江苏省泰兴市2017_2018学年八年级数学上学期期末考试试题新人教版

合集下载

2017-2018学年泰兴市八年级上期末考试数学试卷含答案

2017-2018学年泰兴市八年级上期末考试数学试卷含答案

2017—2018学年度第一学期期末测试试题八年级数学(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案写在答题纸上,写在试卷上无效.3.作图必须用2B 铅笔,且加粗加黑.第一部分 选择题(共18分)一、选择题(本大题共有6题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题纸相应的表格中.........) 1.下面四个关于银行的标志中,不是..轴对称图形的是(▲)A B C D2. 若分式2926x x -+的值为0,则x 的取值为(▲)A .3B .3-C .±3D .不存在3.不改变分式的值,使式子221323x y x y++分子中的系数不含有分数,下列四个选项中正确的是(▲)A . 2223x y x y ++B . 22323x y x y ++C . 22369x y x y ++D . 22363x y x y++4. 若2933x x x -=+⋅-,则x 的取值范围是(▲)A .x ≥3B .x ≤-3C .-3≤x ≤3D .不存在5.如图,数轴上的点A 表示的数是-1,点B 表示的数是1,CB ⊥AB 于点B ,且BC =2,以点A 为 圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为(▲)A .2.8B .22C .22-1D .221+6.一次函数(0)y kx b k =+≠的图像如图所示,则一元一次不等式0kx b -+>的的解集为(▲) A .x >-2 B .x <-2C . 2x >D . 2x <(第5题图) (第6题图) (第14题图)第二部分 非选择题(共132分)二、 填空题(本大题共有10题,每题3分,共30分.请将正确答案填写在答题卡相应的位置........上.) 7. 4的平方根为 ▲ .8. 若点(34)P -,和点()Q a b ,关于x 轴对称,则2a b += ▲ . 9. 2+18= ▲ .10.截止到2017年11月份,泰兴市人口总数达到1 212 200人,则1 212 200人精确到10 000人 应表示为 ▲ .11.泰兴某企业有m 吨煤,计划用n 天,为积极响应市政府“节能减排”的号召,现打算多用5天, 则现在比原计划每天少用煤 ▲ 吨.12.请写出一个经过点(-1,2)且y 随x 的增大而减小的一次函数表达式 ▲ . 13. 若2(23)32a a -=-,则a 的取值范围是 ▲ .14. 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm ,高为16cm .现将一根长度为25cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是 ▲ cm . 15. 若关于x 的分式方程321x mx -=-的解是正数,则m 的取值范围为 ▲ . 16. △ABC 是等腰三角形,腰上的高为8cm ,面积为40cm 2,则该三角形的周长是 ▲ cm .三、解答题(本大题共有小题,共102分.请在答题纸指定区域作答,解答时应写出必要的文字x y y =kx +b O-2DCB A O -11说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:(3223)(3223)+- ; (2)解方程:34533262x x x x -+=++.18.(本题满分8分)化简并求值:223242a a a a a a ---÷++,其中32a =-.19.(本题满分8分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足.试说明:DE =DF .20. (本题满分8分)如图,△ABC .(1)用直尺和圆规作∠A 的平分线所在的直线1l 和边BC 的垂直平分线2l (要求:不写作法,保留画图痕迹);(2)设(1)中的直线1l 和直线2l 交于点P ,过点P 作PE ⊥AB ,垂足为点E ,过点P 作PF ⊥AC 交AC 的延长线于点F .请探究BE 和CF 的数量关系,并说明理由.BCAAF BE DC21. (本题满分10分)随着交通的飞速发展,中国的铁路运输能力得到大幅度提升.已知泰州距离南京大约180千米,乘坐动车可以比乘坐长途大巴节省40分钟.若动车平均速度比长途大巴提升了50% ,请分别求出动车和长途大巴的平均速度.22. (本题满分10分)已知实数a b c 、、满足27|52|(1)0a b c -+-+-=.(1)求a b c 、、的值;(2)判断以a b c 、、为边能否构成三角形?若能构成三角形,判别此三角形的形状,并求出三角 形的面积;若不能,请说明理由.23. (本题满分10分)如图,△ABC 中,AC =BC ,∠C =90°,点D 是AB 的中点.(1)如图1,若点E 、F 分别是AC 、BC 上的点,且AE =CF ,请判别△DEF 的形状,并说明理由; (2)若点E 、F 分别是CA 、BC 延长线上的点,且AE =CF ,则(1)中的结论是否仍然成立?请 说明理由.图1 备用图FCDA BECDBA24. (本题满分10分)如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中. 图2中,线段AB 、线段CD 分别表示容器中的水的深度h (厘米)与倒入时间t (分钟)的函数图像. (1)请说出点C 的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等? (3)如果甲容器的底面积为10cm 2,求乙容器的底面积. 图1 图225. (本题满分12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224233231(3)2311(31)-=-+=-⨯⨯+=-.善于动脑的小明继续探究:当a b m n 、、、为正整数时,若22(2)a b m n +=+,则有222(2)+22a b m n mn +=+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若23(3)a b m n +=+,请用含有m n 、的式子分别表示a b 、,得:a = ▲ ,b = ▲ ;(2)填空:1343-=( ▲ - ▲ 23);(3)若265(5)a m n +=+,且a m n 、、为正整数,求a 的值.t h (分钟)(厘米)D43212015105OA BC乙甲26. (本题满分14分)如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B . (1)求直线1l ,2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ▲ ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ▲ ),点D 的坐标为(m , ▲ );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值. 备用图1 备用图2xy l 2l 1AB Ox yl 2l 1AB Oxy l 2l 1mFEC DABO P八年级数学参考答案及平分标准一、 选择题:1-6:D A C A C D 二、 填空题7.2±; 8.-10 ;9. 42;10. 61.2110⨯;11. ()5m m n n -+;12.略 ;13. a ≤32; 14. 5cm ;15.m >2且m ≠3;16.2045+或2085+. 三、 解答题:17.(1)原式=18-12…………………………………………………………………………(4分)=6;………………………………………………………………………………(2分)(2)解方程,得:x =2,……………………………………………………………………(5分) 经检验:……………………………………………………………………………(1分)18.原式=2-2aa +………………………………………………………………………………(6分) 当32a =-时,原式=7………………………………………………………………(2分)19.方法不唯一,可以用三线合一结合角平分线的性质说理,也可以利用“等边对等角”证 明三角形全等. …………………………………………………………………………(8分) 20.(1)一个作图2分,2个共4分,如果画图痕迹不清晰,酌情扣1分;如果只作出了∠A 的平分线(射线)不扣分. ………………………………………………(4分) (2)相等(1分);证明:PBE PCF ≅△△…………………………………………(3分). 21.解:设大巴的平均速度为x 千米/小时,则动车的速度为1.5x 千米/小时,根据题意,得:……………………………………………………………………(2分)18018021.53x x -=,………………………………………………………………(7分) 解得:x =90,……………………………………………………………………(8分) 当x =90时,1.5x =135. …………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.(1)7521a b c ===,,;……(6分)(2)直角三角形;面积为72.………(4分) 23. (1)△DEF 是等腰直角三角形.………………………………………………………(1分)连接CD ,证明AED CFD ≅△△,………………………………………………(3分) 所以:DE =DF ,∠ADE =∠CDF ,所以∠EDF =∠ADC =90°,所以△DEF 是等腰直角三角形. …………………………………………………(5分) (2)仍然成立………………(1分);方法同(1)…………………………………(3分). 24.(1)点C 的纵坐标的实际意义是乙容器中原有的水的深度是5cm ;…………………(2分) (2)直线AB 的函数关系式为:520h t =-+;…………………………………………(2分)直线CD 的函数关系式为: 2.55h t =+.………………………………………………(2分) 将联立得方程组,得:5202.55h t h t =-+⎧⎨=+⎩,解得:210t h =⎧⎨=⎩所以10分钟后,两容器内水得深度相等. ………………………………………………(1分) (3)因为容器甲的底面积为10cm 2,所以容器甲中原有的水的体积为1020200⨯=cm 2,而容器乙中水的深度的增加值为15510-=cm ,所以容器乙的底面积为2001020÷= cm 2,………………………………………………………………………………………(3分)25.(1)223a m n =+,2b mn =;……………………………………………………………(4分)(2)21343=(123)--;…………………………………………………………………(4分)(3)225a m n =+,62mn =;因为a m n 、、为正整数,所以=1=3m n ,, 或者=3=1m n ,.当=1=3m n ,时,46a =;当=3=1m n ,,14a =.26.(1)直线123l y x =:,直线25l y x =-+:;……………………………………………(4分) (2)x <0或x >5;…………………………………………………………………………(3分) (3)①2()3C m m ,, (5)D m m +,-;(1分+1分)②当m <0时,22(5)263m m m -+--=,解得:m=-3;当0<m<5时,22(5+)263m m m-+-=,解得:m=-12,舍去;当m>5时,22[(5)]263m m m--++=,解得:274m=.……………(2分+1分+2分)。

(完整word版)2017-2018学年人教版八年级上册期末数学试卷1(解析版)

(完整word版)2017-2018学年人教版八年级上册期末数学试卷1(解析版)

2017-2018学年人教版八年级上册期末数学试卷1一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)计算:a2•a的结果是()A.a B.a2C.a3D.2a22.(3分)如图,图形中x的值为()A.65B.75C.85D.953.(3分)使分式有意义,则x满足条件( )A.x>0B.x≠0C.x>1D.x≠14.(3分)如图,△OCA≌△OBD,∠1=40°,∠C=110°,则∠D=()A.30°B.40°C.50°D.无法确定5.(3分)在Rt△ABC中,∠C=90°,∠B=2∠A,则边AB与BC的关系()A.AB=BC B.AB=2BC C.AB=BC D.AB<BC6.(3分)把8m2n﹣2mn分解因式()A.2mn(4m+1)B.2m(4m﹣1)C.mn(8m﹣2)D.2mn(4m﹣1)7.(3分)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD,则△AED的周长是()A.7B.8C.11D.148.(3分)计算的结果是( )A.B.0C.D.9.(3分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(3分)若等式恒成立,则(a2+b2﹣2ab)﹣8a+8b+17的值是() A.50B.37C.29D.26二、填空题(共6小题,每小题3分,共18分)11.(3分)如图,在等腰三角形中,它的一个底角的度数是度.12.(3分)已知△ABC≌△DEF,若△ABC的三边长分别为6cm、8cm、10cm,则△DEF的周长是cm.13.(3分)计算:(x﹣4)(x+1)= .14.(3分)如图,在△ABC中,AD是高,AE是角平分线,若∠B=72°,∠DAE=16°,则∠C= 度.15.(3分)若,则= .16.(3分)如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.三、解答题(共8小题,共72分)17.(8分)解下列方程:(1)(2)18.(8分)计算:(1)(2a)3•b4÷12a3b2(2)(x﹣3y)(﹣6x)19.(8分)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,OB=OC,连AO,求证:∠1=∠2.20.(8分)(1)如图1,在△ABC中,点D、E分别是AB、AC的中点,请你在BC边上确定一点P,使△PDE的周长最小.(要求:保留作图痕迹,不写作法,但要说明点P是如何确定的.)(2)如图2,∠AOB内有一定点P,试在OA、OB上各找一点D、E,使△PDE的周长最小.(要求:保留作图痕迹,不写作法,但要说明点D、E是如何确定的.)21.(8分)先化简,再求值.[(x+3y)(x﹣3y)+(2y﹣x)2+5y2(1﹣x)﹣(2x2﹣x2y)]÷(﹣xy),其中x=95,y=220.22.(10分)如图,“主收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)m的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的(kg)倍,求a的值(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108= .23.(10分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.24.(12分)如图,在平面直角坐标系中,A(x,0),B(0,y),其中x与y互为相反数,且x 满足:x2﹣14ax+49a2=0(a>0),点C为x轴负半轴上一点,AD⊥AB,垂足为A,∠DCA=∠CBO.(1)求∠ABC+∠D的度数;(2)如图1,若点C的坐标为(﹣3a,0),求点D的坐标.(用含a的式子表示)(3)如图2,在(2)的条件下,若a=1,过点D作DE⊥y轴于E,DF⊥x轴于F,点M为线段DF上一点.若第一象限内存在点N(n,2n﹣3),使△EMN为等腰直角三角形,请直接写出符合条件的N点的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a2•a=a3.故选:C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.【分析】根据四边形的内角和等于360°,列方程即可得到结果.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴x°+x°+140°+90°=360°,解得:x=65.故选:A.【点评】本题考查了四边形的内角和,熟记四边形的内角和定理是解题的关键.3.【分析】分式有意义时,分母x﹣1≠0.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:D.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.4.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵△OCA≌△OBD,∠1=40°,∠C=110°,∴∠D=∠A=180°﹣40°﹣110°=30°,故选:A.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上是解题的关键.5.【分析】根据题意得到∠A=30°,根据直角三角形的性质解答即可.【解答】解:∵∠C=90°,∠B=2∠A,∴∠A=30°,∴AB=2BC,故选:B.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°所对的直角边等于斜边的一半是解题的关键.6.【分析】直接找出公因式进而提取得出答案.【解答】解:8m2n﹣2mn=2mn(4m﹣1).故选:D.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7.【分析】根据翻折变换的性质得到DC=DE,BE=BC,根据已知求出AE的长,根据三角形周长公式计算即可.【解答】解:由折叠的性质可知,DC=DE,BE=BC=6,∵AB=8,∴AE=AB﹣BE=2,△AED的周长为:AD+AE+DE=AC+AE=7,答:△AED的周长为7.故选:A.【点评】本题考查的是翻折变换的知识,掌握翻折变换的性质、找准对应关系是解题的关键.8.【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=•﹣•+=﹣﹣==0,故选:B.【点评】本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.9.【分析】①作高线EH,先根据角平分线定理得:CE=EH,再证明△ACE≌△AHE(AAS)可得:AH=AC,根据线段的和可得结论;②先证明点A,B,D,C在以AB为直径的圆上,得∠ADC=∠ABC=45°,所以可得∠BDC=135°;③作辅助线,构建全等三角形,证明△ACE≌△BCG,根据等腰三角形三线合一得BD=DG,知道:△BDC和△CDG的面积相等,由此可得:S△ACE=S△BCG=2S△BDC;④根据③知:AB=AG=AC+CG,在△CDG中,可知CD>CG,从而得结论.【解答】解:①过点E作EH⊥AB于H,如图1,∵∠ABC=45°,∴△BHE是等腰直角三角形,∴EH=BH,∵AE平分∠CAB,∴EH=CE,∴CE=BH,在△ACE和△AHE中,∵,∴△ACE≌△AHE(AAS),∴AH=AC,∴AB﹣AC=AB﹣AH=BH=CE,故①正确;②∵∠ACB=90°,BD⊥AE于D,∴∠ACB=∠ADB=90°,∴点A,B,D,C在以AB为直径的圆上,∴∠ADC=∠ABC=45°,∴∠BDC=∠ADB+∠ADC=90°+45°=135°故②正确;③如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,S△BCD=S△CDG,∴∠DBC=∠DCB=22。

最新江苏省2017-2018年八年级上期末考试数学试题含答案

最新江苏省2017-2018年八年级上期末考试数学试题含答案

第一学期期末考试卷八年级数学试题注意事项:1.本卷考试时间为100分钟,满分100分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=cB 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶5 5.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( )A .B .C .D .6.设正比例函数mx y 的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-47.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B (-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( )A 、-6和-5之间B 、-5和-4之间C 、-4和-3之间D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( ) A.2 B.3 C.4 D.5(第7题)DCB A二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 .11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 . 12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为(第15题)16.如图,直线b kx y +=与x 轴交于点(2,0),若y <0时,则x 的取值范围是 17.已知点P (1-a ,5+a )在第二象限,且到y 轴的距离为2,则点P 的坐标为 .18.函数y =kx +b (k ≠0)的图象平行于直线y =3x +2,且交y 轴于点(0,-1),则其函数表达式是 .19.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM ﹣BM 最大时,点M 的坐标为 .三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(本题每小题3分,共9分)第13题)(第14题) (第16题)(第19题)(1)计算:()232279--+(2)求0942=-x 中x 的值. (3)求()813=-x 中x 的值.\21.(本题共6分)已知某正数的两个平方根分别是3+a 和152-a ,b 的立方根是2-.求a b --的算术平方根.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:⑴、△ABC≌△ADC ;⑵、AC垂直平分BD.23.(本题共6分)(1)近年来,江苏省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)(2)如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于与.第(1)题24.(本题共6分)如图,一次函数y =(m+1)x +32的图像与x 轴的负半轴相交于点A ,与y轴相交于点B ,且△OAB 面积为43. (1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP =3OA函数表达式 .第(2)题25.(本题共6分)如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;⑵若BC=6,AC=8,求CE的长.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是千米/小时,乙比甲晚出发小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?27.(本题共7分)如图,直线72+-=x y 与x 轴、y 轴分别相交于点C 、B ,与直线x y 23=相交于点A . ⑴ 求A 点坐标; ⑵ 如果在y 轴上存在一点P ,使△OAP 是以OA 为底边的等腰三角形,则P 点坐标是 ;⑶ 在直线72+-=x y 上是否存在点Q ,使△OAQ 的面积等于6,若存在,请求出Q 点的坐标,若不存在,请说明理由.八年级数学参考答案及评分标准一、选择题:(每小题3分,共24分)1.C;2.A;3.B;4.D;5.D;6.B;7.A;8.B;二、细心填一填(本大题共有11小题,每题2分,共22分.)9.4或-4;10.()4,3;11.8105.1⨯;12.x ≥2;13.15︒;14.3;15.48;16.x>2;17.()4,2-;18. y =3x -1;19.(3.5,0)三、解答题(本大题共8小题,共54分.)20.(本题每小题3分,共9分)解:(1)原式=3+3―2--------------------------------------2分=4-------------------------------3分⑵ 492=x ---------1分 解之得:23±=x (1 解1分) ------------- 3分 (3)21=-x --------------------------------2分 ∴3=x -----------------------------3分21.(本题共6分)解:由题意得,(3+a )+(152-a )=0 解得a=4….. …………………..2分∵b 的立方根是2-,∴b=-8……………………….…….4分∴a b --的算术平方根为2……………………… ………6分22.(本题共6分)⑴证明:在△ABC 与△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB∴△ABC ≌△ADC (SSS )-------------------------------------------------------3分 ⑵∵△ABC ≌△ADC∴∠BAC =∠DAC---------------------------------------------------------------------5分 又∵AB =AD∴AC 垂直平分BD---------------------------------------------------------------------6分23.(本题共6分)(1)题完成角平分线和线段的垂直平分线共2分(只完成一个得1分),标出点P ;(2)题:画图(各1分),面积是4和25(各1分). 24.(本题共6分)(1)由点B (0,32)得OB =32………………………………………1分 ∵S △OAB =43,∴12×OA ×OB =43,得OA =1,∴A (-1,0)……2分 把点A (-1,0)代入y =(m +1)x +23得m =21. ……………3分 (2)∵OP =3OA ,∴OP =3,∴点P 的坐标为(3,0)………… 4分设直线BP 的函数表达式为y =kx +b ,代入P (3,0)、B (0,32), 得⎪⎩⎪⎨⎧==+2303b b k ,解得⎪⎩⎪⎨⎧=-=2321b k ,直线BP 的函数表达式为y =21-x +32 … 6分 25.(本题共6分)⑴解:∵折叠,∴DE 垂直平分AB ,∴BE =AE∴∠A =∠ABE--------------------------------------------------------------------1分 又∵∠C =90º,ED ⊥AB ,DE =CE ,∴∠CBE =∠ABE-∴∠A =∠ABE =∠CBE--------------------------------------------------2分 又∵∠A +∠ABE +∠CBE =90º∴∠A =30º------------------------------------------------------------------------3分 ⑵解:设CE =x ,则AE =AC -CE =8-x∴BE =AE =8-x -------------------------------------------------------------4分 又∵∠C =90º∴222BE CE BC =+∴()22286x x -=+-----------------------------------------------------------5分 ∴47=x ,即CE =47--------------------------------------------------------6分 26.(本题共8分)⑴5,1---------------2分 ⑵t s 5=甲,20-20t s =乙,--------4分(3)⎩⎨⎧-==20205t s t s 解之:⎪⎪⎩⎪⎪⎨⎧==32034s t ∴34小时-----6分 20402033-=千米---------------8分27.(本题共7分)解:⑴解方程组:⎪⎩⎪⎨⎧=+-=x y x y 2372- 解之得:⎩⎨⎧==32y x ∴A 点坐标是()3,2----------------------------------------------1分⑵P 点坐标是⎪⎭⎫ ⎝⎛613,0------------------------------------------3分 ⑶存在 ∵6421<=∆AOC S ,67>=∆AO B S ∴Q 点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是()y x ,当Q 点在线段AB 上:作QD ⊥y 轴于点D ,则QD =x x =,∴167=-=-=∆∆∆O AQ O AD O BQ S S S , ∴121=⨯QD OB ,即127=x ,∴72=x ,把72=x 代入72+-=x y ,得745=y ∴Q 的坐标是⎪⎭⎫ ⎝⎛745,72------------------------------------------------------------------5分 当Q 点在AC 的延长线上时,作QD ⊥x 轴于点D ,则QD =y y -=, ∴434216=-=-=∆∆∆OAC OAQ OCQ S S S , ∴1324OC QD ∙=,即()7344y ⨯-=,∴37y =-,把37y =-代入72+-=x y ,得267x =∴Q 的坐标是263,77⎛⎫- ⎪⎝⎭ 综上所述:点Q 是坐标是⎪⎭⎫ ⎝⎛745,72或263,77⎛⎫- ⎪⎝⎭-----------------------------7分。

2017-2018学年人教版八年级上数学期末试题及答案

2017-2018学年人教版八年级上数学期末试题及答案

一、选择题(每小题3分,共36分)1.下面有4个汽车标志图案,其中不是轴对称图形的是A B C D2.要使分式15-x 有意义,则x 的取值范围是 A 、x ≠1B 、x >1C 、x <1D 、x ≠1- 3.下列运算正确的是A 、2+=a a aB 、632÷=a a aC 、222()+=+a b a bD 、6223)(b a ab = 4.将多项式x 3-xy 2分解因式,结果正确的是新 课 标 第 一 网A 、•x (x 2-y 2)B 、2)(y x x -C 、x (x +y )2D 、x (x +y )(y x -)5.已知6=m x ,3=n x ,则n m x -2的值为A 、9B 、43C 、12D 、346.下列运算中正确的是A 、236x xx =B 、1-=++-y x yxC 、ba ba ba b ab a -+=-++22222 D 、yxy x =++11 7.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x 8.若16)3(22+-+x m x 是完全平方式,则m 的值等于A 、1或5B 、5C 、7D 、7或1- 9.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于A 、75°B 、60°C 、45°D 、30°10.如图,OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,垂足分别为A ,B 。

下列结论中不一定成立的是 A 、P A =PBB 、PO 平分∠AOBC 、OA =OBD 、AB 垂直平分OPAFBC DEF E BCD A11.已知∠AOB =45°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 A 、2222)(b ab a b a ++=+B 、2222)(b ab a b a +-=-C 、))((22b a b a b a -+=-D 、222))(2(b ab a b a b a -+=-+Ⅱ(主观卷)96分二、填空题(每小题3分,共18分) 13.计算:21a a-=_________。

泰州市八年级上期末数学试卷(附答案)-精品

泰州市八年级上期末数学试卷(附答案)-精品

2017-2018学年江苏省泰州市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB 于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为.8.(3分)如果分式的值为零,那么x= .9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 km .10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .11.(3分)若+(1﹣y )2=0,则= .12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有 人.13.(3分)如图,直线y 1=x+n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x+n <mx ﹣1的解集为 .14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .15.(3分)分式的值是正整数,则整数m= .16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?23.(10分)已知一次函数y=x+b ,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b 的值;(2)若函数y=x+b 的图象交y 轴于正半轴,则当x 取何值时,y 的值是正数?24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)若a ≤x ≤5,则当x 为何值时,两车相距100km .26.(14分)如图,在平面直角坐标系xOy 中,点A 的坐标为(0,3),点B 的坐标为(4,0),C 为第一象限内一点,AC ⊥y 轴,BC ⊥x 轴,D 坐标为(m ,0)(0<m <4).(1)若D 为OB 的中点,求直线DC 的解析式;(2)若△ACD 为等腰三角形,求m 的值;(3)E 为四边形OACB 的某一边上一点.①若E 在边BC 上,满足△AOD ≌△DBE ,求m 的值;②若使△EOD 为等腰三角形的点E 有且只有4个,直接写出符合条件的m 的值.2017-2018学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<2【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7【解答】解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB 于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么x= 3 .【解答】解:由题意,得x﹣3=0且x2+1≠0,解得 x=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距 5 km.【解答】解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.10.(3分)如果点P坐标为(3,﹣4),那么点P到x轴的距离为 4 .【解答】解:点P(3,﹣4)到x轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则= 2 .【解答】解:∵+(1﹣y)2=0,∴x﹣4=0,1﹣y=0,[]解得:x=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60 人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=x+n与y2=mx﹣1相交于点N,则关于x的不等式x+n<mx﹣1的解集为x<﹣1 .【解答】解:观察图象,可知x+n<mx﹣1的解集为x<﹣1.故答案为 x<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而,∴AD=AF,DE=FE.在Rt△ABF中,AB=3cm,AF=5cm,∴BF==4cm,∴CF=BC﹣BF=1cm.设EC=xcm,则EF=ED=(3﹣x)cm,在Rt△CEF中,EF2=CE2+CF2,即(3﹣x)2=x2+12,解得:x=.故答案为:.15.(3分)分式的值是正整数,则整数m= 1 .【解答】解:由题意可知:2m ﹣1=1或2或4, 当2m ﹣1=1时,∴m=1,符合题意当2m ﹣1=2时,∴m=,不符合题意,当2m ﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .【解答】解:∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称,∴OP=OP 1=OP 2=,∠AOP=∠AOP 1,∠BOP=∠BOP 2, ∵∠AOB=45°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=90°,∴△P 1OP 2是等腰直角三角形,∴P 1P 2==2, 设EF=x ,∵P1E==PE,∴PF=P2F=﹣x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣x)2=x2,解得x=.故答案为:.[]三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2x﹣8=1﹣x,解得:x=4,经检验x=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.[xxk]【解答】解:(1)∵y+2与x成正比,∴设y﹣2=kx,将x=1、y=﹣6代入y+2=kx得﹣6+2=k×1,∴k=﹣4,∴y=﹣4x﹣2(2)∵点(a,2)在函数y=﹣4x﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为xm2,则甲队每天单独完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的根,且符合题意,[]∴2x=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?【解答】解:(1)当x=0时,y=b,∴一次函数图象与y轴的交点坐标为(0,b);当y=x+b=0时,x=﹣b,∴一次函数图象与y轴的交点坐标为(﹣b,0).∴×|b|×|﹣b|=2,解得:b=±2.(2)∵函数y=x+b的图象交y轴于正半轴,∴一次函数为y=x+2,∵y的值是正数,∴x+2>0,解得x>﹣2.故当x>﹣2时,y的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【解答】解:(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y=kx+b ,,解得,,即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题:(1)a= 3 ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)若a ≤x ≤5,则当x 为何值时,两车相距100km .【解答】解:(1)设甲车行驶的函数解析式为y 甲=kx+b ,(k 是不为0的常数)y 甲=kx+b 图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y 甲=﹣90x+450,当y=180时,x=3(h),∴a=3,故答案为:3;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=135x﹣225(3≤x≤5);(3)3≤x≤5时,y乙减y甲等于100千米,即135x﹣225﹣(﹣90x+450)=100,解得x=,∴当x为时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为O B中点,∴D(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。

2017-2018学年人教版八年级上册期末数学试卷含答案

2017-2018学年人教版八年级上册期末数学试卷含答案

2017-2018学年八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,63.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣45.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,98.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.410.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y211.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.912.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是______.14.等边三角形ABC中,边长AB=6,则高AD的长度为______.15.当k=______时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=______.17.如图,直线L是一次函数y=kx+b的图象,b=______,k=______,当x>______时,y >0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为______.三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为______,点B的坐标为______;(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.【考点】无理数.【分析】根据无理数是无限不循环小数小数,逐项判断即可.【解答】解:A、0.3333是有理数,故A选项不符合题意;B、π是无理数,故B选项符合题意;C、=4,是有理数,故C选项不符合题意;D、是有理数,故D选项不符合题意;故选B.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.3.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.8.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.4【考点】线段垂直平分线的性质.【分析】根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.【解答】解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8﹣5=3,故选C.10.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,将点A(﹣5,y1)和B(﹣2,y2)分别代入直线方程y=﹣3x+2,分别求得y1与y2的值,然后进行比较.【解答】解:根据题意,得y1=﹣3×(﹣5)+2=17,即y1=17,y2=﹣3×(﹣2)+2=8;∵8<17,∴y1>y2.故选D.11.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【考点】解三元一次方程组.【分析】先用含a的代数式表示x,y,即解关于x,y的方程组,再代入3x﹣5y﹣7=0中可得a的值.【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.12.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.【考点】一次函数综合题.【分析】根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【解答】解:当y=0时,x﹣=0,解得x=1,∴点E的坐标是(1,0),即OE=1,∵OC=4,∴EC=OC﹣OE=4﹣1=3,∴点F的横坐标是4,∴y=×4﹣=2,即CF=2,∴△CEF的面积=×CE×CF=×3×2=3.故选B.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.14.等边三角形ABC中,边长AB=6,则高AD的长度为3.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可解题.【解答】解:由等边三角形三线合一,∴D为BC的中点,∴BD=DC=3,在Rt△ABD中,AB=6,BD=3,∴AD==3.故答案为3.15.当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得k的值.【解答】解:根据题意,得k2﹣9=0且k﹣3≠0,解得k=﹣3.故当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.故答案为:﹣3.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=80°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据角平分线求得∠DAE的度数,再根据∠DAE是△ABD的外角,求得∠D的度数,最后根据三角形内角和定理,求得∠ACD的度数.【解答】解:∵AD平分∠CAE,∠CAD=65°,∴∠DAE=65°,∵∠DAE是△ABD的外角,∴∠D=∠DAE﹣∠B=65°﹣30°=35°,∴△ACD中,∠ACD=180°﹣65°﹣35°=80°.故答案为:80°17.如图,直线L是一次函数y=kx+b的图象,b=﹣3,k=,当x>2时,y >0.【考点】待定系数法求一次函数解析式.【分析】根据图形确定直线所经过的两点的坐标,代入一次函数y=kx+b可求出k和b的值.【解答】如图所示直线L过(2,0),(0,﹣3),根据题意列出方程组,解得,则当x>2时,y>0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.【考点】解二元一次方程组;零指数幂;二次根式的混合运算.【分析】(1)根据二次根式混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)原式=+1+1=4+1+1=6;(2),①×2﹣②得,x=2,把x=2代入①得,4﹣y=,解得y=﹣1,故方程组的解为.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.【考点】全等三角形的判定;平行线的判定.【分析】(1)根据角平分线的性质得出DC=DE,由HL定理得出△ACD≌△AED;(2)根据平角的定义得出∠1+∠CFD+∠2=180°,再由∠1与∠D互余,CF⊥DF得∠1=∠C,从而得出AB∥CD.【解答】证明:(1)∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED,(2)∵CF⊥DF,∴∠C+∠D=90°,∵∠1与∠D互余,∴∠1=∠C,∵∠1+∠CFD+∠2=180°,∴AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?【考点】坐标与图形性质.【分析】(1)根据点的坐标标出各点,依次连接可得;(2)由图可知位于坐标轴上的点,由坐标可得其特点;(3)观察图象即可得知.【解答】解:(1)如图,(2)点(1,0)、(3,0)在x轴上,x轴上的点纵坐标为0;点(0,4)在y轴上,y轴上的点横坐标为0;(3)(0,4),(2,4),(4,4)三点所在直线与x轴平行,此线段上点的纵坐标相等,都等于4.22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;3【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+2]=70,= [(70﹣85)2+2+2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【考点】一次函数的应用.【分析】(1)由图可知:10﹣14小时的时间段内小明全家在旅游景点游玩,因此时间应该是4小时;(2)可根据14小时和15小时两个时间点的数值,用待定系数法求出函数的关系式;(3)可根据8小时和10小时两个时间段的数值求出函数关系式,那么这个函数关系式应该是s=90x﹣720,那么出发时的15升油,可行驶的路程是15÷=135千米,代入函数式中可得出x=9.5,因此9:30以前必须加一次油,如果刚出发就加满油,那么可行驶的路程=35÷=315千米>180千米,因此如果刚出发就加满油,到景点之前就不用再加油了.也可以多次加油,但要注意的是不要超出油箱的容量.【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(4,0),点B的坐标为(0,3);(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)令y=0求出x的值,再令x=0求出y的值即可求出A、B两点的坐标;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.【解答】解:(1)令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).(每空1分)(2)设OC=x,则AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴OC=.(3)设P点坐标为(x,0),当PA=PB时,=,解得x=;当PA=AB时,=,解得x=9或x=﹣1;当PB=AB时,=,解得x=﹣4.∴P点坐标为(,0),(﹣4,0),(﹣1,0),(9,0).26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM 是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN 全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.2016年9月19日第21页(共21页)。

2017-2018学年人教版八年级数学上期末检测试卷共四套

1八年级数学上学期期末试题(-)一、选择题(本大题共14小题,每小题3分,共42分)1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D .2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<xC .5≠xD .5-≠x3. 下列运算正确的是 A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=--4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为 A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是 A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n += A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为 A .22B .16C .10D .49. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于 A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是 A .40° B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.(第5题图)(第10题图) (第13题图) (第14题图)2A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1aB.aC.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分) 15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度. 17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD = cm .19..小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”) 三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b ∙÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分) 22.(本题满分8分)先化简,再求值:3解方程:31.11x x x -=-+ 9)3132(2-÷-++x xx x ,其中5x .=- 23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC . (1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明. 24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元. (1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元? 25.(本题满分10分)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图. 26.(本题满分11分) 【提出问题】(1)如图1,在等边△ABC 中,点M 是BC 上的任意一点(不含 端点B ,C ),连结AM ,以AM 为边作等边△AMN ,连结CN . 求证:CN ∥AB . 【类比探究】(2)如图2,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其它条件不变,(1)中结论CN ∥AB 还成立吗?请说明理由.2017-2018学年八年级上期末数学试题(2)一、选择题(每小题3分,共36分)1、下列图形中是轴对称图形的个数是( ) A .4个 B .3个 C .2个 D .1个2、将0.000 015用科学记数法表示为( )A .5105.1-⨯ B .4105.1-⨯ C .3105.1-⨯ D .2105.1-⨯3、分式11-x 有意义,则x 的取值范围是( ) A .1>x B .1≠x C .1<x D .一切实数4、下列计算中,正确的是( )(第26题图1) (第26题图2)(第23题图)4A .423x x x =⋅ B .22))((y x y x y x +=-+C .22)2(x x x x +-=-D . 422333x xy y x =÷5、若等腰三角形的顶角为80°,则它的底角度数为( ) A .80° B .50° C .40° D .20°6、如图,在△ABC 和△DBE 中,BC =BE ,还需要添加两个条件才能使△ABC ≌△DBE ,则不能添加的一组条件是( ) A .AC =DE ,∠C =∠E B .BD =AB ,AC =DE C .AB =DB ,∠A =∠D D .∠C =∠E ,∠A =∠D7、如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =4cm ,△ADC 的周长为15cm ,则BC 的长为( )A .8cmB .11cmC .13cmD .19cm 8、若06)3(2=-+-b a ,则以a 、b 为边长的等腰三角形的周长为( )A .12B .18C .15D .12或159、如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =( )A .60°B .70°C .80°D .90°10、若142++mx x 是完全平方式,则m 的值为( ) A .4 B .-4 C .±2 D .±411、如图,点E 是等腰三角形△ABD 底边上的中点,点C 是AE 延长线上任一点,连接BC 、DC ,则下列结论中: ①BC =AD ;②AC 平分∠BCD ;③AC =AB ;④∠ABC =∠ADC 。

2017-2018学年江苏省泰州市八年级(上)期末数学试卷(解析版)

2017-2018学年江苏省泰州市八年级(上)期末数学试卷一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.(3分)点P(2,﹣3 )关于x轴的对称点是()A.(﹣2,3 )B.(2,﹣3 )C.(﹣2,3 )D.(2,3)3.(3分)下列各组数中,是勾股数的为()A.1,1,2B.1.5,2,2.5C.7,24,25D.6,12,13 4.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有个.9.(3分)若y=x﹣b是正比例函数,则b的值是.10.(3分)一次函数y=2x+1的图象不经过第象限.11.(3分)近似数3.0×102精确到位.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是.14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是.三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是,因变量是;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=,∠DEC=;点D从B向C运动时,∠BAD逐渐变(填“大”或“小”),∠BAD∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.25.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.2017-2018学年江苏省泰州市八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,计18分)1.(3分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.(3分)点P(2,﹣3 )关于x轴的对称点是()A.(﹣2,3 )B.(2,﹣3 )C.(﹣2,3 )D.(2,3)【解答】解:点P(2,﹣3 )关于x轴的对称点是(2,3).故选:D.3.(3分)下列各组数中,是勾股数的为()A.1,1,2B.1.5,2,2.5C.7,24,25D.6,12,13【解答】解:A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.4.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.5.(3分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.二、填空题:(本大题共10小题,每小题3分,计30分)7.(3分)6的平方根为.【解答】解:∵()2=6∴6的平方根为,故答案为:.8.(3分)在,2π,﹣2,0,0.454454445…,﹣,中,无理数的有4个.【解答】解:在,2π,﹣2,0,0.454454445…,﹣,中,无理数有2π、0.454454445…、﹣、这4个,故答案为:4.9.(3分)若y=x﹣b是正比例函数,则b的值是0.【解答】解:由题意得:﹣b=0,解得:b=0,故答案为:0.10.(3分)一次函数y=2x+1的图象不经过第四象限.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.11.(3分)近似数3.0×102精确到十位.【解答】解:近似数3.0×102精确十位,故答案为:十.12.(3分)已知实数x,y满足|3+x|+=0,则代数式(x+y)2018的值为1.【解答】解:∵|3+x|+=0,∴3+x=0且y﹣2=0,则x=﹣3、y=2,所以原式=(﹣3+2)2018=(﹣1)2018=1,故答案为:1.13.(3分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是(4,2).【解答】解:∵点A(﹣4,0),点B(0,1),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移1个单位,∴点B的对应点的坐标为(4,2).故答案为:(4,2);14.(3分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为5.【解答】解:∵62+82=100,102=100,∴62+82=102,∴这个三角形是直角三角形,∴最长边上的中线长为5,故答案为:5.15.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是等腰三角形的底边上的中线、底边上的高重合.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.16.(3分)如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是0<a<2.【解答】解:当P在直线y=2x+2上时,a=2×(﹣1)+2=﹣2+2=0,当P在直线y=2x+4上时,a=2×(﹣1)+4=﹣2+4=2,则0<a<2.故答案为:0<a<2三、解答题(本大题共10小题,共102分.)17.(6分)计算:﹣12018+()﹣2﹣+.【解答】解:﹣12018+()﹣2﹣+=﹣1+4﹣5﹣3=﹣5.18.(10分)求下列各式中的x:(1)(x﹣1)2=16;(2)x3+2=1.【解答】解:(1)(x﹣1)2=16∴x﹣1=±4,即x﹣1=4或x﹣1=﹣4,解得x=5或﹣3;(2)x3+2=1,∴x3=﹣1,解得x=﹣1.19.(8分)图①、图②均为7×6的正方形网格,点A,B,C在格点上.在图①、②中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形.(各画一个即可)【解答】解:(1)有以下答案供参考(每个图画对得(2分),共4分)20.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.【解答】证明:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21.(10分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?【解答】解:(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:;(2)由题意得:w=14x+15(10﹣x)=150﹣x,∵w随x增大而减小,∴当x=3时,W最大值=150﹣3=147,即最多花147元.23.(12分)如图是小李骑自行车离家的距离s(km)与时间t(h)之间的关系.(1)在这个变化过程中自变量是离家时间,因变量是离家距离;(2)小李何时到达离家最远的地方?此时离家多远?(3)请直接写出小李何时与家相距20km?(4)求出小李这次出行的平均速度.【解答】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离,故答案为:离家时间、离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;(3)当1≤t≤2时,设s=kt+b,将(1,10)、(2,30)代入,得:,解得:,∴s=20t﹣10,当s=20时,有20t﹣10=20,解得t=1.5,由图象知,当t=4时,s=20,故当t=1.5或t=4时,小李与家相距20km;(4)小李这次出行的平均速度为=12(km/h).24.(12分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BAD逐渐变大(填“大”或“小”),∠BAD=∠CDE(填“=”或“>”或“<”).(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)当∠BDA=115°时,∠EDC=180°﹣115°﹣40°=25°,在△DEC中,∠DEC=180°﹣∠EDC﹣∠C=115°,由图形可知,点D从B向C运动时,∠BAD逐渐变大,∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,∠B=∠ADE=40°,∴∠BAD=∠EDC,故答案为:25°,115°,大,=;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.25.(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M 1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).26.(14分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.【解答】解:(1)证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=﹣3;若x=0,则y=4,∴A(﹣3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(﹣4,7),设l2的解析式为y=kx+b,则,解得,∴l2的解析式:y=﹣7x﹣21;②D(4,﹣2),().理由:当点D是直线y=﹣2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12﹣2x=8﹣x,解得x=4,∴﹣2x+6=﹣2,∴D(4,﹣2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x,同理可得:△ADE≌△DPF,则AE=DF,即:2x﹣12=8﹣x,解得x=,∴﹣2x+6=﹣,∴D(,﹣),此时,ED=PF=,AE=BF=,BP=PF﹣BF=<6,符合题意.。

人教版2017-2018学年度八年级上册数学期末试题及答案

2017-2018学年度八年级上册数学期末试题注意事项:1.本卷共有 4 页,共有 25 小题,满分 120 分,考试时限 120 分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对 条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交.一、选择题 :(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相 应的格子内.1、点P (-1,2)关于y 轴对称点的坐标是:A .(-1,2)B . (1,-2)C . (1,2)D . (-1,-2)2、医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表示为:A . 41043.0-⨯B . 41043.0⨯C . 5103.4-⨯D . 5103.4⨯3、下列运算中正确的是:A . 10552a a a =+B . 623623a a a =⋅C . 326a a a =÷D . 2224)2(b a ab =-4、等腰三角形的两边长分别为4,8,则其周长为:A . 16B . 20C . 16或20D . 125、如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若△AFD的周长为18,△ECF 的周长为6,四边形纸片ABCD 的周长为:A . 20B . 24C . 32D . 486、已知x 2+kxy +36y 2是一个完全平方式,则k 的值是:A .12B .±12C .6D .±67、下面四个交通标志图中为轴对称图形的是( )A .B .C .D . 8、若分式方程21321-+=+-x a x 有增根,则a 的值是: A .-1 B .0C .1D .29、若分式有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x=310、如图,在△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD 等于( )A .3B .4C .5D .6(第10小题) (第13小题) (第15小题)二、填空题:(每题 3 分,共 18 分.请直接将答案填写在答题卡中,不写过程) 11、.分解因式:2a 2﹣8= .12、化简2422x x x+--= . 13、如图所示,一场暴雨过后,垂直于地面的一棵树在C 处折断,树尖B 恰好碰到地面,经测量AB =43米,∠ABC =30°,则树折断前高 米.14、已知218a =,23b =,则212a b -+的值为 .15、如图,在平面直角坐标系中,已知点A (2,-2),在坐标轴上确定一点B ,使得△AOB 是等腰三角形,则符合条件的点B 共有 个.16、如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点. 且DE=DF ,连接BF ,CE ,有下列说法:①△ABD 和△ACD 的面积相等; ②∠BAD=∠CAD ;③BF ∥CE ;④CE=AE ,其中,正确的说法有 (填序号)三、解答题(应写出文字说明、证明过程或推演步骤.本大题共9小题,满分72分.) 17、(10分)计算(1)0.25×(﹣2)﹣2÷(16)﹣1﹣(14.3-π)0; (2)[(2x +y )2 -(2x -y )2]÷4y .18、(8分)分解因式(1):a 3b ﹣ab 3; (2)x 2-x -6.19、(6分)先化简,再求值:44)22(22-+÷+--x x x x x x x ,其中4-34=x .20、(6分)如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以120海里/时的速度从港口A 出发,向北偏东60°方向航行到达B ,另一海舰以90海里/时的速度同时从港口A 出发,向南偏东30°方向航行到达C ,则此时两艘海舰相距多少海里?21、(7分)(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知,a2+b2的值.22、(7分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么该工程施工费用是多少?23、(7分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:(1)△BED≌△CFD;(2)AD平分∠BAC.24、(10分)如图,已知∠C =∠D =90°,E 是CD 的中点,AB=BC+AD .(1)求证:AE 平分∠DAB ,BE 平分∠ABC ;(2)若AD =9,CD =24,求BE 的长.25. (10分)如图1,在平面直角坐标系xoy 中,已知点A (0,a ),B (b ,0),且a ,b 满足210250a a -+=,点C 在x 轴正半轴上.(1)求A ,B 两点的坐标及∠BAO 的度数;(2)如图2,过点B 作BE ⊥AC 于点E ,交AO 于点F ,连接OE .①求证:BF =AE O E ;②当AE=OE 时,求点C 的坐标.图1 图22017-2018学年度上学期期末教学质量监测八年级数学试题参考答案及评分标准1-10 C C D B B B B B C D11、2(a+2)(a﹣2);12、2;13、12;14、4;15、8;16、①③.17.(1)原式=0.25×1/4÷1/16﹣1 (3分)=1﹣1=0 (5分)(2)原式=[4x2+4xy+y2﹣4x2+4xy﹣y2]÷4y (3分)=8xy÷4y (4分)=2x.(5分)18.(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b)(4分)(2)x2-x-6=(x+2)(x﹣3)(8分)19.原式=(2)2)2)(2)2)(2)2)(2)(4)x x x x x xx x x x x x⎡⎤+-+--⨯⎢⎥+-+-+⎣⎦((((=44x+(4分)当4-34=x时,原式3=. (6分)20.由题意知,∠ABC=90°,AB=2×120=24,AC=2×90=180,(2分)由勾股定理得BC300==(4分)答:此时两艘海舰相距300海里.(5分)21.(1)由a2+b2=6,ab=1,得a2+b2﹣2ab=4,(a-b)2=4,a-b=±2. (3分)(2)a====(5分)a2+b2=(a+b)2-2ab=21111()22222+-⨯⨯=21-=3-1=2.(7分)22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×10+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(5000+3000)=144000(元),答:该工程的费用为144000元.23、解:证明;(1)∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),(2)∵Rt△BED≌Rt△CFD,∴∠B=∠C,∴AB=AC,又∵D为BC的中点,∴AD平分∠BAC.(三线合一).24.(1)证明:延长AE交BC的延长线于F点,∵∠BCD=∠D=90°,∴AD∥BC∴∠DAF=∠AFB在△ADE和△FCE中,D FCD DAF AFB DE CE ∠∠∠∠=⎧⎪⎨⎪⎩==∴△ADE ≌△FCE∴AE=EF ,AD=CF∴AB=BC+AD=BC+CF=BF ,∴BE 平分∠ABC ,BE ⊥AE ,∠AFB =∠BAF∠DAF =∠BAF∴AE 平分∠DAB ; (5分)(2) 设BC=x ,则AB=x +9,由勾股定理得,AE15==, 在Rt △BCE 中,BE 2=222212BC CE x +=+①在Rt △ABE 中,BE 2=(x+9)2 -152,②由①②解得,x =16,BE =20. (10分)25.解(1)由210250a a -++,得(a -5)2=0,(1分)(a -5)2≥0≥0,∴a =5,b =-5,∴A (0,5),B (-5,0) (2分)∴OA=OB∠BOA=90°∴∠BAO=45°;(3分)(2)①∵BE ⊥AC 于点E ,AO ⊥OC 于点O∴∠1+∠BCE=90°,∠2+∠OCE=90°∴∠1=∠2(4分)在△AOE 和△BOD 中,12OA A O B B O E ∠=∠==⎧⎪⎨⎪⎩∴△AOE ≌△BOD (5分)∴OE=OD ,∠AOE=∠BOD∴∠DOE=∠DOF+∠AOE=∠DOF+∠BOD=90°(7分) 由勾股定理得,OE,∴BF =AE+DE =AEE ;(8分)②当AE=OE 时∠AOE=∠OAE∵∠AOE+∠COE=90°,∠OAE+∠OCE=90°, ∴∠COE=∠OCE∴OE=OC (9分)∴AE=CE又∵BE ⊥AC∴AB=CB (10分)由勾股定理得AB∴BC(11分)∴OC=5∴C(5,0). (12分)以上答案仅供参考,不同解法酌情评分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰兴市2017-2018学年八年级数学上学期期末考试试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案写在答题纸上,写在试卷上无效.3.作图必须用2B 铅笔,且加粗加黑.第一部分 选择题(共18分)一、选择题(本大题共有6题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题纸相应的表格中.........) 1.下面四个关于银行的标志中,不是..轴对称图形的是(▲)A B C D2. 若分式2926x x -+的值为0,则x 的取值为(▲)A.3B.3-C.±3D.不存在3.不改变分式的值,使式子221323x y x y++分子中的系数不含有分数,下列四个选项中正确的是(▲)A. 2223x y x y ++B. 22323x y x y ++C. 22369x y x y ++D. 22363x y x y++4. 2933x x x -+-x 的取值范围是(▲)A.x ≥3B.x ≤-3C.-3≤x ≤3D.不存在5.如图,数轴上的点A 表示的数是-1,点B 表示的数是1,CB ⊥AB 于点B ,且BC =2,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为(▲)A.2.8B.2221 D.221 6.一次函数(0)y kx b k =+≠的图像如图所示,则一元一次不等式0kx b -+>的的解集为(▲)A.x >-2B.x <-2C. 2x >D. 2x <(第5题图) (第6题图) (第14题图)第二部分 非选择题(共132分)二、 填空题(本大题共有10题,每题3分,共30分.请将正确答案填写在答题卡相应.....的位置上....) 7. 4的平方根为 ▲ .8. 若点(34)P -,和点()Q a b ,关于x 轴对称,则2a b += ▲ . 9.2+18= ▲ .10.截止到2017年11月份,泰兴市人口总数达到1 212 200人,则1 212 200人精确到10 000人 应表示为 ▲ .11.泰兴某企业有m 吨煤,计划用n 天,为积极响应市政府“节能减排”的号召,现打算多用5天,则现在比原计划每天少用煤 ▲ 吨.12.请写出一个经过点(-1,2)且y 随x 的增大而减小的一次函数表达式 ▲ . 13. 2(23)32a a -=-,则a 的取值范围是 ▲ .14. 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm ,高为16cm.现将一根长xyy =kx +b O-2DCB A O-11度为25cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是 ▲ cm. 15. 若关于x 的分式方程321x mx -=-的解是正数,则m 的取值范围为 ▲ . 16. △ABC 是等腰三角形,腰上的高为8cm ,面积为40cm 2,则该三角形的周长是 ▲ cm. 三、解答题(本大题共有小题,共102分.请在答题纸指定区域作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:(323)(3223) ; (2)解方程:34533262x x x x -+=++.18.(本题满分8分)化简并求值:223242a a a a a a ---÷++,其中32a =-.19.(本题满分8分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足. 试说明:DE =DF .20. (本题满分8分)如图,△ABC .(1)用直尺和圆规作∠A 的平分线所在的直线1l 和边BC 的垂直平分线2l (要求:不写作法,保留画图痕迹);(2)设(1)中的直线1l 和直线2l 交于点P ,过点P 作PE ⊥AB ,垂足为点E ,过点P 作PF⊥AC交AC 的延长线于点F .请探究BE 和CF 的数量关系,并说明理由.21. (本题满分10分)随着交通的飞速发展,中国的铁路运输能力得到大幅度提升.已知泰州距离南京大约180千米,乘坐动车可以比乘坐长途大巴节省40分钟.若动车平均速度比长途大巴提升了50% ,请分别求出动车和长途大巴的平均速度.22. (本题满分10分)已知实数a b c 、、27|2(1)0a b c -+-+-=.(1)求a b c 、、的值;(2)判断以a b c 、、为边能否构成三角形?若能构成三角形,判别此三角形的形状,并求出三角形的面积;若不能,请说明理由.23. (本题满分10分)如图,△ABC 中,AC =BC ,∠C =90°,点D 是AB 的中点.(1)如图1,若点E 、F 分别是AC 、BC 上的点,且AE =CF ,请判别△DEF 的形状,并说明理由;(2)若点E 、F 分别是CA 、BC 延长线上的点,且AE =CF ,则(1)中的结论是否仍然成立?请 说明理由.图1 备用图24. (本题满分10分)如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中. 图2中,线段AB 、线段CD 分别表示容器中的水的深度h (厘米)与倒入时间t (分钟)的函数图像.(1)请说出点C 的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等? (3)如果甲容器的底面积为10cm 2,求乙容器的底面积. 图1 图225. (本题满分12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224233231(3)2311(31)-=-=-+=.善于动脑的小明继续探FCEAt h )(厘米)D432110A BC究: 当a b m n 、、、为正整数时,若222)a b m n +=+,则有222(2)+22a b m n mn =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若23(3)a b m n =+,请用含有m n 、的式子分别表示a b 、,得:a = ▲ ,b = ▲ ;(2)填空:133-( ▲ - ▲ 23);(3)若265(5)a m n +=+,且a m n 、、为正整数,求a 的值.26. (本题满分14分)如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B . (1)求直线1l ,2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ▲ ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ▲ ),点D 的坐标为(m , ▲ );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值.备用图1 备用图2八年级数学参考答案及平分标准一、 选择题:1-6:D A C A C D 二、 填空题7.2±; 8.-10 ;9. 4210. 61.2110⨯;11. ()5m m n n -+;12.略 ;13. a ≤32; 14. 5cm ;15.m >2且m ≠3;16.205+205+三、 解答题:17.(1)原式=18-12…………………………………………………………………………(4分)=6;………………………………………………………………………………(2分)(2)解方程,得:x =2,……………………………………………………………………(5分)经检验:……………………………………………………………………………(1分) 18.原式=2-2aa +………………………………………………………………………………(6分) 当32a =-时,原式=7………………………………………………………………(2分)19.方法不唯一,可以用三线合一结合角平分线的性质说理,也可以利用“等边对等角”证明三角形全等. …………………………………………………………………………(8分)20.(1)一个作图2分,2个共4分,如果画图痕迹不清晰,酌情扣1分;如果只作出了∠A 的平分线(射线)不扣分. ………………………………………………(4分)(2)相等(1分);证明:PBE PCF ≅△△…………………………………………(3分).21.解:设大巴的平均速度为x 千米/小时,则动车的速度为1.5x 千米/小时, 根据题意,得:……………………………………………………………………(2分) 18018021.53x x -=,………………………………………………………………(7分)解得:x =90,……………………………………………………………………(8分)当x =90时,1.5x =135. …………………………………………………………(9分)答:……………………………………………………………………………………(10分)22.(1)7521a b c ===,,;……(6分)(2)直角三角形;面积为72.………(4分)23. (1)△DEF 是等腰直角三角形.………………………………………………………(1分)连接CD ,证明AED CFD ≅△△,………………………………………………(3分)所以:DE =DF ,∠ADE =∠CDF ,所以∠EDF =∠ADC =90°,所以△DEF 是等腰直角三角形. …………………………………………………(5分)(2)仍然成立………………(1分);方法同(1)…………………………………(3分).24.(1)点C 的纵坐标的实际意义是乙容器中原有的水的深度是5cm ;…………………(2分)(2)直线AB 的函数关系式为:520h t =-+;…………………………………………(2分)直线CD 的函数关系式为: 2.55h t =+.………………………………………………(2分)将联立得方程组,得:5202.55h t h t =-+⎧⎨=+⎩,解得:210t h =⎧⎨=⎩所以10分钟后,两容器内水得深度相等. ………………………………………………(1分)(3)因为容器甲的底面积为10cm 2,所以容器甲中原有的水的体积为1020200⨯=cm 2,而容器乙中水的深度的增加值为15510-=cm ,所以容器乙的底面积为2001020÷=cm 2,………………………………………………………………………………………(3分)25.(1)223a m n =+,2b mn =;……………………………………………………………(4分)(2)21343=(13)--;…………………………………………………………………(4分)(3)225a m n =+,62mn =;因为a m n 、、为正整数,所以=1=3m n ,, 或者=3=1m n ,.当=1=3m n ,时,46a =;当=3=1m n ,,14a =.26.(1)直线123l y x =:,直线25l y x =-+:;……………………………………………(4分)(2)x <0或x >5;…………………………………………………………………………(3分)(3)①2()3C m m ,, (5)D m m +,-;(1分+1分)②当m <0时,22(5)263m m m -+--=,解得:m =-3;当0<m <5时,22(5+)263m m m -+-=,解得:m =-12,舍去; 当m >5时,22[(5)]263m m m --++=,解得:274m =.……………(2分+1分+2分)。

相关文档
最新文档