人工智能导论课件
合集下载
人工智能导论全套精ppt课件

3. 机器思维
机器思维:对通过感知得来的外部信息及机器内部的各 种工作信息进行有目的的处理。
19
21.3机人器工感智知能研究的基本内容
4. 机器学习
机器学习(machine learning):研究如何使计算机具有 类似于人的学习能力,使它能通过学习自动地获取知识。
1957年,Rosenblatt研制成功了感知机。
获取知识并应用知识求解问题 的能力
6
1.1.2 智能的特征
1. 感知能力:通过视觉、听觉、触觉、嗅觉等感觉器官 感知外部世界的能力。 80%以上信息通过视觉得到,10%信息通过听觉得到。
2. 记忆与思维能力
存储由感知器官感知到的外部信息以及由思维 所产生的知识
对记忆的信息进行处理
7
1.1.2 智能的特征
20世纪三大科学技术成就:
空间技术
原子能技术
人工智能
3
第1章 绪论
1.1 人工智能的基本概念 1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
4
第1章 绪论
✓ 1.1 人工智能的基本概念
1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
13
1.2.2 形成(1956年-1969年)
1956年夏,当时美国达特茅斯大学数学助教、现任斯坦福 大学教授麦卡锡和哈佛大学数学和神经学家、现任MIT教 授明斯基、IBM公司信息研究中心负责人洛切斯特、贝尔 实验室信息部数学研究员香农共同发起,邀请普林斯顿大 学莫尔和IBM公司塞缪尔、MIT的塞尔夫里奇和索罗莫夫 以及兰德公司和卡内基-梅隆大学的纽厄尔、西蒙等10名 年轻学者在达特莫斯大学召开了两个月的学术研讨会,讨 论机器智能问题。
机器思维:对通过感知得来的外部信息及机器内部的各 种工作信息进行有目的的处理。
19
21.3机人器工感智知能研究的基本内容
4. 机器学习
机器学习(machine learning):研究如何使计算机具有 类似于人的学习能力,使它能通过学习自动地获取知识。
1957年,Rosenblatt研制成功了感知机。
获取知识并应用知识求解问题 的能力
6
1.1.2 智能的特征
1. 感知能力:通过视觉、听觉、触觉、嗅觉等感觉器官 感知外部世界的能力。 80%以上信息通过视觉得到,10%信息通过听觉得到。
2. 记忆与思维能力
存储由感知器官感知到的外部信息以及由思维 所产生的知识
对记忆的信息进行处理
7
1.1.2 智能的特征
20世纪三大科学技术成就:
空间技术
原子能技术
人工智能
3
第1章 绪论
1.1 人工智能的基本概念 1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
4
第1章 绪论
✓ 1.1 人工智能的基本概念
1.2 人工智能的发展简史 1.3 人工智能研究的基本内容 1.4 人工智能的主要研究领域
13
1.2.2 形成(1956年-1969年)
1956年夏,当时美国达特茅斯大学数学助教、现任斯坦福 大学教授麦卡锡和哈佛大学数学和神经学家、现任MIT教 授明斯基、IBM公司信息研究中心负责人洛切斯特、贝尔 实验室信息部数学研究员香农共同发起,邀请普林斯顿大 学莫尔和IBM公司塞缪尔、MIT的塞尔夫里奇和索罗莫夫 以及兰德公司和卡内基-梅隆大学的纽厄尔、西蒙等10名 年轻学者在达特莫斯大学召开了两个月的学术研讨会,讨 论机器智能问题。
Artificial Intelligence 第一章 人工智能的基本概念(导论) 《人工智能》课件

认为智能行为只能在现实世界中与周围环境交互作用而 表现出来,因此用符号主义和联接主义来进行模拟。智能显得 有些不和事实相吻合。
第三节 人工智能的研究目标
AI的研究目标分近期目标和远期目标:
近期目标:研究如何使计算机去做那些过去只有靠
人的智力才能完成的工作。
远期目标:研究如何利用自动机去模拟人的某些思
可用模型 进行评价
2.智能的要素:
最重要的要素包括:适应环境、适应偶然性事件、能分 辩模糊的或矛盾的信息,在孤立的情况中找出相似性,产生新 概念和新思想。
3.智能的分类:
自然智能 有规律的智能行为:计算机能解决
人工智能 无规律的智能行为:如洞察力、创造力。 关于这些问题:计算机还不能解决。
三、如何判定智能?
第五节 AI的发展简史
第一阶段:孕育期(1956年以前) 第 二 阶 段 : AI 的 基 础 技 术 的 研 究 和 形 成 时 期 1956— 1970 第 三 阶 段 : AI 发 展 和 实 用 阶 段 ( 专 家 系 统 ) 1971— 1980 第四阶段:知识工程与机器学习发展阶段1981—1990 第五阶段:智能综合集成阶段,二十世纪90年代至今,
英国自然杂志主编坎贝尔博士说:目前信息技术和生命科学 有交叉融合的趋势,比如AI的研究就需要从生命科学的角度揭 开大脑思维的机理,需要利用信息技术模拟实现这种机理。 (参考文献:李凡长、佘玉梅:Agent的遗传算法研究,《计 算机科学》)
3.行为主义(Actionism):
又 称 进 化 主 义 ( Evolutionism ) 或 控 制 论 学 派 (Cyberneticisism)。其原理为控制论及感知再到动作型控 制系统。主要进行行为模拟,代表人物:布鲁克斯等。
第三节 人工智能的研究目标
AI的研究目标分近期目标和远期目标:
近期目标:研究如何使计算机去做那些过去只有靠
人的智力才能完成的工作。
远期目标:研究如何利用自动机去模拟人的某些思
可用模型 进行评价
2.智能的要素:
最重要的要素包括:适应环境、适应偶然性事件、能分 辩模糊的或矛盾的信息,在孤立的情况中找出相似性,产生新 概念和新思想。
3.智能的分类:
自然智能 有规律的智能行为:计算机能解决
人工智能 无规律的智能行为:如洞察力、创造力。 关于这些问题:计算机还不能解决。
三、如何判定智能?
第五节 AI的发展简史
第一阶段:孕育期(1956年以前) 第 二 阶 段 : AI 的 基 础 技 术 的 研 究 和 形 成 时 期 1956— 1970 第 三 阶 段 : AI 发 展 和 实 用 阶 段 ( 专 家 系 统 ) 1971— 1980 第四阶段:知识工程与机器学习发展阶段1981—1990 第五阶段:智能综合集成阶段,二十世纪90年代至今,
英国自然杂志主编坎贝尔博士说:目前信息技术和生命科学 有交叉融合的趋势,比如AI的研究就需要从生命科学的角度揭 开大脑思维的机理,需要利用信息技术模拟实现这种机理。 (参考文献:李凡长、佘玉梅:Agent的遗传算法研究,《计 算机科学》)
3.行为主义(Actionism):
又 称 进 化 主 义 ( Evolutionism ) 或 控 制 论 学 派 (Cyberneticisism)。其原理为控制论及感知再到动作型控 制系统。主要进行行为模拟,代表人物:布鲁克斯等。
人工智能导论机工版教学课件第1章

✓ “人工智能”领域确立——“Dartmouth人工智 能夏季研究会”(1956,人工智能之父的John McCarthy组织)
图1-7 Norbert Wiener及自动调温器
1.3.3 人工智能程序积累阶段
✓ 20世纪50~60年代,积累了大量的程 序,如在60年代末出现的“STUDENT” 可以解决代数问题,“SIR”可以理 解简单的英语句子
1.5 人工智能的定义
✓ 定义3 人工智能 = 会运动 + 会看懂 + 会听懂 + 会思考
第三种主流的定义是将人工智能分为两部分,即“人工”和“智能”,用“四会”进行界定。
1.6 人工智能的五个器官
v 交互(听/说):人工智能解决方案的听 说读写能力,以及对用户做出响应的能力。
v 监控(视觉):运用这一技术来查看和 记录关键业务数据。
图1-24 《机械姬》的艾娃
超人工智能
超人工智能的定义,其实质是相对于 人的另外一种智慧物种了,而这种物种, 不但具有人类的意识、思维和智能,更 可能的是具有了自我繁衍的能力。
如,《复仇者联盟》中的奥创、《神 盾特工局》中的黑化后的艾达。
图1-25《神盾特工局》的艾达
1.8 人工智能对人类的影响
图1-23 AlphaGo
强人工智能
强人工智能属于人类级别的人工智能, 在各方面都能和人类比肩,人类能干的 脑力活它都能胜任。它能够进行思考、 计划、解决问题、抽象思维、理解复杂 理念、快速学习和从经验中学习等操作, 并且和人类一样得心应手。
“强人工智能”系统包括了学习、语言、 认知、推理、创造和计划,目标是使人 工智能在非监督学习的情况下处理前所 未见的细节,并同时与人类开展交互式 学习。
图1-4 深蓝计算机下国际象棋
图1-7 Norbert Wiener及自动调温器
1.3.3 人工智能程序积累阶段
✓ 20世纪50~60年代,积累了大量的程 序,如在60年代末出现的“STUDENT” 可以解决代数问题,“SIR”可以理 解简单的英语句子
1.5 人工智能的定义
✓ 定义3 人工智能 = 会运动 + 会看懂 + 会听懂 + 会思考
第三种主流的定义是将人工智能分为两部分,即“人工”和“智能”,用“四会”进行界定。
1.6 人工智能的五个器官
v 交互(听/说):人工智能解决方案的听 说读写能力,以及对用户做出响应的能力。
v 监控(视觉):运用这一技术来查看和 记录关键业务数据。
图1-24 《机械姬》的艾娃
超人工智能
超人工智能的定义,其实质是相对于 人的另外一种智慧物种了,而这种物种, 不但具有人类的意识、思维和智能,更 可能的是具有了自我繁衍的能力。
如,《复仇者联盟》中的奥创、《神 盾特工局》中的黑化后的艾达。
图1-25《神盾特工局》的艾达
1.8 人工智能对人类的影响
图1-23 AlphaGo
强人工智能
强人工智能属于人类级别的人工智能, 在各方面都能和人类比肩,人类能干的 脑力活它都能胜任。它能够进行思考、 计划、解决问题、抽象思维、理解复杂 理念、快速学习和从经验中学习等操作, 并且和人类一样得心应手。
“强人工智能”系统包括了学习、语言、 认知、推理、创造和计划,目标是使人 工智能在非监督学习的情况下处理前所 未见的细节,并同时与人类开展交互式 学习。
图1-4 深蓝计算机下国际象棋
人工智能导论课件第1章人工智能概述

1.6.6 自动程序设计 自动程序设计就是让计算机设计程序。具体来讲,就
是只要给出关于某程序要求的非常高级的描述,计算机就 会自动生成一个能完成这个要求目标的具体程序。所以, 这相当于给机器配置了一个“超级编译系统”,它能够对高 级描述进行处理,通过规划过程,生成所需的程序。但这 只是自动程序设计的主要内容,它实际是程序的自动综合 。自动程序设计还包括程序自动验证,即自动证明所设计 程序的正确性。
但在现有机器上无法实施或无法完成的困难问题,包括 智力性问题中的难题和现实中复杂的实际问题和工程问 题。在这些难题中,有些是组合数学理论中所称的NP( Nondeterministic Polynomial 非确定型多项式)问题或 NP完全(Nondeterministic Polynomial Complete, NPC )问题。NP问题是指那些既不能证明其算法复杂度超出 多项式界,但又未找到有效算法的一类问题。而NP完全 问题又是NP问题中最困难的一种问题。
1.1.5 统计智能和交互智能 1. 统计智能(Statistical Intelligence) 利用样例数据并采用统计、概率和其他数学方法
而实现的人工智能称为统计智能。 2. 交互智能(Interactional Intelligence) 通过交互方式而实现的人工智能称为交互智能。
1.2 为什么要研究人工智能
从人脑的宏观心理层面入手,以智能行为的心理模型为依据,将 问题或知识表示成某种逻辑网络,采用符号推演的方法,模 拟人脑的逻辑思维过程,实现人工智能。
1.5.2 生理模拟,神经计算
从人脑的生理层面,即微观结构和工作机理入手,以智能行 为的生理模型为依据,采用数值计算的方法,模拟脑神经网 络的工作过程,实现人工智能。
人工智能导论全套课件

计算机视觉技术的挑战与未来发展
挑战
计算机视觉技术面临的挑战包括光照变 化、噪声干扰、遮挡问题、运动模糊等 。
VS
未来发展
随着深度学习技术的不断发展,计算机视 觉技术将更加成熟和高效。未来,计算机 视觉技术将更加注重实时性、鲁棒性和自 适应性,同时将更加广泛地应用于各个领 域。
06
人工智能伦理、法律与社会影响
01
各国政府正在制定相关法律和监管政策,以确保人工智能技术
的合法、合规和安全使用。
知识产权保护
02
对于人工智能技术和应用,知识产权保护是一个重要问题,需
要建立相应的法律制度。
跨国合作与国际法规
03
随着人工智能技术的全球化发展,跨国合作和国际对社会的影响与未来趋势
1 2
应用场景
如图像识别、语音识别、自然语言处理、推 荐系统等。
深度学习原理与框架介绍
神经网络模型
通过模拟人脑神经元之间的连接 方式,构建多层神经网络模型。
反向传播算法
通过计算输出层与目标值之间的误 差,反向调整每个神经元的权重, 使整个网络的输出结果更加准确。
深度学习框架
如TensorFlow、PyTorch等,提供 了丰富的深度学习算法和工具,方 便用户进行模型训练和部署。
深度学习
神经网络结构、反向传播 算法、卷积神经网络等。
03
机器学习与深度学习
机器学习算法与应用场景
监督学习算法
如线性回归、逻辑回归、支持向量机等,用 于根据输入特征预测输出结果。
非监督学习算法
如聚类分析、关联规则挖掘等,用于发现数 据中的模式和结构。
强化学习算法
通过与环境的交互来学习策略,适用于机器 人控制、游戏等领域。
人工智能导论课件第1章第2节

现代计算机之父,博弈论之父——冯·诺依曼
1.2.1 大师与通用机器
• 电子计算机通称电脑,简称计算机,是一种通用的信息处理机器,它能执行可 以充分详细描述的任何过程。用于描述解决特定问题的步骤序列称为算法,算 法可以变成软件(程序),确定硬件(物理机)能做什么和做了什么。创建软 件的过程称为编程。
1.2.2 人工智能学科的诞生
• 人工智能甚至可以追溯到古埃及。电子计算机的出现使信息存储和处理的各个 方面都发生了革命,计算机理论的发展产生了计算机科学并最终促使了人工智 能的出现。计算机这个用电子方式处理数据的发明,为人工智能的可能实现提 供了一种媒介。
1.2.2 人工智能学科的诞生
• 虽然计算机为人工智能提供了必要的技术基础,但人们直到上个世纪50年代早 期才注意到人类智能与机器之间的联系。诺伯特·维纳是最早研究反馈理论的美 国人之一,反馈控制的一个大家熟悉的例子是自动调温器,它将收集到的房间 温度与人们希望的温度比较并做出反应,将加热器开大或关小,从而控制环境 温度。这项对反馈回路的研究重要性在于:维纳从理论上指出,所有的智能活 动都是反馈机制的结果,而反馈机制是有可能用机器模拟的。这项发现对早期 人工智能的发展影响很大。
1.2.4 人工智能的社会必然性
• 人工智能技术的发展反映了生产力发展的要求,它的产生有其必要性。 – (1)人工智能是工具进化的结果。与以前的劳动工具相比,人工智能的进 步之一是它可以对大脑模拟。人工智能技术超越以往的技术,推动了生产 力的发展。此外,与之前的生产工具相比,人工智能丰富了人的内心,强 壮了人类的身体。人工智能比以前的工具吸收了更多的肢体功能,它高度 模仿人类技能,拟人性强,具有拟人装置的特征。
• 二是反思发展期:60 ~70年代初。人工智能发展初期的突破性进展大大提升了 人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切 实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器 证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的 发展走入了低谷。
1.2.1 大师与通用机器
• 电子计算机通称电脑,简称计算机,是一种通用的信息处理机器,它能执行可 以充分详细描述的任何过程。用于描述解决特定问题的步骤序列称为算法,算 法可以变成软件(程序),确定硬件(物理机)能做什么和做了什么。创建软 件的过程称为编程。
1.2.2 人工智能学科的诞生
• 人工智能甚至可以追溯到古埃及。电子计算机的出现使信息存储和处理的各个 方面都发生了革命,计算机理论的发展产生了计算机科学并最终促使了人工智 能的出现。计算机这个用电子方式处理数据的发明,为人工智能的可能实现提 供了一种媒介。
1.2.2 人工智能学科的诞生
• 虽然计算机为人工智能提供了必要的技术基础,但人们直到上个世纪50年代早 期才注意到人类智能与机器之间的联系。诺伯特·维纳是最早研究反馈理论的美 国人之一,反馈控制的一个大家熟悉的例子是自动调温器,它将收集到的房间 温度与人们希望的温度比较并做出反应,将加热器开大或关小,从而控制环境 温度。这项对反馈回路的研究重要性在于:维纳从理论上指出,所有的智能活 动都是反馈机制的结果,而反馈机制是有可能用机器模拟的。这项发现对早期 人工智能的发展影响很大。
1.2.4 人工智能的社会必然性
• 人工智能技术的发展反映了生产力发展的要求,它的产生有其必要性。 – (1)人工智能是工具进化的结果。与以前的劳动工具相比,人工智能的进 步之一是它可以对大脑模拟。人工智能技术超越以往的技术,推动了生产 力的发展。此外,与之前的生产工具相比,人工智能丰富了人的内心,强 壮了人类的身体。人工智能比以前的工具吸收了更多的肢体功能,它高度 模仿人类技能,拟人性强,具有拟人装置的特征。
• 二是反思发展期:60 ~70年代初。人工智能发展初期的突破性进展大大提升了 人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切 实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器 证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的 发展走入了低谷。
人工智能导论 课件 PPT -第2章知识表示

产生式的基本形式
(2)规则型知识的产生式表示 规则描述的是事物间的因果关系。含义是:如果…则…,规则型 知识的产生式表示基本形式是:
P→Q 或者 IF P THEN Q 其中,P是生产式的前提,用于指出该生产式是否可用的条件;Q 是一组结论或操作,用于指出当前提P所指示的条件被满足时,应 该得出的结论或应该执行的操作。整个产生式的含义是:如果前 提P被满足,则可推出结论Q或执行Q所规定的操作。
产生式系统
规则集
控制器 匹配排序 冲突裁决
匹配
检索 产生式系统结构与工作过程
综合数据库
产生式系统
【例2.1】 建立一个动物识别系统的规则库,用以识别虎、 豹、斑马、长颈鹿、企鹅、鸵鸟、信天翁等7种动物。
框架表示法
框架
我们无法把过去的经验一一都存在脑子里,而只能以一个通用 的数据结构的形式存储以往的经验。这样的数据结构就是框架 (frame),框架提供了一个结构,一种组织。在这个结构或组织 中,新的资料可以用从过去的经验中得到的概念来分析和解释。 实例框架:对于一个框架,当人们把观察或认识到的具体细节填 入后,就得到了该框架的一个具体实例,框架的这种具体实例被 称为实例框架。 框架系统:在框架理论中,框架是知识的基本单位,把一组有关 的框架连结起来便形成一个框架系统。
人工智能导论
知识表示和知识图谱
2.1知识表示
人类之所以有智能行为是因为他们拥有知识,智能活动过程 其实就是一个获得并运用知识的过程,要使机器系统具有人的智 能能力(人工智能AI),则必须以人的知识为基础,知识是人工 智能的基石。但人类的知识要用适当的模式表示出来,才能够存 储到计算机中并被识别运用,本节将对人工智能中常用的几种知 识表示方法进行介绍,为后续学习奠定基础。
人工智能导论 课件 PPT -第5章 智能识别

黑白图像
彩色图像
按图像时间变换分类
(1)活动图像:随着时间变化的动态图像。 (2)静止图像:不随时间变化的静止图片。
活动图像
静止图像
按图像空间关系分类
(1)二维图像:平面图像。 (2)三维图像:立体图像。
二维图像
三维图像
图像的表示与描述
图像的表示与描述
图像的表示与描述方法种类繁多,人眼所看到的图像是由于光线 照射在图像上并经过漫反射作用映入眼睛中成像,可以数字化公 式描述为I=f(x,y,z,λ,t),其中,x、y、z是描述空间的位置,λ为波 长,t为时间。若图像是静止的灰度图,就可以描述为I=f(x,y)。
计算机视觉的相关学科
图像处理
图像处理通常是把一幅图像变换成另外一幅图像,也就是说,图 像处理系统的输入是图像,输出仍然是图像,信息恢复任务则留 给人来完成,与计算机视觉有相同的目标。
计算机图形学
通过几何基元,如线、圆和自由曲面,来生成图像,它在可视化 (Visualization)和虚拟现实(Virtual Reality)中起着很重要的作 用。计算机视觉正好是解决相反的问题,即从图像中估计几何基 元和其它特征。因此,计算机图形学属于图像综合,计算机视觉 属于图像分析。
计算机视觉工作原理
计算机视觉的工作原理就是对事物进行图片或者视频采集、预处 理和高级处理的过程,即借助摄影机和计算机的识别、追踪、测 量、感知等方法来捕捉目标对象,在此基础上进行图像信息处理, 使计算机处理后的图像更加适合人眼观察或者传输给仪器进行检 测等高级处理。
计算机视觉工作原理
计算机视觉技术的工作原理
第三部分 计算机视觉的
相关学科
计算机视觉技术简介
计算机视觉系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与/或树的启发式搜索过程
(4)如果节点n为终止节点,则做下列工作: 标记节点n为可解节点; 在T上应用可解标记过程,对n的先辈节点中的所有可解节点进行标记; 如果初始节点S0能够被标记为可解节点,则T就是最优解树,成功退出; 否则,从Open表中删去具有可解先辈的所有节点; 转(2)。
与/或树的启发式搜索过程
5-6-2 极大极小过程
估价函数 极大极小原则:在最不利情况下,取最有利。 极大极小原则假设对手不出错,是保守的策略。 例4-14
MAX 极小
MIN
极大
MIN
MIN
MAX 极小
MIN
4-6-3 剪枝 不扩展差的枝。
作业: 4-8,4-11,4-15
谢谢
节点S0到节点n的最小代价值, h*(n) 是从节点n到目标节点的最小代价值。 因此, g(n) ≥ g*(n)。 A*算法限制:
(1) g(n) ≥ 0; (2) h(n) ≤ h*(n)。 A*算法的特性 例4-10
4-5 与/或树的启发式搜索
与/或树搜索就是寻找解树的过程。 与/或树启发式搜索就是利用启发性信息寻找最优解树的过程。 最优解树是指代价最小的解树。
4-6 博弈树的启发式搜索
双人完备信息博弈(例如:中国象棋) 当任何一方行动时,都是选择对自己最为有利,而对对方不利的行动方案。 在一方看来,可供自己选择的那些行动方案之间是或的关系,可供对方选择的那些行动方案之间是
与的关系。 博弈树:
博弈的初始状态是初始节点; 或节点和与节点逐层交替出现; 在一方看来,自己获胜的终局对应的节点是终止节点,对方获胜的终局对应的节点是不可解节点。
(5)如果节点n不是终止节点,但可扩展,则做下列工作: 扩展节点n,生成n的所有子节点; 把这些子节点都放入Open表中,并为每一个子节点设置指向父节点n的指针; 计算这些子节点及其先辈节点的h值; 转(2)。
与/或树的启发式搜索过程
(6)如果节点n不是终止节点,且不可扩展,则做下列工作: 标记节点n为不可解节点; 在T上应用不可解标记过程,对n的先辈节点中的所有不可解节点进行标记; 如果初始节点S0能够被标记为不可解节点,则问题无解,失败退出; 否则,从Open表中删去具有不可解先辈的所有节点; 转(2)。
人工智能导论课件
利用问题自身的特性信息和经验与知识引导搜索的方法称为启发式搜索。
启发性信息:与具体问题求解过程有关的,并可指导搜索过程朝着最有希望方向前进的控制信息。 如:帮助确定扩展节点的信息;帮助决定哪些后继节点应被生成的信息;能决定在扩展一个节点时 哪些节点应从搜索树上删除的信息。
估价函数:评价节点重要性的函数。
4-5-1 解树的代价与希望树
解树的代价:根节点的代价。 终止节点n的代价h(n)=0; 端节点n的代价h(n)=∞;
若或节点 n 的子节点是 n 1、 n 2 、 、 n k ,则
min h ( n )
{ h ( n i ) c ( n , n i )}
1i k
c ( n , n i ) 是节点 n 到其子节点 n i的边代价。
估价函数f(n)=g(n)+h(n)
估价函数:评价节点重要性的函数。
估价函数f(n)=g(n)+h(n)
其中:g(n)是从初始节点S0到节点n的实际代价,可以由父节点的代价和父节点到子节点的代价决定,如: g(n)可以定义为是从初始节点S0到节点n的有向路上边的代价和。
h(n)是从节点n到目标节点Sg的最优路径的估计代价,需要根据问题自身的特性、经验和知识决定。 例4-8 八数码难题
4 t
t
P 2
6 2
右解树P 25 源自 t3 t左解树:与节点和代价法
12 4
t t
P
2
14
6
2 2
右解树:与节点和代价法
P 11
1
2 9
5
1
t
3 t
左解树:与节点最大代价法
8 4
t t
P
2
10
6
2 2
右解树:与节点最大代价法
P 8
1
2 6
5
1
t
3 t
希望树
在搜索过程中最有希望成为最优树一部分的子树。 希望树T:
例4-9 八数码难题 全局择优搜索 p.117,图4-17
局部择优搜索 从新生成的子节点中选一个估价函数值最小的节点扩展。
4-3-3 A*算法
A*算法对A算法的估价函数加了一些限制 A算法的估价函数f(n)=g(n)+h(n) 设f*(n)是从初始节点S0经节点n到目标节点的最小代价值,则f*(n)=g*(n)+h*(n),其中: g*(n)是从初始
(1)初始节点在T中; (2)或节点的最小代价子节点; (3)与节点的所有子节点。
与/或树的启发式搜索过程
与/或树的启发式搜索过程就是不断选择、修改希望树的过程。 搜索过程如下:
(1)把初始节点S0放入Open表中,计算h(S0); (2)计算希望树T; (3)依次从Open表中取出T的端节点放入Closed表,并记该节点为n;
估价函数f(n)=d(n)+W(n)
d(n)是从初始节点S0到节点n的深度;W(n)表示节点n中不在位的数码个数。 p.117,图4-17
4-3-2 A算法
利用估价函数对Open表中的节点排序。 全局择优搜索
当有新的子节点放入Open表或Open的节点估价函数值被改变后,立即对Open表中的全部节点按估价函 数值从小到大重新排序。
若与节点 n 的子节点是 n 1、 n 2 、 、 n k ,则
和代价法
k
h ( n ) { h ( n i ) c ( n , n i )} i1
最大代价法
max h ( n )
{ h ( n i ) c ( n , n i )}
1i k
例4-13
P 2
4
6
2 t
t
2
5 1 t
3 t
左解树