN,则 MS=2,SN=4.则从 M 到 N 的路径中,最短路径的长度为 MS2+SN2= 22+42=2 5.
(2) 如 图 所 示 , 取 B1C1 的 中 点 F , 连 接 EF , AC , AE , CF , 则 EF∥AC,平面ACFE即为平面ACE截正方体所得的截面,据此可
三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱 表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从 M到N的路径中,最短路径的长度为( )
A.2 17
B.2 5
C.3
D.2
(2)(2019·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱A1B1的 中点,用过点A,C,E的平面截正方体,则位于截面以下部分 的几何体的侧视图为( )
考点整合
1.空间几何体的三视图 (1)几何体的摆放位置不同,其三视图也不同,需要注意长对正、高平齐、宽相等. (2)由三视图还原几何体:一般先从俯视图确定底面,再利用正视图与侧视图确定 几何体.
2.空间几何体的两组常用公式 (1)柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S=2πr(r+l); ②圆锥的表面积S=πr(r+l);
D.10π
解析 因为过直线 O1O2 的平面截该圆柱所得的截面是面积为 8 的正方形,所以圆 柱的高为 2 2,底面圆的直径为 2 2.所以 S 表面积=2×π×( 2)2+2π× 2×2 2=12π.
答案 B
3.(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模 型 . 如 图 , 该 模 型 为 长 方 体 ABCD - A1B1C1D1 挖 去 四 棱 锥 O - EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H 分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所 用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原 料的质量为________g.
解析 由题知挖去的四棱锥的底面是一个菱形,其对角线长分别为 6 cm 和 4 cm, 故 V 挖去的四棱锥=13×12×4×6×3=12(cm3). 又 V 长方体=6×6×4=144(cm3),
所以模型的体积为V长方体-V挖去的四棱锥=144-12=132(cm3),
所以制作该模型所需原料的质量为132×0.9=118.8(g). 答案 118.8
得位于截面以下部分的几何体的侧视图如选项A所示. 答案 (1)B (2)A
探究提高 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认. 二要熟悉常见几何体的三视图. 2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面. (2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应 的棱、面的位置. (3)确定几何体的直观图形状.
③圆台的表面积S=π(r′2+r2+r′l+rl); ④球的表面积S=4πR2. (2)柱体、锥体和球的体积公式: ①V柱体=Sh(S为底面面积,h为高); ②V 锥体=13Sh(S 为底面面积,h 为高); ③V 球=43πR3.
热点一 空间几何体的三视图与直观图 【例1】 (1)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其
第1讲 空间几何体的三视图、表面积和体积
高考定位 1.三视图的识别和简单应用;2.简单几何体的表面积与体积计算,主要 以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合, 面积与体积的计算作为其中的一问.
真题感悟
1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出 部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时 带卯眼的木构件的俯视图可以是( )
【训练1】 (1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,
直角三ቤተ መጻሕፍቲ ባይዱ形的个数为( )
A.1
B.2
C.3 D.4
(2)(2019·西安模拟)某几何体的三视图如图所示,那么这个几
何体是( )
A.三棱锥 C.四棱台
B.四棱锥 D.三棱台
解析 (1)在正方体中作出该几何体的直观图,记为四棱锥P- ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个 数为3,分别是△PAD,△PCD,△PAB. (2)因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形, 故该几何体为三棱锥.故选A. 答案 (1)C (2)A
热点二 几何体的表面积与体积 角度1 空间几何体的表面积 【例2-1】 某多面体的三视图如图所示,其中正视图和侧视图都由
解析 依题意知,题中的半正多面体的上部分有 9 个面,中间部分有 8 个面,下部 分为 9 个面,共面 9+8+9=26(个)面,因此题中的半正多面体共有 26 个面.注意到 该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为 x,
则 22x+x+ 22x=1,解得 x= 2-1,故题中的半正多面体的棱长为 2-1. 答案 26 2-1
相关文档
最新文档