大气边界层概述(1)
大气边界层的垂直结构_解释说明以及概述

大气边界层的垂直结构解释说明以及概述1. 引言1.1 概述大气边界层是指大气与陆地或海洋接触的那一部分,它对于气候系统以及人类活动具有重要的影响。
大气边界层垂直结构的研究是了解大气运动、传输过程和能量交换的关键所在。
通过深入了解大气边界层的垂直结构,我们可以更好地理解和预测天气现象,并对环境保护和工业污染控制等方面提供科学依据。
1.2 文章结构本文将首先介绍大气边界层的定义和特征,包括其高度范围、温度和湿度变化规律以及风速和风向变化特点等。
然后,我们将讨论影响大气边界层垂直结构的因素,如地表状况、太阳辐射、大尺度环流等。
随后,我们将介绍常用的测量方法,包括探空观测、激光雷达和卫星遥感等技术手段。
在此基础上,我们将解释说明垂直结构中温度、湿度、风速和风向变化的规律,并探讨热力过程对垂直结构的影响机制。
接下来,我们将概述现有的研究成果,介绍典型的研究案例并总结其结果和讨论。
最后,我们将对当前研究进行评估,指出研究中存在的不足之处,并展望未来可能的发展方向。
1.3 目的本文旨在全面了解大气边界层垂直结构,并提供一个综合性的概述。
通过对该领域的深入探索和分析,我们可以更好地理解大气运动、能量交换和风险传播等过程,并为相关学科的发展提供科学依据。
此外,本文还旨在总结现有研究成果并揭示其中不足之处,为未来进一步深入研究提供参考和指导。
2. 大气边界层的垂直结构2.1 定义和特征大气边界层是指地球表面上方高度大约为0-10公里之间的一层大气区域,与其上方的自由大气相隔开来。
它是地球上最接近地面的一层大气,并且具有明显的特征和变化。
大气边界层的垂直结构可以分为以下几个层次:地面边界层、混合层、风向风速级和逆温层等。
- 地面边界层:位于地表附近,高度约为0-1公里。
在这一层中,空气受到地表摩擦的作用而发生湍流运动,形成了强烈的垂直湍流混合,在这个过程中热量、湿度和颗粒物等物质被混合扩散。
- 混合层:位于地面边界层之上,高度约为1-3公里。
台风形成的大气边界层过程

台风形成的大气边界层过程引言台风是一种强烈的热带气旋,对于许多沿海地区来说都是一种常见的自然灾害。
了解台风形成的过程对于预测和防范台风具有重要意义。
台风形成的过程包括大气边界层的一系列复杂变化。
本文将探讨台风形成过程中大气边界层的关键环节。
大气边界层的概述大气边界层是指地球表面与自由大气之间的区域,它对于气候模式和天气系统的形成至关重要。
大气边界层的特征包括温度、湿度、气压和风速的变化。
在台风形成过程中,大气边界层的变化起着重要作用。
大气边界层的结构大气边界层通常可以分为三个层次:地面层、混合层和准静止层。
1.地面层:指离地表约1.5公里以下的区域,受到地表影响最为显著。
地面层的温度和湿度变化较大。
2.混合层:位于地面层之上,高度约为1.5公里至4公里。
混合层内的气体混合程度较高,温度和湿度的变化相对较小。
3.准静止层:位于混合层之上,高度约为4公里至15公里。
准静止层内的气体流动较为缓慢,温度和湿度的变化相对较小。
台风形成的过程台风形成的过程需要满足一系列气象条件和动力过程。
1. 气象条件台风形成的气象条件包括足够高的海水温度、弱的垂直风切变和足够的湿度。
这些条件有助于产生热带扰动,为台风的形成提供了基础。
2. 热带扰动热带扰动是台风形成的前兆。
当气象条件合适时,海洋表面上的热量会导致空气的上升,形成一个低压区域。
这个低压区域会吸引周围空气进一步上升,并逐渐形成一个热带扰动。
3. 热带扰动的增强热带扰动在与海洋表面的相互作用中逐渐增强。
海水蒸发导致热量释放到大气中,进一步加强了热带扰动。
此时,热带扰动会逐渐形成一个闭合的环流,也称为热带低压。
4. 台风的形成当热带低压进一步发展并且达到一定标准时,它会被升级为台风。
台风的形成与大气边界层的变化密切相关。
大气边界层的水汽能量提供了台风形成所需的燃料。
4.1 气流的对称性台风形成过程中,大气边界层内的气流逐渐变得对称。
气流的旋转围绕着台风的中心,并且逐渐向上升高。
大气边界层

大气边界层气流过地面时,地面上各种粗糙元,如草、沙粒、庄稼、树木、房屋等会使大气流动受阻,这种摩擦阻力由于大气中的湍流而向上传递,并随高度的增加而逐渐减弱,达到某一高度后便可忽略。
此高度称为大气边界层厚度,它随气象条件、地形、地面粗糙度而变化,大致为300~1000米。
直接受到地表作用力影响的大气对流层,有时也称为行星边界层。
这些作用力包括摩擦,加热,蒸发,蒸散和地形影响等。
大气边界层的厚度随时间空间变化而有明显差异,可由数百公尺至一,二公里。
大气边界层之上成为自由大气。
白天地表受到太阳照射加热,温度升高;晚上则因为地表长波辐射冷却作用而降温,使得接近地表的气温呈现日变化,这种日变化是陆地上大气边界层的主要特征。
由于海水的比热大,以及海洋上层海水强烈的混合作用,使得海水表面温度日变化不明显,所以海上大气边界层的日变化也不明显。
气温日变化的振幅大小随着高度的增加而很快减小,自由大气的日变化则很小。
乱流旺盛也是大气边界层的重要特性。
无论在陆上或海上,在高压区域因为气流沉降,边界层厚度通常比在低压区小。
在陆上高压区域,大气边界层的日夜演化,结构常比较清晰,主要包括混合层,剩余层和稳定边界层。
日出后地表受热,热空气上升,冷空气下降,对流逐渐加强,各种性质近乎均匀的混合,古称之为混合层,也称为对流边界层。
在混合层内为不稳定的大气,其乱流主要有对流作用主导。
日出后混合层很快发展,到了下午一,二点左右,混合层高度达到最高。
日落后,地表受热停止,使得混合层内的乱流强度减弱,原来为不稳定的大气,逐渐转为中性的大气;此为白天混合层的残余,故称之为剩余层。
日落后,地表以长波辐射冷却,逐渐降温,在地表形成逆温,发展成为夜间地面逆温层,这一层大气非常稳定,故称之为稳定边界层,层内的乱流强度很微弱。
在稳定边界层之上即为剩余层。
夜间地面的风通常是微风或静风,但在稳定边界层顶常会出现很强的风速,这种现象称为夜间低层喷流。
无论在混合层或稳定边界层,从地表到约十分之一边界层厚度附近的热通量,水气通量和应力随高度的变化不大,这一层被称为地面层,或等通量层。
边界层的概念和特点

边界层的概念和特点边界层是指在地球物理学中,大气界面和地面之间的一层气体。
在气象学上,边界层是指从地面到一定高度范围内,风速、温度、湿度等各种大气参数发生显著变化的区域。
边界层的高度通常为未来数小时预报所需要的范围内。
1. 逐渐递减的风速:在边界层内,风速逐渐递减。
开始时,风速最大并且逐渐降低。
具体的风速变化取决于地面和大气层的性质和情况。
2. 温度和湿度梯度:边界层内的温度和湿度呈现出明显的梯度变化。
一般来说,地面处温度最高,高层温度逐渐降低。
除此之外,空气湿度在边界层内也会发生变化。
具体变化也是因地而异的。
3. 乱流增大:边界层内的乱流比较显著。
在这里空气流动不是平稳的,而是发生着强烈的乱流。
气体不能在水平方向上自由扩散,而是在各种水平方向逐渐混合。
4. 光学特性不同:由于边界层内存在着大量悬浮的尘埃和气体,它具有不同于上层大气的光学特性。
这使得大气边界层对光的透过率发生了变化。
边界层在气象、环境科学、气候变化等领域具有重要意义。
较为典型的是它与交通工具有关的影响。
由于边界层内的风速变化大,乱流强,而车辆在受到这种影响的同时会发生摩擦热,从而可以推测车辆的燃油效率、稳定性和舒适性。
在电力行业,边界层的变化也会影响线路的温度和表面附着物的变化,从而影响电力传输的效率和稳定性。
同样,边界层的湿度和风速也会对农业和林业造成影响。
总之,边界层是一个非常重要和复杂的概念。
对于气象学家、大气化学家、环境工程师、天气预报员、交通工程专家等专业人士来说,了解边界层的基本原理、特点和影响就显得尤为重要。
第9章 大气边界层

?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(1)混合层(ML)
• 混合层主要生成机制是对流,所以在晴天,ML的 发展依 赖于地面的太阳加热。(?) • 混合层顶部的稳定层作用?---顶盖,限制对流---卷挟带 • 整个混合层的风都是次地转风,风速分布?(风速向下递 减,在近地面处趋近于零) • 水汽混合比随高度增加而减小,为什么? • 大部分污染物是靠近地球表面
风
垂直输运 厚度
表面层中近似为对数风速廓线,通常 为次地转的,并与等压线相交
湍流占优势 变化于100米到3公里之间,陆上有日 变化
几乎是地转的
平均风和积云尺度占优势 变化小,在8-18公里之间, 时间变化慢
进一步体会边界层重要性:
每天预报实际上是边界层预报; 污染物积聚在边界层中; 雾发生在边界层中; 气团实际上是地球不同部分大气边界层;
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域
大气层中的边界层与城市气候效应

大气层中的边界层与城市气候效应大气是地球上最外层的气体环境,也是维持生命存在的重要条件之一。
大气层分为几个不同的层次,其中最接近地球表面的一层称为边界层。
边界层是大气与地球表面的相互作用区域,对于城市气候效应产生着重要影响。
本文将探讨大气层中的边界层与城市气候效应之间的关系。
一、大气边界层的定义与特征大气边界层是大气与地面之间的交界层,其厚度通常为1000米到3000米之间。
边界层内的气流运动受到地面摩擦力的影响,表现出较为复杂的现象。
边界层内的风速逐渐减小,温度逐渐上升,湿度逐渐下降。
此外,边界层还存在着较为强烈的湍流运动,这种湍流运动具有扩散、混合以及垂直上升和下沉的特点。
二、城市气候效应对边界层的影响城市作为人类活动集聚的地方,其特殊的建筑、道路和人造物体对边界层的运动产生了直接影响。
城市气候效应指的是城市与其周围地区相比,气象要素发生的差异和变化。
下面将分别以温度、风速和湿度等因素来探讨城市气候效应对边界层的影响。
1. 温度影响城市地表由于建筑、道路、水泥等人为结构的影响,使得城市表面的辐射热吸收和释放增加。
因此,城市边界层内的温度比周围地区要高。
高楼大厦和狭窄的街道使得日间的辐射热被束缚在城市内部,形成了热岛效应。
夏季热岛效应尤为显著,使得城市内部比边界层外的地区温度高出数度。
2. 风速影响城市中的高层建筑和大量的人造结构会阻挡风流,使得城市边界层内的风速较边界层外低。
高层建筑产生了阻风效应,导致城市中的空气湍流减弱,风速减小。
这种风速差异导致城市边界层内的污染物扩散速度减慢,容易造成空气污染。
3. 湿度影响城市中广泛使用的人工制造物体如水泥、沥青等不具备自然的水汽蒸发能力,使得城市边界层内的湿度明显低于边界层外的地区。
城市内的水分蒸发能力降低,导致湿度相对较低。
另外,城市中大规模的混凝土建筑会使得蒸发率减小,降水量减少。
三、城市规划与边界层调控针对城市气候效应对边界层的影响,城市规划和设计应该充分考虑边界层特性以及环境保护的原则,实施合理的调控措施。
大气边界层概述

夜间边界层温度垂直分布的演变
2001年1月27日-28日逆温生消的演变过程
300
250
高 200 度 150
1999/10/5 08:00,北京 露点和大气温度垂直分布
不稳定
稳定(逆温)
不稳定边界层风、温廓线
稳定边界层风、温廓线
夜间稳定边界层比起白天的对流边界层来有显著的不 同,特别是,夜间经常在很低的高度上出现较强的逆温, 严重阻碍了物质和能量的扩散。因此研究夜间逆温层的演 变规律,尤其是确定逆温层顶的高度如何随时间演变,是
生态边界层示意图
一个关键的问题是如何定义边界层的上界,这也是一 个很困难的问题。有时,上界很明显,例如逆温盖,在盖 子以下大气受下垫面影响很大,而在盖子以上则未受影响。 但在通常情况下这种明显的界限是不存在的,下垫面的作 用随高度的增加只是缓缓减弱。一般地,类似于流体动力 学中边界层厚度的定义,定义大气边界层的上界为在这个 界面上 ,由地面作用导致的湍流动量通量以及热通量均减 小到地面值的很小一部分,例如1%。但有时 也以逆温层顶 作为大气边界层上界。
大气边界层概述
王成刚 大气物理系
与流体力学中称固壁附近的边界层为“平板边界层”、 “机翼绕流边界层”等类似,大气边界层也常常被称为“行 星边界层”,因为它是处于旋转的地球上的。当大气在地表 上流动时,各种流动属性都要受到下垫面的强烈影响,由此 产生的相应属性梯度将这种影响向上传递到一定的高度,不 过这一高度一般只有几百米到一二公里,比大气运动的水平 尺度小得多。在此厚度范围内流体的运动具有边界层特征。 在大气边界层中的每一点,垂直运动速度都比平行于地面的 水平运动速度小得多,而垂直方向上的速度梯度则比水平方 向上的大得多。此外,由于地球自转的影响,水平风速的大 小在随高度变化的同时,风向也随之变化。
第1章 大气边界层

z
=
z0
时仍满足对数分布规律:
∂V ∂z
z = z0
=
V* kz0
又∵
∂V ∂z
β = z = z0
V* z01−ε
∴ β = kz0ε
l
=
kz
⎛ ⎜ ⎝
z z0
⎞−ε ⎟ ⎠
(1.13) (1.14)
6
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
(u
+
iv)
=
−if
ug + ivg
(1.22)
为求解方便,取
x
轴平行等压线,则
∂p ∂x
=
0, vg
=
0 (即此时地转风只有东西向分量),有
kz
∂2V * ∂z 2
−
ifV
*
=
−ifug
(1.23)
或
kz
d 2V * dz 2
− ifV *
=
−ifug
(1.23)’
方程的性质:一元二次非齐次常微分方程
) >> ∂ (
) ∂(
,
)。
∂z
∂x ∂y
5).湍流运动明显,地气相互作用强烈,调整较快,呈准定常。
4 Ekman 层的主要特点
2
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
1).湍流摩擦力,气压梯度力和科氏力同等重要。 2).物理量垂直梯度>>水平梯度。 3).下垫面对自由大气的影响通过该层向上输送。 4).风向、风速随高度的变化呈 Ekman 螺线规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 三种边界层方案(YSU、MYJ和ACM2)模拟的与观测的 (a)西固二水厂和(b)兰州站的地面温度(2m)日变化对比
8
Time
(b)兰州站(52889)
Time
(a)西固二水厂
111111111111111111.................22222222222222222.2555555666666777777-----------------100111200111200112026048226048226482 111111111111111111111111........................222222222222222222222222555555556666666677777777------------------------000111220001112200011122258147032581470325814703
d. Mellor-Yamada Nakanishi and Niino Level 2.5 PBL (5). Predicts sub-grid TKE terms. New in Version 3.1.
e. LES PBL: A large-eddy-simulation (LES) boundary layer is available in Version 3.
面临的主要问题 (1)非均匀和复杂下垫面边界层 (下垫面性质非均匀分布、
地形起伏和山脉的作用、 城市大气边界层) (2)特殊地区边界层特征 ( 干旱荒漠区的大气边界层特 征 、 青藏高原寒区边界层特征 ) (3) 沙尘暴等特殊天气边界层特征 (4)湍流如何在模式中更合理的参数化
22
1.什么是传统机械按键设计?
16
温度/水汽廓线仪
微波辐射仪连续测量从 地面到高空10km范围的 空气温度和水汽廓线及 分辨率较低的液态水廓 线和云底温度。它由5个 水汽通道(22-30GHz) 和7个温度通道(5159GHz)组成。
17
土壤、植被参数监测系统
土壤热通量(5 cm and 80 cm )
体积含水量(5, 10, 20, 40 and 80 cm )
14
兰州大学半干旱气候与环境观测 站 ——SACOL站
边界层气象要素
边界层气象要素的测 量包括:1,2,4,8, 12,16,32m的风速、 气温和相对湿度;8m的 风向;地表红外温度; 大气压;降水量。
15
涡动通量观测系统
三维超声速风速温度计 和红外线气体分析仪测 量地表的动量、感热、 潜热和CO2通量。这对 于研究陆面-大气间湍流 通量的输送、理解黄土 高原半干旱区的水循环 和能量交换过程具有重 要作用。
4
一、研究内容
大气边界层研究的主要内容包括: 1.大气边界层中的湍流特征; 2.边界层中各物理量(如动量、热量、水汽等)的
湍流输送;气溶胶、二氧化硫、二氧化碳等的湍 流扩散; 3.大气边界层内风、温度、湿度等气象要素的铅直 分布及随时间的变化规律—相似理论; 4. 近地层湍流大气微结构、湍流统计特征; 5. 大气边界层的数值模拟。
262
260
264
262
266
264
266
268
268
270
270
Temperature(K) Temperature(K)
272
272
274
274
276
276
ACM2
ACM2
278
MYJ
278
MYJ
YSU
280
280
YSU
OBS
OBS
282
282
284
➢边界层参数化方案对近地面温度的影响
温度场:热岛效应;西部盆地辐合形成 的冷中心;MYJ方案“最暖” 风场:南北两山下沉气流形成山风环流; 南山高度较高,下沉气流强于北山。
5
二、研究意义
大气边界层是地球—大气之间物质和能量交换的桥梁。 地表提供的物质和能量主要消耗和扩散在大气边界层 内。全球变化的区域响应以及地表变化和人类活动对 气候的影响均是通过大气边界层过程来实现的。
大气边界层的物理知识,对大尺度天气过程的演变、 长期预报和气候理论等问题的研究,都是很重要的。
2
ACM2
0.4
R=0.614
MYJ simulation
MYJ
0.5
R=0.514
0.4
0.3
0.2
0.1
0.0
0.05
0.10
0.15
0.20
0.25
0.30
OBS SO concentration(mg/m3)
2
0.3
ACM2 simulation
0.2
0.1
0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30
b. Mellor-Yamada-Janjic scheme: Eta operational scheme. Onedimensional prognostic turbulent kinetic energy scheme with local vertical mixing (2).
c. Quasi-Normal Scale Elimination PBL (4). A TKE-prediction option that uses a new theory for stably stratified regions. New in Version 3.1.
13
3. Deardorff的大涡模拟实验
用大涡模拟技术研究了大气边界层,并且在对流和中性 两种情况下对Wanggara观测资料进行了实时模拟 。
(1)温度、风速随高度的变化
(2)感热通量、水汽通量随高度变化
(3)边界层高度的日变化
Deardorff J W. Numerical investigation of neutral and unstable planetary boundary layer
边界层气象学教程
1
研究内容
研究意义
大气边界层
研究方法
研究进展
2
高度(km) 3000
散逸层
大气边界层?
500
atmospheric boundary layer
400 热成层 300 200
100
90
80 70 中间层
(+) (+)
中间层顶 (-)
电离层
高度(km)
60
50
平流层顶
每升高100m, 气温降低0.65℃
从20世纪70年代开始,随着大气探测技术和研究方法的发 展,特别是雷达技术,飞机机载观测,系留气球和小球探 空观测以及卫星遥感和数值模拟等手段的出现,大气边界 层的研究开始从近地层向整个边界层发展。
21
制约因素: 受到观测系统和探测技术的制约,也受到数学、物理学等 基础支撑学科发展水平的影响,并随着它们的发展而发展。
温度(2, 5, 10, 20 and 50 cm )
18
四、边界层气象学发展史
1905年 Ekman从地球流体力学度提出了
Ekman螺线 ,并形成了PBL的概念
1961年,B1ackadar引 入混合长假定,用数值 模式成功地得到了中性 时大气边界层具体的风
矢端的螺旋图象。
1954年 Monin—Obukhov相似性理论,建立了 近地层湍流统计量和 平均量之间的联系。
Deardorff J W. An explanation of anomaloualy large Reynolds stresses withi the convective planetary boundary layer
Deardorff J W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer
19
1、ABL物理结构的认识
1971 Clark用澳大利亚著名试验资料给出了实测稳定大气 边界层气象要素的典型空间分布特征
1976 Kaimal根据美国Minnesota试验资料给出了ABL气象要 素的垂直分布
2、湍流理论
1915 Taylor首次提出地球大气的湍流现象
1935 Taylor提出湍流各向同性理论-统计理论基础
1941 苏联Kolmogorov量纲分析原理应用于湍流-“2/3律”
3、闭合理论
1932 Prantdtl根据混合长理论提出一阶闭合方案
1951 Rotta 2阶
1975 Yamada等 1.5阶
1978 Andre 3 阶
20
4、相似理论 1954 M-O相似理论-近地层 1961 Kazanskill,Rossby相似,建立了近地层与边界层之间的关系 1970 Deardorff 提出了混合层相似原理 1971 Wyngaard将相似理论推广到对流边界层 1984 Neuwstadt 提出局地相似理论-稳定边界层
40 平流层
30
20
(+)
O3
臭氧 吸收
10
对流层顶
对流层
(-)
0
200
250
300
3
绝对温度(K)
➢ 定义 定义1. 大气的最低部分受地面影响的一层,平均厚度为地面 以上1km范围,以湍流运动为主要特征。
定义2. 靠近地球表面、受地面摩擦阻力影响的大气层。从地 表向上,其厚度随地面粗糙度和风速的增大或大气不稳定度 的增强而增加,变化的范围在三四百米到一两千米之间。因 该层内空气运动明显受地面摩擦作用的影响,又称摩擦层。 就整个地球大气而言,该层只不过是紧贴地球表面的很薄的 一层大气。一般而言,行星和行星大气之间,都存在因和行 星表面摩擦而引起的这种边界层,故又称行星边界层。 表征现象:观察从烟囱冒出的烟气,其行迹紊乱,烟云边缘 不断向下风向扩展。