酶制剂的生产及在食品工业中的应用
工业酶制剂范围

工业酶制剂范围
工业酶制剂是一类具有生物催化功能的生化制品,是酶经过加工复配后的具有催化功能的生物制品,主要用于催化不同应用场景下的各种化学反应。
工业酶制剂具有催化效率高、专一性好、反应条件温和、能耗低、化学污染较少等特点,因此其应用范围非常广泛。
目前,工业酶制剂已广泛应用于洗涤、纺织、饲料、食品、果汁加工、乳制品、皮革、造纸、医药、化工等行业。
在食品工业中,酶制剂被用于面包烘烤业、面粉深加工、果品加工业等。
在纺织工业中,酶制剂被用于织物退浆、牛仔布整理、真丝脱胶等。
在饲料工业中,酶制剂被用于提高饲料的营养价值和降低饲养成本。
此外,工业酶制剂还被应用于能源开发、环境保护等方面。
总之,工业酶制剂的应用范围不断扩大,应用技术水平也不断提高。
随着科学技术的不断发展,工业酶制剂将会在更多领域得到应用,发挥更大的作用。
酶学在食品加工和制药工业中的应用

酶学在食品加工和制药工业中的应用酶学是一个研究酶的性质、功能以及酶与宿主的相互作用的学科。
酶是可以催化化学反应并能够在反应结束后复原的生物大分子,因此酶学在食品加工和制药工业中有着广泛的应用。
本文将探讨酶学在食品加工和制药工业中的应用。
一、食品加工中的酶学应用在食品加工中,酶学应用最广泛的是酶制剂。
酶制剂是指酶或复合酶制剂,通过添加到食品中达到改善食品质量、提高产量、降低生产成本等目的。
食品加工中应用最广泛的酶制剂有四种,分别为淀粉酶、蛋白酶、果胶酶和葡萄糖氧化酶。
1、淀粉酶淀粉酶是将淀粉分解为较小的单糖分子的酶。
在面包、饼干、薯片等食品加工中,通过添加淀粉酶可以使得淀粉更容易被水解,从而加速淀粉的分解和转化,提高产品质量。
2、蛋白酶蛋白酶是一类能够分解蛋白质的酶。
在奶酪、肉类加工等行业中,通过添加蛋白酶,可以加速蛋白质的降解,使得产品更加柔软、易于消化。
3、果胶酶果胶酶是一种分解果胶的酶。
在果汁、果酱等加工中,通过添加果胶酶,可以降低黏度,改善流动性,提高产品质量。
4、葡萄糖氧化酶葡萄糖氧化酶是一种氧化葡萄糖的酶。
在酿造啤酒和白葡萄酒等酒类加工中,通过添加葡萄糖氧化酶,可以促进葡萄糖的氧化,从而加速酒的发酵过程,提高酒的产量。
二、制药工业中的酶学应用在制药工业中,酶学应用广泛,主要应用有两个方面。
其一是使用酶作为药物,其二是使用酶作为生产药品的催化剂。
1、酶作为药物在制药工业中,酶通常被用于治疗某些疾病。
比如,胰岛素是一种可溶性蛋白质激素,可以帮助控制血糖浓度。
其作用机制是将体内的葡萄糖转化为能够进入细胞内进行能量代谢的糖原。
在制造胰岛素时,加入蛋白酶后可以去除胶原质和其他蛋白质,最终得到纯的胰岛素。
2、酶作为催化剂在制药工业中,酶通常被用作生产药品的催化剂。
比如,青霉素就是一种利用酶作为催化剂制备的药品。
它是由多种微生物共同合成的,其中最关键的是青霉素酰化酶。
经过反复的筛选和优化,现已经能够大规模合成青霉素了。
酶制剂在食品工业中的应用.ppt

与淀粉酶和甜味剂生产有关的酶制剂 3.4提高食品生产效率 海产品及水产品如虾、鱼和蛤蜊等在含甘氨酸、溶酶菌和食盐的溶液中浸渍5min后,沥干,在5℃下保存9d后,无异味、无色泽变化。
2.4与面包生产有关的酶制剂
2.5与啤酒有关的酶制剂
淀粉酶工业上应用酶制剂已有数十年的 , 淀粉加工用酶所占比例达到15%,是酶制剂最 大的市场。近年来淀粉酶类耐热性大大提高, 并已通过基因工程技术改善其品质。特别要提 到的是一系列新的酶制剂的发现和应用。
酶制剂主要用于食品加工和制造业方面,
它在对提高食品生产效率和产量、改进产品 风味和质量等方面有着其它催化剂所无法替 代的作用。另外,酶制剂在日化、纺织、环 境保护和饲料等行业也有着较广泛的应用。
酶是一类具有专一性生物催化能力的蛋 白质,因此作用条件非常温和。许多酶所 催化的反应从动植物最初生长时就开始了, 当它被作为食品时,其体内酶的催化作用 仍然继续进行着。
如动物体死后,其合成代谢停止,而分解 代谢加快,因此就会导致组织腐败,但这 可能也会改善某些食品原料的风味。在大 多数成熟的水果中,由于某些酶的增加, 会使得其呼吸速度加快,淀粉转变为糖, 叶绿素发生降解,细胞体积快速增加。这 些变化,对于水果风味的改善是有益的; 而对蔬菜来讲,叶绿素的降解则是有害的。
蛋白质在食品加工中,不仅具有营养的功
能还具有各种物理功能,提高这类功能将会 增加其附加值,要达到这个目的需要利用蛋 白酶类。为了以蛋白质水解后的产物作为生 产氨基酸系列的调味品,就必须把蛋白质彻 底分解为氨基酸。
在崇尚天然追求健康的背景下,全世界
生产面包使用的酶制剂正逐年增加。使用 酶制剂可使面包更柔软,抑制淀粉老化, 延长保存期。现在面包厂为了改善揣好的 生面团中各成分的性质,使用了各种酶制 剂,主要是淀粉酶蛋白酶,半纤维素酶, 葡萄糖氧化酶,抗坏血酸氧化酶等。
酶工程技术在食品工业中的应用

3、拓展应用领域:酶工程技术的运用领域将不断扩大,除了传统的食品加工 和制造领域外,还将在保健品、医药、环保等领域得到更广泛的应用。
4、食品安全与质量控制:利用酶工程技术建立更加快速、准确、灵敏的食品 安全检测方法和技术,提高食品质量安全水平。
5、适应环保要求:在酶工程技术的运用过程中,应注重环保和可持续发展, 减少对环境的污染和资源浪费。
谢谢观看
关键词:酶工程技术、食品工业、食品加工、食品改性、质量检测、蛋白质工 程技术、基因工程技术。
酶工程技术在食品工业中的应用
1、食品加工
酶工程技术在食品加工方面具有广泛的应用。例如,在奶制品行业,酶工程技 术可以用来水解乳糖,降低乳糖含量,使产品更加适合糖尿病患者食用。此外, 在肉类加工中,酶工程技术可以嫩化肉质,提高产品的口感和品质。
应用前景展望
随着科技的不断进步和人们健康意识的提高,酶工程技术在食品工业中的应用 前景十分广阔。未来,酶工程技术将在以下几个方面得到进一步发展:
1、开发新的酶制剂:随着生物技术的不断发展,将会有更多具有特殊功能的 酶被发现和开发出来,为食品工业提供新的加工助剂和添加剂。
2、提高生产效率:通过基因工程等手段对酶进行改造和优化,提高其催化效 率和稳定性,降低生产成本,从而提高酶工程技术的生产效率和经济效益。
2、食品改性
酶工程技术还可以用于食品改性。例如,通过使用特定的酶,可以破坏食物中 的某些成分,从而改变食物的口感、营养价值等。此外,酶还可以将果蔬加工 成具有特殊风味的食品,如柑橘类水果罐头中添加柚皮苷酶,可降解果胶,提 高产品的口感和透明度。
3、食品质量检测
酶工程技术也可以应用于食品质量检测。例如,在食品安全检测方面,酶联免 疫分析技术(ELISA)利用酶与抗体或抗原的反应,可快速检测食品中残留的 农药、兽药、毒素等有害物质。
食品加工中酶技术的应用与研究

食品加工中酶技术的应用与研究酶是一类生物催化剂,是一种可以加速化学反应的蛋白质物质。
在食品加工中,酶技术的应用不仅可以提高食品的质量和口感,还可以延长食品的保质期和改善食品的营养价值。
因此,酶技术在食品加工中的应用和研究具有重要的价值。
首先,酶技术在食品加工中的应用主要体现在面团发酵、果汁榨取和乳制品生产等方面。
在面团发酵过程中,酵母酶能够加速葡萄糖的发酵,产生二氧化碳,使面团膨胀发酵,提高面食的松软口感。
而在果汁榨取中,果胶酶可以将果汁中的果胶分解,提高果汁的流动性;而在乳制品生产中,乳酸菌酶能够将乳糖转化为乳酸,使牛奶发酵成酸奶。
其次,酶技术在食品加工中还具有重要的应用价值。
首先,在酶技术的帮助下,传统加工过程可以更加高效和环保。
以淀粉为例,对于淀粉的加工,传统的方法是研磨、糖化和酒精发酵。
而通过酶技术,可以直接在淀粉中加入淀粉酶,使淀粉分解为糖,然后利用糖来进行发酵,简化了生产工艺,提高了生产效率。
其次,在新产品的开发中,酶技术也发挥着重要作用。
通过酶技术,可以将一些天然物质转化为可以被人体利用的物质,开发出具有高营养价值的食品,满足消费者的需求。
此外,酶技术在食品加工中的研究也是一个重要的方向。
一方面,通过对酶的研究,可以深入了解酶的工作机制和影响因素,从而更好地利用酶技术。
例如,研究酶的最适工作条件和催化速度,可以优化加工工艺,提高生产效率。
另一方面,通过对酶的研究,可以开发出更高效、更稳定的酶制剂。
应用于食品加工过程中的酶制剂,需要具备高活性、长效性和稳定性等特点,而这些特点的实现,则需要通过研究来进行。
综上所述,酶技术在食品加工中的应用和研究具有重要的意义。
通过酶技术,可以提高食品的质量和口感,延长食品的保质期和改善食品的营养价值。
同时,酶技术也可以简化加工工艺,提高生产效率,满足市场需求。
因此,对于酶技术在食品加工中的应用和研究,我们应该予以更多的关注与支持。
酶制剂在食品加工中的应用及效果浅析

酶制剂在食品加工中的应用及效果浅析酶制剂是由生物学反应产生的一种催化剂,它能够加快化学反应速度,促进食物中营养物质的消化和吸收。
应用酶制剂在食品加工中,既可以提高原料的利用率,同时还能够改善食品品质,具有很广泛的应用前景。
本文将从酶制剂的应用、效果、常见应用效果举例、安全性问题分析和结论等方面,深入分析酶制剂在食品加工中的应用及效果。
一、概述酶制剂在食品加工中的应用A. 什么是酶制剂酶制剂是从生物中获得的一种催化物质,用来加速化学反应,将化学变化率提高数千倍,从而加快化学反应的速率。
酶制剂广泛应用于食品加工、医药生产等领域,极大地提高了加工的效率。
它们具有良好的生物学稳定性、效率高、选择性强等特点,对环境和人体没有严重的危害,并且很容易得到,用于生产加工无异味罐头、咖啡、冰淇淋等食品。
B. 酶制剂的种类及作用1. 淀粉酶:淀粉酶主要用于加工谷物类食品、糖果和面包等食品,可以将淀粉分解成较短链的糖类,促进食品的消化和吸收改善口感;2. 蛋白酶:蛋白酶主要用于肉制品、乳制品、酱油酱豆等食品加工,可以将蛋白质水解为氨基酸,从而增加食物的味道和香气。
3. 脂肪酶:脂肪酶主要用于肉制品、饼干巧克力和乳制品等食品加工,可以将脂肪水解成甘油和脂肪酸,使食品更容易消化吸收,提高食品的品质和味道。
C. 酶制剂在食品加工中的应用范围酶制剂广泛应用于食品加工中,可以用来改良口感、提高品质、缩短生产周期、提高利用率等。
它们被应用于面包、点心、咖啡、巧克力、肉制品、酱油、酱豆等食品的生产中,达到了很好的效果。
二、酶制剂在食品加工中的效果分析A. 酶制剂提高食品品质的作用酶制剂可以促进食品成分的释放、变性和结构性的改变,这有助于提高食品的口感、质感、色泽和风味。
酶制剂可以降低食品的酸度,从而使食品味道更柔和、鲜美。
酶制剂可以使食品中的糖分转化为酒精,这种工艺可以制作出包括啤酒、葡萄酒、酸奶、酸枣汤等在内的一系列饮品。
B. 酶制剂促进食品消化的作用酶制剂可以使原料中的淀粉、蛋白质、脂肪等成分转化为更容易消化吸收的小分子,从而提高食品的营养价值和利用率。
酶在食品工业中的应用

酶在食品工业中的应用一、酶制剂应用于果蔬加工1.提高果桨出汁率。
在提高果蔬出汁率方面应用最广泛的酶是果胶酶,其次是纤维素酶。
果浆榨汁前添加一定量果胶酶可以有效地分解果肉组织中的果胶物质,使果汁粘度降低,容易榨汁、过滤,从而提高出汁率。
纤维素酶可以使果蔬中大分子纤维素降解成分子量较小的纤维二糖和葡萄糖分子,破坏植物细胞壁,使细胞内溶物充分释放,提高出汁率。
并提高可溶性固形物含量。
2.澄清果蔬汁。
果浆经榨汁、筛滤后,果汁中仍存在一些非常细小却能导致果蔬汁产生混浊的聚合物和固体颗粒。
如果胶物质、淀粉、其他多糖类物质等,它们是引起果蔬汁混浊和褐变的主要原因。
如果在新鲜果蔬汁(或经杀菌后的果蔬汁)中加入果胶酶、纤维素酶、α―淀粉酶、木瓜蛋白酶(可视混浊成分选择一种或几种),可将上述物质大部分降解为半乳糖醛酸、葡萄糖、氨基酸和其他产物,使果蔬汁澄清,同时可明显提高澄清汁的营养成分和稳定性。
3.增香、除异味。
果蔬汁在加工过程中,咸味物质损失,但风味前体物质仍然存在。
研究表明,单萜类化合物是嗅觉最为敏感的芳香物质。
果蔬中大多数单萜物质均以吡喃、呋喃糖以键合态形式存在,并且在果蔬成熟后仍有大量这种键合态的萜类未被水解。
通过添加β―葡萄糖苷酶可释放果蔬汁中的萜烯醇,增加香气。
有实验证明。
α―L―吡喃李耱苷酶或o―L―呋喃阿拉伯糖苷酶可释放水果中的沉香醇和香叶醇,使果汁增香。
酶制剂在柑桔果汁中可除去由柚皮苷和柠檬苦素类似物而引起的苦味。
如添加柚皮苷酶可使柚皮苷水解成野黑樱素和鼠李糖;加入柠檬营素脱氢酶可把柠檬酸苦素氧化成柠檬苦素环内酷。
从而达到脱苦降苦的目的。
二、酶制剂应用于焙烤食品</p>1.淀粉酶在面包中的应用。
在面包粉中添加适量的。
α―淀粉酶,可使面包体积较空白面包提高10%左右,这是因为烘烤面包时,α―淀粉酶水解部分淀粉。
生成糊精和糖,降低了面团粘度,导致面团膨胀率提高,焙烤后面包体积增大,面包心柔软度变好。
酶工程原理及其在食品工业中的应用

6.连接酶(合成酶)(Ligase or Synthetase)
❖ 合成酶,又称为连接酶,能够催化C-C、CO、C-N 以及C-S 键的形成反应。这类反应 必须与ATP分解反应相互偶联。
酶 ❖ 酶催化的反应: ❖ 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙
氨酸
工业酶制剂的命名和分类
分类: 碳水化合物酶、蛋白质酶、酯酶和其他酶 如 α-淀粉酶 高转化率糖化酶(葡萄糖淀粉酶)
一些习惯归类: 1、动物酶、植物酶、微生物酶 2、胞内酶和胞外酶 3、溶液酶和固定化酶
二、酶制剂的生产
1.包括菌种的来源、产酶菌种的分离、筛 选、育种和酶的发酵生产等。
4.超滤
借助于超滤膜将不同相对分子质量的物 质分离的技术,是在一定的正压力或负压 力驱动下,将料液强制通过一定孔径的超 滤膜,部分小分子的溶质和溶剂透过膜而 成为超滤液,而大分子的酶和蛋白质等物 质被截留,从而达到分离纯化的目的,也 可用于酶液的浓缩和脱色。超滤膜截留的 颗粒直径范围为2~200nm,相当于相对 分子质量1000~500000。
1、固体培养发酵
培养基以麸皮、米糠等为主要原料加入其它营养成 分,经灭菌、接产酶菌株,在一定条件下发酵,目 的获得淀粉酶和蛋白酶,如酒曲生产。
2、液体深层发酵
液体培养基,在发酵容器中,经灭菌、冷却接入产 酶细胞,在一定条件下发酵,是目前酶生产的主要 方法。
3、固定化细胞发酵
三、微生物细胞的破碎
胞外酶:能分泌透过细胞壁到细胞外部的 酶。
❖ A + B + ATP + H-O-H ===A B + ADP +Pi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶制剂的生产及在食品工业中的应用谢玉锋生物工程学院学号:12909002摘要:酶制剂由于其高效专一性的特点应用越来越广泛,微生物酶制剂的发酵生产也越来越引起了人们的关注。
本文主要从酶制剂的发酵、纯化、稳定性进行了分析,并且对微生物酶制剂在食品工业生产中的主要应用做了论述。
关键词:酶制剂;发酵;纯化;应用酶是一种生物催化剂,催化效率高、反应条件温和和专一性强等特点,已经日益受到人们的重视,应用也越来越广泛。
生物界中已发现有多种生物酶,在生产中广泛应用的仅有淀粉酶、蛋白酶、果胶酶、脂肪酶、纤维素酶、葡萄糖异构酶、葡萄糖氧化酶等十几种。
利用微生物生产生物酶制剂要比从植物瓜果、种子、动物组织中获得更容易。
因为动、植物来源有限,且受季节、气候和地域的限制,而微生物不仅不受这些因素的影响,而且种类繁多、生长速度快、加工提纯容易、加工成本相对比较低,充分显示了微生物生产酶制剂的优越性。
现在除少数几种酶仍从动、植物中提取外,绝大部分是用微生物来生产的。
1 主要酶制剂及产酶微生物酶制剂可以由细菌、酵母菌、霉菌、放线菌等微生物生产。
微生物产生的各种酶以及它们在食品工业中的应用见下表微生物酶制剂及其在食品工业中的应用酶用途来源淀粉酶普鲁兰酶蛋白酶脂肪酶纤维素酶果胶酶葡萄糖氧化酶乳糖酶凝乳酶水解淀粉制造葡萄糖、麦芽糖、糊精水解淀粉成直链低聚糖软化肌肉纤维、啤酒果酒澄清、动植物蛋白质水解营养液用于制作干酪和奶油,大米、大豆、淀粉制造用于大米、大豆、玉米脱皮,提高果汁澄清度等用于柑桔脱囊衣,饮料、果酒澄清、防止食品褐变制造转化糖,防止高浓度糖浆中蔗糖析出,防止糖乳糖酶缺乏的乳品制造,防止乳制品中乳糖析出细菌、霉菌细菌、霉菌细菌、霉菌酵母、霉菌霉菌霉菌霉菌、细菌霉菌霉菌1.1微生物酶制剂生产1.1.1菌种选择任何生物都能在一定的条件下合成某些酶。
但并不是所有的细胞都能用于酶的发酵生产。
一般说来,能用于酶发酵生产的细胞必须具备如下几个条件:酶的产量高。
优良的产酶细胞首先具有高产的特性,才有较好的开发应用价值。
高产细胞可以通过筛选、诱变、或采用基因工程、细胞工程等技术而获得;容易培养和管理,要求产酶细胞容易生长繁殖,并且适应性较强,易于控制,便于管理;产酶稳定性好。
在通常的生产条件下,能够稳定地用于生产,不易退化。
一旦细胞退化,要经过复壮处理,使其恢复产酶性能;利于酶的分离纯化。
发酵完成后,需经分离纯化过程,才能得到所需的酶,这就要求产酶细胞本身及其它杂质易于和酶分离;安全可靠。
要使用的细胞及其代谢物安全无毒,不会影响生产人员和环境,也不会对酶的应用产生其它不良的影响。
1.1.2产酶培养酶的发酵生产是以获得大量所需的酶为目的。
为此,除了选择性能优良的产酶细胞以外,还必须满足细胞生长、繁殖和发酵产酶的各种工艺条件,并要根据发酵过程的变化进行优化控制。
1) 固体培养法固体培养是以皮麸或米糠为主要原料,另外添加谷糠、豆饼等为辅助原料。
经过对原料发酵前处理,在一定的培养条件下微生物进行生长繁殖代谢产酶。
固体培养法比液体培养法产酶量高。
同时还具有原料简单、不易污染、操作简便、酶提取容易、节省能源等优点。
缺点是不便自动化和连续化作业,占地多、劳动强度大、生产周期长。
2) 液体培养法液体培养法的优点是:占地少、生产量大、适合机械化作业、发酵条件容易控制、不易污染,还可大大减轻劳动强度。
其培养方法有分批培养、流加培养和连续培养三种,其中前两种培养法广为应用,后者因污染和变异等关键性技术问题尚未解决,应用受到限制。
在深层液体培养中,pH值、通气量、温度、基质组成、生长速率、生长期及代谢产物等都对酶的形成和产量有影响,要严加控制。
深层培养的时间通过监测培养过程的酶活来确定,一般较固体培养周期(1~7d)短,仅需1~5d。
与固体培养法相比,3) 产酶条件的控制提高微生物酶活性和产率的途径是多方面的,其中控制营养和培养条件是最基本也是最重要的途径。
改变培养基成分,常常能提高酶活性,改变培养基的氢离子浓度和通气等条件,可以调节酶系的比例,改变代谢调节或遗传型,可以使酶的微生物合成产生成千倍的变化。
上述的这些措施,对于微生物产酶的影响并非孤立的,而是相互联系、相互制约的。
所谓最佳培养条件与培养基的最佳组成,都是保证酶合成达到最高产率的控制条件。
通常,菌种的生长与产酶未必是同步的,产酶量也并不是完全与微生物生长旺盛程度成正比。
为了使菌体最大限度地产酶,除了根据菌种特性或生产条件选择恰当的产酶培养基外,还应当为菌种在各个生理时期创造不同的培养条件。
①培养基a 碳源碳水化合物是微生物细胞的重要组成材料、能源和酶的组成部分,也是多种诱导酶的诱导物。
不同微生物要求的碳源不同,是由菌种自身的酶系(组成酶或诱导酶)所决定。
综合起来有如下几点值得注意:葡萄糖、蔗糖等易利用的碳水化合物,对促进细胞的呼吸与生长有利。
高浓度下,对产酶有抑制作用,如蛋白酶和α-淀粉酶等就是如此,也有与此相反的情况;有些微生物不能利用复杂的碳水化合物,必须使用葡萄糖等简单的碳水化合物时,可采用流加法等避免出现"葡萄糖效应"现象;有时近似的碳源,也会因某些原因,出现不同的产酶情况,如黄青霉(葡萄糖氧化酶产生菌)在甜菜糖蜜作碳源时不产酶,以甘蔗糖蜜作碳源时产酶量显著增高。
此外,碳源类型除了影响产酶外,还能影响微生物胞内酶与胞外酶的比例。
b 氮源氮源是蛋白质的组成成分,它能起到诱导和阻遏酶形成的作用。
在蛋白酶生产中,蛋白质能诱导酶的形成,而它的水解物就不及它本身好。
氨基酸的作用变化很大,有的有利,有的抑制。
氮源对于微生物生长与产酶有几方面影响:既促进微生物生长,又促进产酶;只促进微生物生长,不促进产酶;只促进产酶,不促进微生物生长;既不促进微生物生长,又不促进产酶。
在严格选定氮源类型之后,还应当注意碳源浓度,即碳氮比、无机氮与有机氮的浓度比例、无机氮的种类等。
在曲霉淀粉酶的生产过程中,如果碳源不足,不能得到充分的能源,菌丝体对于氮源的消耗显著降低,影响淀粉酶的合成。
c 无机盐有些金属离子本身就是酶的组成部分。
盐对产酶的效应比较复杂,现分述如下:磷:多数情况对产酶有促进作用,在蛋白酶中比较明显;钙:Ca2+对蛋白酶有明显的保护和稳定作用。
Ca2+对α-淀粉酶的作用更为明显,纯化的α-淀粉酶在50℃以上容易失活,但有大Ca2+存在时,酶的热稳性增加。
不同的菌种热稳性提高到65℃至90℃。
pH的稳定范围也从5~7扩展至5~11。
Na+、Cl-对提高枯草杆菌液化型α-淀粉酶的耐热性的作用尤为显著。
添加适量的Mg2+,Zn2+,Mn2+,Co2+,Fe2+等能提高蛋白酶和α-淀粉酶等的产酶量。
在一种情况下,一种离子可能是活化剂,在另一种情况下却成了抑制剂。
不同的酶往往需要不同的离子作它的活化剂。
d 生长因子多种氨基酸维生素是微生物生长与产酶的必要成分,有些维生素甚至就是酶的组成部分。
麦芽根、酵母膏、玉米浆、米糠、曲汁、麦芽汁、玉米废醪中均含有不同程度的微量生长因素,对促进产酶有显著效应。
磷酸酰环己六醇也是微生物的重要生长因素之一。
②培养条件a pH值同一菌种产酶的类型与酶系组成可以随pH值的改变而产生不同程度的变化。
如用黑曲霉使腺苷酸氧化脱氨转变为肌苷酸时,培养在pH值6.0以上的环境中,果胶酶活性受到抑制,pH值改变到6.0以下就形成果胶酶。
pH值还决定酶系的组成,泡盛曲霉突变株在pH 值6.0培养时,以产生α-淀粉酶为主,糖化型淀粉酶与麦穿糖酶产生极少。
在pH值2.4条件下培养,转向糖化型淀粉酶与麦穿糖酶的合成,α-淀粉酶的合成受到抑制。
在蛋白酶生产中,pH低有利于酸性蛋白酶生成,pH高有利于中性和碱性蛋白酶生成,这是相一致的。
产酶pH值常同酶反应最适pH值接近,但酶反应的最适pH也许对某些酶最不稳定,在这种场合下只能选择尽量靠近的pH值。
在有些情况下,由于pH不同,出现胞内和胞外酶的产量比例不同,如α-半乳糖苷酶在PH4.8至6.0范围内,其胞内酶占74%。
当pH升高时胞外酶的比例就升高。
b温度温度对产酶的影响有以下几种情况:产酶温度低于生长温度。
酱油曲霉蛋白酶合成的适宜温度在28℃,比生长温度40℃条件下产酶量高出2~4倍。
在异淀粉酶生产中也有这种情况;产酶温度与生长温度一致。
如链霉菌合成葡萄糖异构酶约在30℃;产酶温度高于生长温度。
例如产生糖化型淀粉酶的适宜温度在35℃,而它生长的最适温度为30℃。
链霉菌产生淀粉酶的温度以35℃合适,而生长温度则以28℃最好;此外,温度还能影响酶系组成及酶的特性。
例如,用米曲霉制曲时,温度控制在低限,有利于蛋白酶合成,而α-淀粉酶活性受到抑制。
c通气和搅拌以枯草杆菌产生α-淀粉酶为例。
将细菌的生理时期划分为三个阶段:菌体繁殖期,接种后5~13h;芽胞产生期;产酶期。
这三个阶段对于供氧要求是不同的。
如果第二时期维持缺氧状态,有助于抑制芽胞形成,第一和第三生理时期充分供氧,可以促进菌体繁殖并提高产酶量,证明不同时期,对通气量要求不同。
d种龄过老或过嫩,不但延长发酵周期,而且会降低产酶量。
一般种龄在30至45h的酶活性最高。
1.2 分离提纯微生物酶的提取方法,因酶的结合状态与稳定性的不同,对产品的纯度要求不同,而有一定的区别。
如果提取到的酶是一种可溶于水的复杂混合物,则需要进一步加以纯化。
适用于大生产的提纯方法总是以降低成本、提高效能而同时又提高产品纯度和质量为前提,事先应当经小试验规模充分对比,从中加以选择。
理想的提纯方法应满足二个条件,即比活性的提高与总活性的回收高,但实际上往往难以兼得。
1.2.1 盐析法盐析剂中性盐的选择:MgS04,(NH4)2S04,Na2SO4,NaH2P04是常用的盐析用中性盐。
其盐析蛋白质的能力随蛋白质的种类而不同,但一般说来这种能力按上述顺序依次增大。
一般可以说含有多价阴离子的中性盐其盐析效果好。
但实际上(NH4)2S04是最多用的盐析剂,这是因为它的溶解度在较低温度下也是相当高的。
有的酶只有在低温下稳定,而低温下Na2S04,NaH2P04的溶解度很低,常常不能达到使这种酶盐析的浓度。
盐析剂用量的决定:不同的酶使之盐析沉淀的盐析剂用量是不同的,随共存的杂质的种类和数量而有所差异。
因此适当的使用量只能根据实践决定,并根据数据可以绘制出盐析曲线。
pH和温度的影响:蛋白质的溶解度在无盐存在下,以在等电点时为最小,在稀盐状态时大致也是这样。
但在高浓度的中性盐溶液中,原有蛋臼质溶液pH的影响不大。
实际上溶液最终的pH为盐析剂所决定。
在无盐或稀盐溶液中,温度低,蛋白质的溶解度也低,但在高浓度盐溶液中,温度高则蛋白质的溶解度反而低。
因此一般说来盐析时不要降低温度,除非这种酶不耐热。