人工智能技术导论

合集下载

《人工智能导论》教学大纲(2024版)

《人工智能导论》教学大纲(2024版)

人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。

课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。

通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。

为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。

(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。

(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。

(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。

(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。

(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。

四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。

人工智能_人工智能导论课件第1章绪论导论

人工智能_人工智能导论课件第1章绪论导论
4. 机器学习
机器学习(machine learning):研究如何使计算机具有 类似于人的学习能力,使它能通过学习自动地获取知识。
1957年,Rosenblatt研制成功了感知机。 5. 机器行为
机器行为:计算机的表达能力,即“说”、“写”、 “画”等能力。
20
第1章 绪论
1.1 人工智能的基本概念
1.4 人工智能的主要研究领域
17
1.3 人工智能研究的基本内容
1. 知识表示
知识表示:将人类知识形式化或者模型化。 知识表示方法:符号表示法、连接机制表示法。
符号表示法:用各种包含具体含义的符号,以各种不同 的方式和顺序组合起来表示知识的一类方法。例如,一 阶谓词逻辑、产生式等。
连接机制表示法:把各种物理对象以不同的方式及顺序 连接起来,并在其间互相传递及加工各种包含具体意义 的信息,以此来表示相关的概念及知识。例如,神经网 络等。
我国著名数学家、中国科学院吴文俊院士把几何代 数化,建立了一套机器证明方法,被称为“吴方法”。
22
1.4 人工智能的主要研究领域
2. 博弈 下棋、打牌、战争等一类竞争性的智能活动。 1956年,塞缪尔研制出跳棋程序。
1991年8月,IBM公司研制的Deep Thought 2计算机 系统与澳大利亚象棋冠军约翰森(D.Johansen)举行了 一场人机对抗赛,以1:1平局告终。
29
1.4 人工智能的主要研究领域
8. 专家系统
专家系统模拟人类专家求解问题的思维过程求解领域内的各种 问题,其水平可以达到甚至超过人类专家的水平。 1965 年费根鲍姆研究小组开始研制第一个专家系统 —— 分析化 合物分子结构的DENDRAL,1968年完成并投入使用。 1971 年 MIT 开发成功求解一些数学问题的 MYCSYMA 专家系统。 拉特格尔大学开发的清光眼诊断与治疗的专家系统CASNET。 1972 年斯坦福大学肖特里菲等人开始研制用于诊断和治疗感染 性疾病的专家系统MYCIN。 1976 年斯坦福研究所开始开发探矿专家系统 PROSPECTOR , 1980年首次实地分析华盛顿某山区地质资料,发现了一个钼矿。 1981年斯坦福大学研制成功专家系统AM,能模拟人类进行概括、 抽象和归纳推理,发现某些数论的概念和定理。

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。

基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。

二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。

包括规则学习、支持向量机以及深度学习。

2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。

它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。

3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。

它是一种智能系统,包括图像处理、识别和分析等功能。

三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。

1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。

人工智能技术导论毕业论文(2)

人工智能技术导论毕业论文(2)

人工智能技术导论毕业论文(2)人工智能技术导论毕业论文篇二浅谈人工智能技术的发展1、人工智能的概念人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。

人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的思维方式和方法产生了深刻的变革。

人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。

过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。

一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。

2、人工智能的发展对于人工智能的研究一共可以分为五个阶段。

第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。

这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP语言等。

由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。

同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。

第二个阶段从20世纪的60年代末到70年代。

专家系统的出现将人工智能的研究再一次推向高潮。

其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。

这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。

第三个阶段是20世纪80年代。

这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。

人工智能技术导论第三版教学大纲

人工智能技术导论第三版教学大纲

人工智能技术导论第三版教学大纲课程简介本门课程是一门介绍人工智能技术基础的入门课程,主要涵盖人工智能的概念、技术、算法、应用等方面。

通过该课程的学习,学生将掌握人工智能的基本理论、方法和应用,培养人工智能技术的思想和方法,为深入研究人工智能领域奠定基础。

课程目标1.了解人工智能的基本概念,了解人工智能的历史和发展;2.了解人工智能的技术体系和持续发展趋势;3.掌握人工智能的算法和函数,学习人工智能的数学基础;4.理解人工智能在现实生活中的应用和可行性;5.培养独立思考,为进一步研究人工智能技术奠定基础。

教学内容第一章人工智能技术概述•人工智能的定义、目标和基本原理;•人工智能的历史和发展。

第二章人工智能技术体系•人工智能技术体系的框架和组成部分;•人工智能技术体系的分类和应用领域。

第三章人工智能数学基础•数据结构和算法;•数学基础,包括线性代数和概率统计。

第四章人工智能算法和函数•人工智能算法:遗传和进化算法、神经网络、模糊系统、支持向量机等;•人工智能函数:评估、归一化、压缩、规范化等。

第五章人工智能应用•人工智能在游戏、机器人、生产和自动化控制等方面的应用;•人工智能在医学、金融、法律和教育等领域的应用。

学习方法•授课和讲解之间交替,注重图示和例子;•课后推荐学习资料,包括论文、书籍、课程和视频;•课题研究和实践纪要。

评估方式•平时成绩:30%,出席情况和课堂表现;•期中考试:30%,考察理论与其应用;•期末考试:40%,综合性考试。

参考资料1.《人工智能导论》,彼得·诺弗斯(Peter Norvig)、斯图尔特·罗素(Stuart Russell)著,唐娟、杨洋译,人民邮电出版社,2004年。

2.《人工智能多种技术和应用》(第2版),叶蓉、李新民等编著,高等教育出版社,2009年。

3.《人工智能基础及其进展》,赵瑞曼、叶汉君著,人民邮电出版社,2015年。

4.《机器学习》,周志华著,清华大学出版社,2016年。

人工智能导论课后习题答案

人工智能导论课后习题答案

人工智能导论课后习题答案人工智能导论课后习题答案人工智能(Artificial Intelligence,简称AI)是一门涉及计算机科学、心理学、哲学等多个领域的学科。

它研究如何使计算机能够模拟人类智能,实现像人类一样的思考、学习和决策能力。

人工智能的发展已经深刻地改变了我们的生活,从语音助手到自动驾驶汽车,从智能家居到医疗诊断,AI正逐渐成为我们日常生活中不可或缺的一部分。

在人工智能导论课中,学生们通常会遇到一些习题,以帮助他们更好地理解和应用人工智能的概念和技术。

下面是一些常见的人工智能导论课后习题及其答案,供大家参考。

1. 什么是人工智能?人工智能是指计算机系统通过模拟人类智能的方法和技术,实现像人类一样的思考、学习和决策能力。

它包括机器学习、自然语言处理、计算机视觉等多个领域。

2. 人工智能的发展历程是怎样的?人工智能的发展可以追溯到上世纪50年代。

在那个时候,人们开始使用计算机来模拟人类的思维过程。

随着计算能力的提升和算法的改进,人工智能逐渐取得了一些重要的突破,如专家系统、机器学习等。

近年来,深度学习和大数据的兴起,进一步推动了人工智能的发展。

3. 人工智能的应用领域有哪些?人工智能的应用领域非常广泛,涵盖了医疗、金融、交通、教育等多个领域。

例如,医疗领域可以利用人工智能技术进行疾病诊断和药物研发;金融领域可以利用人工智能技术进行风险评估和投资决策;交通领域可以利用人工智能技术实现自动驾驶等。

4. 机器学习是什么?机器学习是一种人工智能的分支,它研究如何使计算机能够从数据中学习,并根据学习到的知识进行决策和预测。

机器学习可以分为监督学习、无监督学习和强化学习等不同类型。

5. 什么是深度学习?深度学习是机器学习的一种方法,它模拟人脑神经网络的结构和功能,通过多层神经网络进行学习和决策。

深度学习在计算机视觉、自然语言处理等领域取得了很多重要的突破,如图像识别、语音识别等。

6. 人工智能是否会取代人类工作?人工智能在某些领域已经取得了很大的进展,但目前还不具备完全取代人类工作的能力。

人工智能导论-各章习题答案

人工智能导论-各章习题答案
第五章习题答案
习题
答案:神经网络是一种模仿人脑神经元之间相互连接和传递信息的网络模型。神经网络通常由输入层、隐藏层和输出层组成,每一层都包含多个神经元,通过不同层之间的连接和权重,实现信息的传递和处理。
习题
答案:深度学习是一种基于神经网络的机器学习方法,通过多层次的网络结构和大量的数据进行训练,从而实现高效的模式识别和特征提取。深度学习在计算机视觉、自然语言处理等领域取得了许多重要的成果。
第二章习题答案
习题
答案:符号推理是一种基于逻辑和推理规则的方法,通过对符号和符号之间的关系进行操作和推理,从而实现问题的求解。符号推理通常涉及到语义、句法和语法的处理,需要对问题进行符号化表示。
习题
答案:决策树是一种常用的机器学习算法,用于解决分类问题。它基于树形结构,通过一系列的判断节点将数据进行分类。决策树的构建过程是一个递归的过程,每次选择一个最优的判断节点,并将数据分割为不同的子集,直到达到终止条件。
习题
答案:人工智能的应用非常广泛,涉及到各个领域。例如,在医疗领域,人工智能可以用于辅助医生进行诊断和治疗决策;在金融领域,人工智能可以用于风险评估和投资建议;在交通领域,人工智能可以用于智能交通管理和无人驾驶等。
习题
答案:人工智能的发展面临着一些挑战和问题。首先,人工智能的算法和模型需要不断优化和改进,以提高其性能和准确度。其次,人工智能系统需要大量的数据进行训练,但数据的获取和处理也面临一些困难。另外,还需要解决人工智能系统的安全和隐私问题,以保护用户的信息和权益。
以上是《人工智Байду номын сангаас导论》各章习题的答案。希望对学习人工智能的同学们有所帮助!
参考资料
1.Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.

人工智能导论

人工智能导论

人工智能导论人工智能(Artificial Intelligence,简称AI)是指通过计算机和其他相关技术,模拟或复制人类智能的理论、方法、技术及应用系统。

人工智能的发展涉及计算机科学、心理学、哲学等多个学科领域。

本文将从AI的定义、发展历程、应用领域及挑战等方面展开讨论,并探讨AI在未来的发展前景。

一、AI的定义及发展历程人工智能的定义可以从不同视角进行解释。

从狭义上看,AI指的是计算机系统通过模拟人类智能行为的能力。

从广义上看,AI包括了解决问题、学习、推理、思考等方面的智能行为。

AI的概念最早起源于1956年,当时由达特茅斯会议提出,并逐渐成为独立的学科。

自此以后,AI经历了数次繁荣与停滞的周期,近年来又迎来了新一轮的发展浪潮。

二、AI的应用领域在如今的社会中,AI的应用已经渗透到各个领域。

以下是几个典型的应用领域:1. 无人驾驶技术无人驾驶技术是AI的一个重要应用领域,它通过感知、识别和决策等能力,实现车辆的自动行驶。

无人驾驶技术的研究不仅挑战了计算机视觉、机器学习、路径规划等关键问题,也对交通安全、车辆管理等方面产生了深远影响。

2. 人脸识别技术人脸识别技术是一种通过计算机对人脸图像进行分析和比对,从而完成身份识别的技术。

它被广泛应用于安全监控、边境管理、移动支付等领域,极大地提升了社会安全和便利性。

3. 语音识别技术语音识别技术是指将人的语音转化为计算机可以识别和理解的文字或指令。

随着语音助手如Siri、Alexa等的普及,语音识别技术在智能家居、语音交互等领域得到了广泛应用,极大地改善了人机交互方式。

4. 机器人技术机器人技术是一门涉及机械、电子、计算机等多学科的交叉技术,其目标是研制出能够模拟人类行为的智能机械设备。

机器人已经广泛应用于工业生产、服务业、医疗保健等领域,释放出巨大的劳动力和创造力。

三、AI面临的挑战尽管AI在各领域有着广泛的应用,但人工智能仍然面临着一些挑战:1. 数据隐私和安全问题随着AI应用的不断增长,个人用户的数据受到更多的关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能
课程要求
❖ 广泛了解相关内容,进一步了解课程性质,明确学 习目的,增加学习兴趣。
❖ 多动手,加深对基本原理和方法的理解。 ❖ 全面掌握基本内容(基本原理和方法)。
人工智能
参考书
1.人工智能及其应用
蔡自兴 徐光祐 清华大学出版社
2.人工智能导论
何华灿
西安电子科技大学出版社来自3.人工智能Nils J. Nilsson著 郑扣根 庄越挺译 机械工业出版
❖ 理论性强
所需先导课程: 离散数学、数据结构、编译原理 等。后继课程:机器学习、数据挖掘、人工神经网络等。
❖ 实践性强
人工智能的活动理论是在实践中总结、发展起来的。
人工智能
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
人工智能概述 人工智能程序设计语言 基于谓词逻辑的机器推理 图搜索技术 产生式系统 知识表示 不确定处理 专家系统 机器学习 自然语言理解
授课教师及课程网站
授课教师:柴玉梅 Email:ieymchai@ 课程网站:
/ie%5Fchaiyumei/
人工智能
课程特点
❖ 综合性强
涉及数学、计算机科学、心理学、哲学、系统论、 统计学、生命科学等几乎所有自然科学和社会科学的各 个学科。

4.人工智能原理
石纯一等
清华大学出版社
5.机器学习
Tom M.Mitchell著 曾华军等译机械工业出版社 人工智能
相关文档
最新文档