大数据平台构思方案计划
大数据平台与架构设计方案

大数据平台与架构设计方案目录一、引言 (2)二、大数据平台与架构设计 (3)三、全球大数据产业发展现状 (5)四、中国大数据产业发展状况 (7)五、大数据人才短缺与培养挑战 (10)六、大数据行业发展趋势预测 (12)一、引言随着互联网的不断发展和数字化时代的加速推进,大数据技术已逐渐渗透到各行各业中,并对经济和社会发展产生重要影响。
在大数据技术蓬勃发展的也面临着技术创新的挑战以及应用中的多重困境。
近年来,中国大数据产业规模不断扩大。
随着信息化建设的深入推进和数字化转型步伐的加快,国内大数据市场呈现快速增长态势。
大数据产业涉及硬件基础设施、软件服务、数据处理等多个领域,整体产业链日趋完善。
数据泄露可能导致个人隐私曝光、企业资产损失、客户流失等严重后果。
对于个人而言,数据泄露可能导致其身份信息、财产信息等被非法利用。
对于企业而言,数据泄露可能导致商业机密泄露、客户信任危机,甚至可能面临法律制裁。
数据采集是大数据处理的第一步。
为了实现高效的数据采集,需要采用各种数据抓取、数据接口等技术手段,从各种来源收集数据。
还需要考虑数据的实时性和准确性。
对象存储技术是一种基于对象的存储架构,它将数据作为对象进行存储和管理。
对象存储系统采用分布式存储方式,具有可扩展性强、数据一致性高等优点,特别适用于非结构化数据的存储。
声明:本文内容来源于公开渠道或根据行业大模型生成,对文中内容的准确性不作任何保证。
本文内容仅供参考,不构成相关领域的建议和依据。
二、大数据平台与架构设计(一)大数据平台概述大数据平台是指基于大数据技术,集数据存储、处理、分析和应用为一体的综合性平台。
它以高效、稳定、安全、灵活的方式处理海量数据,为用户提供数据驱动的业务决策和支持。
大数据平台的特点主要体现在以下几个方面:1、数据量大:能够处理海量数据,满足各种规模的数据处理需求。
2、数据类型多样:支持结构化、非结构化等多种数据类型。
3、处理速度快:采用高性能的数据处理技术和架构,提高数据处理速度。
大数据平台整体架构设计方案(PPT)

大数据平台整体架构设计方案(PPT)
近年来,随着IT技术与大数据、机器学习、算法方向的不断发展,越来越多的企业都意识到了数据存在的价值,将数据作为自身宝贵的资产进行管理,利用大数据和机器学习能力去挖掘、识别、利用数据资产。
如果缺乏有效的数据整体架构设计或者部分能力缺失,会导致业务层难以直接利用大数据大数据,大数据和业务产生了巨大的鸿沟,这道鸿沟的出现导致企业在使用大数据的过程中出现数据不可知、需求难实现、数据难共享等一系列问题,下方这份PPT材料介绍了大数据平台功能架构设计,各子模块建设方案,如架构设计、数据治理、区块链。
可视化平台等。
大数据平台规划方案

大数据平台规划方案
一、整体规划。
在构建大数据平台之前,首先需要明确整体规划。
企业需要明确大数据平台的
定位和目标,明确数据的来源和去向,明确数据的存储和计算需求,以及数据的分析和挖掘目标。
同时,需要考虑到未来的扩展和升级需求,确保大数据平台具有良好的可扩展性和灵活性。
二、技术架构。
在选择技术架构时,需要根据企业的实际需求和现有技术基础进行选择。
可以
考虑采用分布式存储和计算技术,如Hadoop、Spark等,以及实时流处理技术,如Kafka、Flink等。
同时,需要考虑到数据的采集、清洗、存储、计算和展现等环节,选择合适的技术和工具进行支撑。
三、数据治理。
数据治理是大数据平台建设中至关重要的一环。
需要建立完善的数据管理体系,包括数据的采集、存储、清洗、加工、分析和展现等环节。
同时,需要建立数据质量管理机制,确保数据的准确性和完整性。
此外,还需要建立数据安全和隐私保护机制,保障数据的安全和合规性。
四、安全保障。
在大数据平台建设过程中,安全保障是不可忽视的一环。
需要建立完善的安全
策略和机制,包括数据的加密、访问控制、安全审计等方面。
同时,需要建立灾备和容灾机制,确保数据的持久性和可靠性。
此外,还需要建立监控和预警机制,及时发现和应对安全威胁。
综上所述,构建一套完善的大数据平台需要从整体规划、技术架构、数据治理
和安全保障等方面进行综合考虑。
只有在这些方面都做到位,才能确保大数据平台
的稳定运行和持续发展。
希望本文的内容能够为企业构建大数据平台提供一些参考和帮助。
智慧教育大数据云平台整体规划方案

智慧教育大数据云平台整体规划方案目录1. 内容综述 (2)1.1 项目背景 (3)1.2 项目目标与意义 (4)1.3 项目范围与边界 (6)1.4 项目合作与资源 (7)2. 现状分析 (8)2.1 教育信息化现状 (9)2.2 现有数据资源分析 (10)2.3 教育大数据应用情况 (11)2.4 存在的问题与挑战 (13)3. 技术架构 (14)3.1 平台总体设计 (15)3.2 核心技术架构 (18)3.3 安全与隐私保护 (19)3.4 系统兼容性与扩展性 (21)4. 功能规划 (22)4.1 数据采集与整合 (24)4.2 数据分析与应用 (25)4.3 系统安全与监控 (26)4.4 用户体验与交互设计 (28)4.5 教育资源整合与共享 (30)5. 实施策略 (31)5.1 项目实施步骤 (32)5.2 资源与技术保障 (33)5.3 风险评估与规避 (36)5.4 项目进度管理 (37)6. 投资预算与效益分析 (38)6.1 投资估算 (39)6.2 成本效益分析 (40)6.3 投资回报期 (41)6.4 投资风险分析 (44)7. 实施与运营保障 (44)7.1 组织保障 (46)7.2 制度保障 (47)7.3 人才保障 (48)7.4 运行保障 (50)1. 内容综述随着信息技术的迅猛发展,智慧教育已经成为教育改革的重要方向。
大数据云平台的构建是实现智慧教育的关键所在,其规划方案旨在整合教育资源,优化教育流程,提升教育质量,推动教育信息化进程。
本规划方案致力于构建一个全面、高效、智能的智慧教育大数据云平台,以支持教育教学各项工作的数字化、网络化和智能化。
教育信息化已经取得了显著进展,但仍然存在教育资源不均衡、教学效率不高、教育质量参差不齐等问题。
随着大数据时代的到来,海量的教育数据亟待挖掘和整合,以实现个性化教学和学生综合素质评价。
建设智慧教育大数据云平台成为解决这些问题的关键手段,该平台不仅能提供海量数据存储和处理能力,还能实现教育资源的共享和协同,促进教育教学方式的创新和优化。
县市区交通大数据平台规划建设方案

合作单位与资源整合
01
合作单位
积极与高校、科研机构等合作 ,共同推进交通大数据平台的
建设与发展。
充分利用现有的交通信息化资源 ,避免重复建设,实现资源的共
享与优化配置。
02
资源整合
风险评估与应对策略
技术风险
针对可能出现的技术难 题和挑战,提前进行技 术预研和攻关,确保技 术路线的可行性。
数据安全风险
技术人才短缺
缺乏专业的技术人才,难以支撑大数据平台的开发和运维。
数据安全与隐私保护
在大数据应用过程中,需要加强数据安全和隐私保护,防止数据 泄露和滥用。
03
规划建设方案
总体架构设计
1 2 3
逻辑架构设计
包括数据感知层、数据传输层、数据存储层、数 据处理层和应用层,确保各层次之间高效协同工 作。
技术选型
县市区交通大数据平台规划 建设方案
汇报人:xxx
汇报时间:2024-01-29
目录
• 引言 • 现状分析 • 规划建设方案 • 关键技术与实现 • 预期成果与效益分析 • 实施计划与保障措施
01
引言
背景与意义
01 02
智慧交通发展需求
随着城市化进程加速,交通拥堵、事故频发等问题日益严重,智慧交通 成为解决这些问题的关键。县市区交通大数据平台作为智慧交通的重要 组成部分,具有重要意义。
全面数据采集。
数据传输技术
采用高效、可靠的数据传输技术, 如消息队列、流式处理等,确保数 据实时、准确地传输至平台。
数据质量保障
建立数据质量监控和保障机制,对 采集的数据进行清洗、去重、校验 等处理,提高数据质量。
数据存储与处理方案
数据存储策略
大数据平台规划方案汇报(PPT 22张)

6T/年
300T/年
272T/年
新增
新增
评估中
大数据使得现有的数据处理方法面临新问题
面对海量的数据压力,需要大数据平台提供可供线性扩容的存储能力。
大数据使得现有的数据处理方法面临新问题
DW&MK
ODS层
应用层
■
■
1
2
3
4
大数据平台目标架构及定位
批量采集 准实时采集
数据挖掘能力
√ √ √
√ √ √
√ √ √
√
大数据平台: Hadoop主要功能
快速的数据读取
大数据存储统计
复杂计算并行处理
大数据平台: 分布式数据库
√ √ √ √ √ √
数据融合与分级存储实施将核心模型(即中度汇总的模型)通过改造融入到现有主数据仓库的核心模型中,减少数据冗余,提升数据质量。将主数据仓库中的历史数据和清单数据迁移到低成本分布式数据库,减轻主数据仓库的计算与存储压力并支撑深度数据分析。数据 数据 数据
谢谢观赏
大数据平台规划方案汇报
一、大数据应用发展趋势
大数据处理技术代表了新一代的技术架构,这种架构通过高速获取数据并对其进行分析和挖掘,从海量形式各异的数据源中更有效地抽取出富含价值的信息。从大量数据中挖掘高价值知识是各界对于大数据的一个共识。
大数据对电信运营商的应用价值体现
3
1
5
4
2
提升业务效率
增强管理水平
创新商业模式
提升客户体验
技术高效、低成本
数据平台现状
最大、内容最丰富数据量的增长挖掘数据价值
大数据规划方案

3.系统设计与开发:设计大数据平台架构,开发相关功能模块;
4.数据整合与治理:梳理数据来源,整合数据资源,提高数据质量;
5.数据安全与合规性保障:制定数据安全策略,确保合规性;
6.系统部署与调试:部署大数据平台,进行系统调试;
7.培训与验收:对相关人员进行培训,确保系统顺利投入使用;
-结合业务需求,定制化展示关键数据指标。
(2)数据分析
-深入挖掘业务数据,为决策层提供有力支持;
-结合行业特点,构建数据分析模型,助力业务发展。
(3)决策支持
-基于数据分析结果,为决策层提供有针对性的建议;
-建立决策支持系统,实现业务与数据的紧密结合。
五、实施步骤
1.调研与分析:了解企业现状,明确需求,制定实施计划;
大数据规划方案
第1篇
大数据规划方案
一、概述
随着信息化建设的不断深入,大数据作为一种新型战略资源,对于企业及组织的发展具有重要意义。本方案旨在制定一套合法合规的大数据规划方案,以充分发挥数据价值,提升企业运营效率,为决策层提供有力支持。
二、现状分析
1.数据来源丰富,但缺乏有效整合;
2.数据存储及处理能力不足,制约了数据价值的发挥;
3.数据安全与合规性存在隐患;
4.数据分析及应用能力不足,影响了决策效率。
三、目标定位
1.构建统一的大数据平台,实现数据资源的整合与共享;
2.提升数据存储、处理和分析能力,满足业务发展需求;
3.确保数据安全与合规性,降低企业风险;
4.提高数据分析及应用能力,为决策层提供有力支持。
四、规划内容
1.大数据基础设施建设
(1)数据采集与整合
大数据平台设计方案

(3)数据查询:使用Hive进行大数据查询。
(4)数据挖掘:采用机器学习算法库,如TensorFlow、PyTorch等。
(5)数据可视化:使用ECharts、Tableau等工具实现数据可视化。
四、数据安全与合规性
1.数据安全:采用物理安全、网络安全、数据加密、访问控制等技术手段,确保数据安全。
第2篇
大数据平台设计方案
一、引言
在信息技术迅猛发展的当下,大数据已成为企业竞争力的重要组成部分。为了高效利用数据资源,提升决策质量,降低运营成本,本公司决定构建一套先进的大数据平台。本方案旨在提供一份详尽、合规的大数据平台设计方案,以支撑企业未来发展需求。
二、项目目标
1.构建统一、高效的数据资源中心,实现数据的集中管理和有效利用。
-数据处理:采用Spark分布式计算框架,实现快速、高效的数据处理。
-数据查询:使用Hive进行大数据查询,满足复杂查询需求。
-数据挖掘:集成TensorFlow、PyTorch等机器学习算法库,实现数据挖掘和分析。
-数据可视化:运用ECharts、Tableau等工具,实现数据可视化展示。
四、数据安全与合规性
(2)数据存储层:采用分布式存储技术,实现海量数据的存储和管理。
(3)数据处理层:对数据进行清洗、转换、整合等处理,提高数据质量。
(4)数据服务层:提供数据查询、分析、可视化等服务,满足业务部门需求。
(5)应用层:基于数据服务层提供的接口,开发各类应用,为决策层和业务部门提供支持。
2.技术选型
(1)数据存储:采用Hadoop分布式文件系统(HDFS)进行海量数据存储。
-数据存储层:采用分布式存储技术,实现大数据的高效存储和管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据平台构思方案(项目需求与技术方案)一、项目背景“十三五”期间,随着我国现代信息技术的蓬勃发展,信息化建设模式发生根本性转变,一场以云计算、大数据、物联网、移动应用等技术为核心的“新 IT”浪潮风起云涌,信息化应用进入一个“新常态”。
***(某政府部门)为积极应对“互联网+”和大数据时代的机遇和挑战,适应全省经济社会发展与改革要求,大数据平台应运而生。
大数据平台整合省社会经济发展资源,打造集数据采集、数据处理、监测管理、预测预警、应急指挥、可视化平台于一体的大数据平台,以信息化提升数据化管理与服务能力,及时准确掌握社会经济发展情况,做到“用数据说话、用数据管理、用数据决策、用数据创新”,牢牢把握社会经济发展主动权和话语权。
二、建设目标大数据平台是顺应目前信息化技术水平发展、服务政府职能改革的架构平台。
它的主要目标是强化经济运行监测分析,实现企业信用社会化监督,建立规范化共建共享投资项目管理体系,推进政务数据共享和业务协同,为决策提供及时、准确、可靠的信息依据,提高政务工作的前瞻性和针对性,加大宏观调控力度,促进经济持续健康发展。
1、制定统一信息资源管理规范,拓宽数据获取渠道,整合业务信息系统数据、企业单位数据和互联网抓取数据,构建汇聚式一体化数据库,为平台打下坚实稳固的数据基础。
2、梳理各相关系统数据资源的关联性,编制数据资源目录,建立信息资源交换管理标准体系,在业务可行性的基础上,实现数据信息共享,推进信息公开,建立跨部门跨领域经济形势分析制度。
3、在大数据分析监测基础上,为政府把握经济发展趋势、预见经济发展潜在问题、辅助经济决策提供基础支撑。
三、建设原则大数据平台以信息资源整合为重点,以大数据应用为核心,坚持“统筹规划、分步实施,整合资源、协同共享,突出重点、注重实效,深化应用、创新驱动”的原则,全面提升信息化建设水平,促进全省经济持续健康发展。
1、统筹规划、分步实施。
结合我省经济发展与改革领域实际需求,明确总体目标和阶段性任务,科学规划建设项目。
先期完成大数据平台的整体架构建设,后期分步完成业务系统的整合及相互间数据共享问题。
2、整合资源、协同共享。
对信息资源统一梳理,建立经济发展与改革信息标准资源库和数据规范,逐步消灭“信息孤岛”,加快推进数据资源整合,建设共享共用的大数据中心,实现业务协同。
3、突出重点、注重实效。
以用户为中心,以需求为导向,以服务为目的,突出重点,注重实效,加强平台可用性和易用性。
4、深化应用、创新驱动。
深入了解用户需求,密切跟踪信息技术发展趋势,不断深化应用、拓展新技术在应用中的广度和深度,促进跨界融合,丰富管理和服务手段。
四、建设方案为了保证项目的顺利进行和建设目标的可行性,我们采取如下几种建设方案。
1、数据采集方案。
我们统一信息资源标准规范,建立多维度数据库,拓宽数据来源,通过不同的方式汇聚数据,增强分析力度,提高监测预警的准确性和时效性。
1、预留接口,支持其它系统各种数据的上传导入处理。
将现存有关经济运行业务系统中的历史数据和时效数据,通过上传数据文件至服务器、分析提取有效数据导入服务器数据库等方式采集起来,在本平台上复用。
2、支持外接数据的上传导入处理。
可以将企业单位或定点监测机构的数据通过同样的方式采集起来,在本平台上复用。
3、支持非结构化数据,即搜索引擎数据、社交媒体数据、地理空间数据和音视频数据等等。
2、数据分析方案。
大数据之大并不是难点所在,其真正难以对付的挑战来自于数据类型多样、要求及时响应和数据的不确定性,而我们所面临的也正是如此。
我们采用批量数据处理系统,借助于深度学习、知识计算和可视化等大数据分析技术,通过对数据的批量处理挖掘其中的价值来支持决策和发现新的洞察。
3、业务整合方案。
在对社会发展相关业务子系统充分调研基础上,结合项目需求,可对其进行整合或嵌入处理(本方案整合公共信用信息服务平台、投资项目信息管理平台等)。
1、整合处理。
将原有数据通过上传或导入方式进行采集,原有功能模块整合到本平台中,合二为一,完美的将数据汇聚起来。
缺点是耗时较长。
2、嵌入处理。
以单点登录的方式将原有系统链接嵌入到本平台中,作为子系统单独存在。
缺点在于数据共享难以实现。
五、建设内容1、宏观经济监测预测及可视化平台政府信息化的最终目标是提高政府的决策水平,其中经济决策是核心内容。
为了提高宏观调控决策水平,我们必须从依靠传统统计数据向依靠互联网非统计数据转变,从监测预测宏观经济总量向监测预测宏观经济先行指标转变,从中长期监测预测向实时监测预测转变。
宏观经济监测预测及可视化平台围绕网络搜索、社交媒体、电子商务、终端定位和业务交易等五个方面全面整合互联网相关数据资源,建设以“容量大、形式多、分类细、响应快”为目标的宏观经济监测预测数据库,构建基于互联网数据的宏观经济非统计指标监测预测应用平台。
围绕重点产业活跃度、区域经济关联度、宏观经济走向社会预期、社会消费热点、大宗商品供求及价格走势、全国就业形势、外贸订单变化趋势等方面,构建大数据宏观经济先行指标和现时预测指标库,研究能客观、准确反映我省宏观经济运行状况的指标体系,编制“山东指数”。
在健全完善监测预警数据库的基础上,充分运用大数据技术和理念,加强数据挖掘力度,强化定量分析,建立宏观经济分析系列模型,切实提高预测分析的前瞻性、准确性和可靠性。
积极拓宽信息发布渠道,建立可视化平台,采用Unity3D引擎,三维界面高度仿真,所见即所得。
平台针对多源易构的海量数据,通过数据处理、存储管理、可视化交互分析等技术,实现图形化数据查询、可视化关联分析、证据链和情报线索发掘等功能。
利用预测信号灯系统,形象地刻画出宏观经济总体运行状况,分析经济波动原因,及时了解各地区经济发展的不平衡性,准确判断和测定经济景气循环运行状态,提高宏观经济决策水平。
2、企业信用监测预警服务平台企业信用危机不仅给社会带来严重危害,也是关系到企业自身生死存亡的重大事件,它是中国企业乃至中国市场经济发展的巨大障碍。
因此,建立企业信用危机的预警机制和管理机制,对企业信用危机进行有效的预警及管理是十分重要的。
企业信用监测预警服务平台,全面整合社会信用监管信息和社会公众反映信息,通过整理归类与加工,将这些信用危机信息转化为可以量化的指标体系,按照失信行为的严重程度和影响范围划分三个预警级别,分别向企业自身、金融机构、其他政府部门及全社会进行通报。
纳入企业信用预警体系的企业信息包括侵犯消费者权益且不履行相关义务的信息、消费者投诉未及时处理信息、行政处罚逾期未执行信息、查无下落企业信息等23种信息。
可以动态配置预警信息项目和相应预警等级,增强监测预警的全面性和灵活性。
企业信用监测预警服务平台以信息技术为支撑,以信用监管为手段,全面提高信用监管信息共享程度,及时预警影响社会交易安全和社会公共安全的不良信用信息,遵循“对外警示社会和企业;对内明确重点,积极采取应对措施”的原则,强化企业信用监管防范机制,有力推进“信用保税区”建设,加强企业信用监督管理的主动性、前瞻性,更好地服务经济发展,减少交易风险,促进企业信用监管到位,实现企业信用的社会化监督。
3、投资项目信息管理平台建设投资项目(特别是一些大型项目)具有管理上的复杂性特点,主要是建设周期长、参建方多。
投资项目信息管理平台的建立和应用,可有效解决投资建设项目管理动态过程的信息分析、信息构建,达到各参建方信息共享的目的。
投资项目信息管理平台,支持重大项目推介,建立规范的项目审批流程和项目信息库,管理项目启动、计划、执行、监控和收尾的整个生命周期,覆盖进度、质量、成本、资源、风险等项目管理的各个要素,构建集成项目、流程、知识的信息化平台。
逐步实现与相关部门业务系统的接入,形成全覆盖的投资项目管理统一工作平台,真正做好资源共享,为项目的后期评价、领导决策提供支持服务。
围绕设计、招标、监理、质量、安全、进度、施工、资金、变更、合同管理“十大环节”,建立起对投资项目进行事前计划、事中控制、事后评估、全程管理的有效管控模式,促进投资项目管理体系发挥全方位、全过程的计划、组织、协调与控制作用。
投资项目信息管理平台,以现代项目管理方法论为基础;以项目管理为主线,全面组织、全程贯穿各个业务环节;以项目计划为依据,科学协调各个部门的工作;以成本、进度、质量为最终控制目标;以完整、及时、准确的项目信息和科学的分析模型为项目管理、决策提供依据;遵循“以计划为龙头,以合同为中心,以投资控制为目的”的现代项目管理理念,构建高效、实用的项目协同管理综合平台。
4、政务数据共享交换平台政务数据共享交换平台是各个平台中的基础性和综合性平台,是解决“信息孤岛”、实现数据互连互通的基础设施,有利于提高各类信息资源整合共享,以及信息资源的综合利用。
建设政务数据共享交换平台的首要目标就是要创造一个信息交换、信息共享的方式和环境,按照统一标准和规范,建立信息资源整合机制,规范数据采集口径、采集方式,规范数据的服务方式,建立统一的资源信息整合与交换机制。
我们按照统一、集约、高效的数据开发利用理念,通过研究建立多级交换管理体系,形成政务信息资源物理分散、逻辑集中的信息共享模式,通过以应用为抓手,进一步打通数据流,满足政府部门多方位、多层次的数据需求,为跨地域、跨部门、跨平台不同应用系统、不同数据库之间的互连互通提供包含提取、转换、传输和加密等操作的数据交换服务。
通过分布式部署和集中式管理架构,有效解决各节点间数据的及时、高效上传下达,在安全、快捷、方便的进行信息交换的同时精准的保证数据的一致性和准确性。
政务数据共享交换平台的全局目标是建立“一个系统”,解决“两个问题”,支持“三个应用”,面向“四个服务”。
建立“一个系统”,即建立一个可扩展、可集成、有统一数据模型、可交换和安全可靠的分布式系统,对各类政务资源进行组织和管理。
解决“两个问题”,即解决政务信息资源的发现与定位问题,解决政务信息资源规划与整理问题。
支持“三个应用”,即支持信息集成整合应用、各业务部门办公应用和政府职能决策应用。
面向“四个服务”,即面向政务协作、宏观决策、市场监管和社会管理服务。
六、技术支持与平台性能1、系统架构结合该项目以大数据平台为核心,多业务子系统并存的业务需求,以及存在不同种类操作系统、应用软件、系统软件的现状,我们采用面向服务的体系结构,即SOA架构。
SOA是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来。
接口是采用中立的方式进行定义的,它独立于实现服务的硬件平台、操作系统和编程语言。
这使得构建在这样系统中的服务可以以一种统一和通用的方式进行交互。
它的本质是实现服务和技术的完全分离,从而最大程度上实现服务的集成和重组。