常见磁传感器及原理和应用

合集下载

磁传感器的工作原理及应用论文

磁传感器的工作原理及应用论文

磁传感器的工作原理及应用论文1. 引言磁传感器是一种能够检测磁场的器件,它对于现代电子设备和工业自动化系统具有重要的作用。

本论文将介绍磁传感器的工作原理及其在各个领域的应用。

首先,我们将简要介绍磁传感器的基本原理,然后分别探讨磁传感器在汽车行业、医疗领域和工业自动化中的应用。

2. 磁传感器的基本原理磁传感器通过测量磁场的变化来实现检测功能。

其基本原理可以分为以下几种:•磁电效应:包括霍尔效应、磁阻效应和磁电效应。

这些效应都是基于材料在磁场下产生的电学特性变化,通过测量电学信号的变化来检测磁场。

•磁光效应:利用磁场对光学性质的影响,通过测量光信号的变化来检测磁场。

•磁化效应:包括磁阻、磁感应、磁滞等磁性材料的磁学特性变化,通过测量磁学信号的变化来检测磁场。

3. 磁传感器在汽车行业的应用磁传感器在汽车行业中具有广泛的应用,主要包括以下几个方面:•车速传感器:利用磁传感器检测车轮的转速,从而计算出车辆的速度。

•方向盘角度传感器:通过检测磁场的变化来测量方向盘的角度,从而实现车辆的操控。

•制动系统传感器:利用磁传感器检测制动系统的磁力变化,实时监测制动器的工作状态。

•倒车雷达:通过利用磁传感器检测车辆周围的磁场变化来实现倒车雷达功能,提供安全的倒车辅助。

4. 磁传感器在医疗领域的应用磁传感器在医疗领域中也有广泛的应用,主要包括以下几个方面:•心脏起搏器:通过磁传感器检测患者心脏的节律,实现自动调节起搏器的功能。

•病人监测设备:通过利用磁传感器检测磁场的变化来监测病人的体温、呼吸等生命体征。

•手术器械定位:利用磁传感器检测手术器械的位置和角度,帮助医生进行精确的手术操作。

•磁共振成像(MRI):利用磁传感器检测磁场的变化来观察人体内部的结构,实现高分辨率的磁共振成像。

5. 磁传感器在工业自动化中的应用磁传感器在工业自动化领域中也有广泛的应用,主要包括以下几个方面:•位置和姿态检测:通过利用磁传感器检测磁场的变化来检测物体的位置和姿态,实现精确的定位和导航功能。

磁传感器的工作原理和应用

磁传感器的工作原理和应用

磁传感器的工作原理和应用磁传感器是一种能够检测和测量磁场的设备,其工作原理基于磁感应效应。

本文将介绍磁传感器的工作原理、种类及其广泛的应用领域。

一、磁传感器的工作原理磁传感器通常由一个敏感元件和一个信号处理单元组成。

敏感元件负责感应磁场并产生相应的电信号,信号处理单元则对这些电信号进行处理和解读。

常见的磁传感器敏感元件包括磁电阻传感器、霍尔效应传感器和磁感应线圈传感器。

它们基于不同的磁感应效应来实现对磁场的感应和测量。

1. 磁电阻传感器:磁电阻效应是指在磁场作用下,材料的电阻发生变化。

磁电阻传感器利用这一效应来感应周围磁场。

当磁场的方向和强度变化时,敏感元件内部的电阻也会相应变化。

通过测量电阻的变化,可以确定磁场的强度和方向。

2. 霍尔效应传感器:霍尔效应是指当载流子在磁场中运动时,由于洛仑兹力的作用,电子在晶格中堆积。

这种堆积使得电子运动轨迹发生偏移,进而引起电阻的变化。

霍尔效应传感器利用这一效应来感应磁场。

当磁场的方向和强度变化时,霍尔传感器中的电阻也会发生相应变化。

通过测量电阻的变化,可以得到磁场的信息。

3. 磁感应线圈传感器:磁感应线圈传感器由线圈和磁芯组成。

当线圈中通过电流时,磁芯的磁导率会发生变化,进而改变线圈的自感和互感。

这种变化可以用来感应周围的磁场。

通过测量线圈中的电流和电压变化,可以确定磁场的强度和方向。

二、磁传感器的应用由于磁传感器能够对磁场进行高精度的感应和测量,因此在许多领域都有广泛的应用。

1. 汽车行业:磁传感器在汽车行业中应用广泛,例如车速传感、转向角传感和刹车传感等。

通过对磁场的感应和测量,磁传感器能够实现对车辆运行状态的监测和控制。

2. 电子产品:磁传感器在电子产品中也有重要的应用。

例如,智能手机中的指南针和陀螺仪就是利用磁传感器来感应和测量磁场,实现屏幕旋转和导航功能。

3. 工业自动化:磁传感器在工业自动化中起着关键的作用。

例如,磁传感器可用于检测机械设备的位置和方向,实现自动控制和监测。

磁电传感器的原理和应用

磁电传感器的原理和应用

磁电传感器的原理和应用前言磁电传感器是一种能将磁场信号转换成电信号的传感器,广泛应用于各种领域。

本文将介绍磁电传感器的原理和应用。

一、磁电传感器的原理磁电传感器的工作原理基于磁效应,主要包括霍尔效应、磁电阻效应和磁敏电容效应。

1. 霍尔效应霍尔效应是最早被发现和广泛应用的磁电效应之一。

当电流通过一块导电材料时,若将其放在磁场中,磁场就会对电子流的平衡状态产生影响,从而引起一侧电子浓度的变化,产生电压差。

这个电压差被称为霍尔电压。

2. 磁电阻效应磁电阻效应是指材料在外加磁场下,其电阻发生变化的现象。

常见的磁电阻效应有巨磁电阻效应(GMR)和隧道磁电阻效应(TMR)。

它们的本质是通过控制材料中磁性局域区域的磁结构来改变电阻值。

3. 磁敏电容效应磁敏电容效应是指材料在磁场下,电容值发生变化的现象。

这种效应通常是通过改变材料中的磁性局域区域的电容性质来实现的。

二、磁电传感器的应用磁电传感器由于其高灵敏度、响应速度快、易于集成等特点,在许多领域得到了广泛的应用。

1. 汽车工业磁电传感器在汽车工业中起到了重要的作用。

例如,在车辆换挡控制中,霍尔效应传感器被用于检测离合器和制动踏板的位置,从而实现自动换挡;在刹车控制中,磁敏电容效应传感器被用于检测刹车片的磨损程度,提供刹车片更换的提示。

2. 电子设备磁电传感器广泛应用于各种电子设备中。

例如,在手机中,磁敏电容效应传感器被用于检测翻盖状态和磁盖位置,实现手机的自动睡眠和唤醒功能;在音频设备中,磁电阻传感器被用于控制音量调节,实现用户友好的操作体验。

3. 工业自动化磁电传感器在工业自动化领域中发挥着重要的作用。

例如,在生产线上,磁敏电容效应传感器被用于检测零件的位置和运动状态,实现精准的定位和控制;在机械加工过程中,磁电阻传感器被用于检测工件的尺寸和形状,实现自动化的加工过程控制。

4. 医疗器械磁电传感器在医疗器械领域中应用广泛。

例如,在磁共振成像(MRI)中,磁电阻传感器被用于检测磁场强度和方向,提供精准的成像结果;在心脏起搏器中,霍尔效应传感器被用于检测心脏的电信号,实现有效的心脏节律调整。

磁电式传感器原理及应用

磁电式传感器原理及应用

磁电式传感器原理及应用磁电式传感器是一种基于磁效应的传感器,能够通过测量电流和磁场之间的关系来检测和测量电流、位移、速度、角度等物理量。

该传感器通过电流和磁场之间的相互作用,将物理量转化为电信号,从而实现对物理量的测量和控制。

磁电式传感器具有高精度、高分辨率、高灵敏度、可靠性高等优点,因此在许多领域得到广泛应用。

磁电式传感器的工作原理主要是基于磁电效应,即通过磁场作用于磁电材料产生的电势差来测量物理量。

常用的磁电材料有铁磁材料、反铁磁材料和压电材料等。

当磁电材料受到外界磁场的影响时,内部的电荷分布状态发生改变,从而在材料的两侧产生电势差。

根据外加电场的方向,可以将磁电材料分为电压系数和电流系数两种类型。

磁电式传感器的应用非常广泛,主要包括以下几个方面:1. 电流测量:磁电式传感器可以通过测量电流所产生的磁场来实现对电流的测量。

在电力系统中,磁电式传感器被广泛用于测量电流,用于电能计量、故障检测和保护等。

2. 位移测量:通过将磁电材料与磁场探头相结合,可以实现对位移的测量。

在工业自动化领域,磁电式传感器被广泛应用于位移传感器、液位传感器、角度传感器等领域。

例如,在机械加工中,可以通过位移传感器来监测工件的位移,从而实现对机械加工的控制和调整。

3. 速度测量:磁电式传感器可以通过测量旋转物体所产生的磁场来实现对速度的测量。

在汽车行业中,磁电式传感器被广泛用于测量车速,用于车速表和巡航控制系统等。

4. 角度测量:通过将磁电材料与磁场探头结合,磁电式传感器可以实现对角度的测量。

在航空航天、机器人、自动化控制等领域,磁电式传感器被广泛应用于角度传感器、导航传感器、姿态传感器等领域。

5. 磁场测量:磁电式传感器可以通过测量磁场对磁电材料产生的电势差来实现对磁场的测量。

在地理勘测、地震监测等领域,磁电式传感器被用于测量地球磁场和地震活动等。

总之,磁电式传感器作为一种重要的传感器技术,具有广泛的应用前景。

随着科技的不断发展和进步,磁电式传感器将更加精确、灵敏地测量和控制物理量,为各个领域的发展做出更大的贡献。

霍尔传感器工作原理

霍尔传感器工作原理

霍尔传感器工作原理引言概述:霍尔传感器是一种常见的磁场传感器,它通过测量磁场的变化来实现对物理量的检测。

本文将详细介绍霍尔传感器的工作原理及其应用。

一、霍尔传感器的基本原理1.1 磁场感应原理霍尔传感器利用霍尔效应,即当导体中有电流流过时,若置于磁场中,会在导体两侧产生电势差。

这是由于磁场对电子的偏转作用导致的。

1.2 霍尔元件的结构霍尔传感器通常由霍尔元件、电源和输出电路组成。

霍尔元件是关键部分,它一般由半导体材料制成,具有特殊的结构,如霍尔元件的两侧分别有N型和P型半导体层,中间是一层绝缘层。

1.3 霍尔元件的工作原理当霍尔元件中有电流流过时,若置于磁场中,磁场会对电子的运动轨迹产生影响,使电子在导体内部聚集或偏转,导致导体两侧产生电势差。

这个电势差可以通过输出电路转化为电压信号,从而实现对磁场的检测。

二、霍尔传感器的类型及特点2.1 线性霍尔传感器线性霍尔传感器输出的电压信号与磁场的强度成线性关系,适用于需要精确测量磁场的应用,如磁场强度测量、位置检测等。

2.2 开关霍尔传感器开关霍尔传感器输出的电压信号在磁场存在时为高电平,无磁场时为低电平,适用于需要检测磁场开关状态的应用,如磁性接近开关、磁性开关等。

2.3 优点和应用霍尔传感器具有灵敏度高、响应速度快、体积小、功耗低等优点。

因此,它广泛应用于汽车电子、工业自动化、电子设备等领域,如车速传感器、转向角传感器、电流检测等。

三、霍尔传感器的工作环境要求3.1 温度要求霍尔传感器对温度的变化比较敏感,因此在使用时要注意工作温度范围,避免超出其允许的温度范围。

3.2 磁场要求霍尔传感器对磁场的强度和方向都有要求,需要根据具体应用选择合适的霍尔传感器。

同时,要避免外部磁场对传感器的干扰,以确保测量结果的准确性。

3.3 电源要求霍尔传感器通常需要外部供电,电源的稳定性对传感器的工作影响较大,应选择稳定的电源,并注意电源电压的匹配。

四、霍尔传感器的优化设计4.1 磁场集中设计通过合理的磁场集中设计,可以提高传感器的灵敏度和精度。

磁电式传感器的原理及应用

磁电式传感器的原理及应用

磁电式传感器的原理及应用引言磁电式传感器是一种常见的传感器类型,广泛用于测量和检测磁场、电流、位移等物理量。

本文将介绍磁电式传感器的工作原理以及一些应用领域。

工作原理磁电式传感器是基于磁电效应工作的,磁电效应是指在外加磁场下材料产生的电磁感应效应。

磁电式传感器一般由磁电材料和传感器结构组成。

磁电材料是传感器的核心部分,它具有磁场敏感性,能够将外加磁场转化为电信号。

常见的磁电材料有磁电晶体、磁电陶瓷等。

传感器结构一般采用薄膜形式,具有高灵敏度和快速响应的特点。

具体来说,磁电式传感器的工作原理如下:1.当外加磁场作用于磁电材料时,磁电材料内部的晶格结构会发生改变。

2.这种晶格结构的改变会引起材料内部的电荷分布发生变化。

3.电荷分布的变化会产生一个电场,进而产生电压差。

4.通过测量电压差的大小,可以确定外加磁场的强度。

应用领域磁电式传感器在许多领域都有广泛的应用,下面列举了一些常见的应用领域:1. 磁场测量磁电式传感器可以用于测量磁场的强度和方向。

例如,在地磁测量中,磁电式传感器可以用来检测地磁场的变化,帮助我们研究地球的磁场分布和变化规律。

2. 电流测量由于电流在传感器周围会产生磁场,磁电式传感器可以用来测量电流的大小和方向。

这在电力系统中非常重要,可以用于电流监测和故障检测。

3. 位移测量磁电式传感器还可以用来测量物体的位移。

通过将磁电传感器与磁体结合使用,可以实现非接触式的位移测量。

这在自动化控制、机器人技术等领域有着广泛的应用。

4. 电子设备磁电式传感器可以用于电子设备中的位置检测、方向检测等功能。

例如,在手机中,磁电式传感器能够检测手机的方向,从而实现屏幕的自动旋转功能。

5. 医疗领域磁电式传感器在医疗领域也有着重要的应用。

例如,可以用于心脏磁场的监测和分析,帮助医生进行心脏病的诊断和治疗。

总结磁电式传感器是一种基于磁电效应工作的传感器,具有广泛的应用。

本文介绍了磁电式传感器的工作原理,以及在磁场测量、电流测量、位移测量、电子设备和医疗领域中的应用。

磁电式传感器的工作原理

磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。

磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。

本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。

二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。

根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。

这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。

根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。

2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。

磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。

磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。

根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。

3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。

磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。

常见的磁电材料包括铁电材料和磁电材料。

电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。

封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。

相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。

4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。

当存在磁场时,磁电材料会产生相应的电场变化。

根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。

磁性传感器的应用及原理

磁性传感器的应用及原理

磁性传感器的应用及原理简介磁性传感器是一种能够感知磁场变化的传感器,广泛应用于许多领域。

本文将介绍磁性传感器的应用和工作原理。

应用领域1. 电子设备•磁性传感器在电子设备中被广泛应用,例如智能手机、平板电脑等。

•它们用于检测手机盖的开闭情况,控制屏幕的亮度和方向等。

•在平板电脑中,磁性传感器可用于控制自动旋转屏幕功能。

2. 汽车行业•汽车行业也是磁性传感器的重要应用领域。

•在车辆中,磁性传感器广泛用于测量速度、位置和方向。

•它们被用于制动系统、转向系统和车辆导航系统中。

3. 工业自动化•在工业自动化中,磁性传感器可以用于检测位置、距离和运动。

•它们可以用于自动控制机器人、流水线和无人驾驶车辆等。

工作原理1. 磁电效应•磁性传感器的工作原理基于磁电效应,即材料在磁场中产生电荷分布的现象。

•当磁场变化时,磁性材料中的电荷分布会发生变化,从而产生电势差。

•磁性传感器利用这个电势差来检测磁场变化。

2. 磁阻效应•磁性传感器中常用的一种技术是磁阻效应,它是基于材料的磁阻随磁场变化而变化的原理。

•利用磁阻效应,磁性传感器可以测量磁场的强度和方向。

•磁性传感器中常用的磁阻效应包括顺磁阻效应和巨磁阻效应。

3. 电感耦合效应•另一种常见的磁性传感器工作原理是电感耦合效应。

•电感耦合效应基于电感器在磁场中的电感值随磁场变化而变化的原理。

•利用电感耦合效应,磁性传感器可以测量磁场的强度、方向和位置。

总结磁性传感器是一种重要的传感器技术,广泛应用于电子设备、汽车行业和工业自动化等领域。

它们的工作原理基于磁电效应、磁阻效应和电感耦合效应。

磁性传感器的应用为我们的生活和工作带来了便利,推动了技术的发展。

随着技术的进步,磁性传感器将有更广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CGS单位制逐渐的被国际单位制取代,在技术领域使用CGS单位制的情形正 逐渐减少。许多科学期刊或国际标准单位已不使用CGS单位制,不过在天文 学的期刊中仍会使用。美国的材料科学、电动力学及天文学中偶尔会使用 CGS单位制。 另外,由于国际单位制的磁通量密度单位特斯拉太大,在日常使用上不便, 一般会使用CGS单位制的对应单位高斯,因此在磁学及其相关领域中仍会使 用CGS单位制。
恒磁通式
磁路系统产生恒定的直流磁场,磁路中的工作气隙固定不变,气隙中的磁通也恒定
不变,感应电势是由于线圈相对于永久磁铁运动时切割磁力线而产生的。
动圈式感应电势: e Blv
在传感器中当结构参数确定后,B、l均为定值,感应电动势e与线圈相对磁场的运动 速度(v或ω)成正比,所以这类传感器的基本形式是速度传感器,能直接测量线速度或 角速度。如果在其测量电路中接入积分电路或微分电路,那么还可以用来测量位移或 加速度。但由上述工作原理可知,磁电感应式传感器只适用于动态测量。
这两个方面市场每年有十几亿美元,其中五大供应商日本Asahi Kasei Microsystems、美国Allegro Microsystems、德国英飞凌、瑞士 Micronas和比利时Melexis N.V.占据80%的市场。
磁传感器的分类
物理原理:磁电感应式传感器,霍尔效应、磁阻效应、巨磁电阻效应、 巨磁阻抗效应、超导量子干涉器、磁致伸缩效应、磁弹性效应等。
常见磁传感器及原理和应用
基本概念
磁通:垂直于某一面积所通过的磁力线的条数,用ф表示,单位韦伯 (Wb)。
磁感应强度 :表示磁场内某点的磁场强弱和方向的物理量,单位是特斯 拉(T)或高斯(Gs)用符号B表示。磁感应强度也叫磁通密度。
磁场强度:将不同的物质放入磁场中,对磁场产生的影响是不同的。不 同的物质在外磁场的磁化作用下将产生不同的附加磁场,此种附加磁场 又必然反过来影响外磁场。外磁场通常是由电流产生,为了反应外磁场 和电流之间的关系,引入一个辅助矢量——磁场强度,用H表示。它也 是用来表征磁场中各点的磁力大小和方向的物理量。它的大小仅与产生 该磁场的电流大小和载流导体形状有关,单位安培/米(A/m)。
磁传感器定义
磁敏传感器是一种能检测磁场并从中提取信息的器件或装置
磁传感器应用领域
罗盘
全球定位
车辆检测
导航 位置传感器
电流传感器
转动位移 通信产品多个汽车应用之中,包括防抱死刹车系统、电子转向与 油门控制、电池管理和汽车传动。
数字罗盘也是磁传感器的重要市场,正在成为平板电脑和手机全球定位系 统(GPS)中的标准器件。例如,iPhone和iPad在行人与车辆导航中使用电 子罗盘,也用于基于位置的服务和增强现实等应用。
磁学量的单位
高斯单位制,又称混合CGS,在此单位制中,凡是电学量如q、I、E、 P、D等都用CGSE制单位,而磁学量如E、M、H都用CGSM制单位。 因而此在单位制中,介电常数ε和磁导率μ都是无量纲的,而且其真空值 μ0=ε0=1。此外B和E的量纲相同。理论物理中经常采用。
国际单位制(SI),基本量为长度、质量、时间和电流,基本单位分 别为米、千克、秒和安培。 E和D量纲不同, ε0=107/(4πc2)库2/ (千克·米);H和B量纲也不同, μ0= 4π ×107千克·米/库2 。
变磁通:
磁路中的工作气隙与磁路磁阻变化,引起磁通变化
旋转型感应电势: 变磁通式传感器对环境条件要求不高,能在-150~+90℃的温度下工作,不影响测量 精度,也能在油、水雾、灰尘等条件下工作。但它的工作频率下限较高,约为50Hz, 上限可达100Hz。
为提高灵敏度,应选用具有磁能积较大的永久磁铁
磁学量的单位
单位制特点: 高斯单位制的特点是电场及磁场的单位相同,方程中唯一有量纲的常 数为光速。 国际单位制是使关于球面的电磁方程会含有4π,关于线圈的则含有 2π,处理直导线的则完全不含π,这样的作法对电机工程应用来说是 最便利的。但高斯单位制会使得关于球面的电磁方程中不含4π或π。
使用情况:
磁电感应式传感器
1831年, 英国Michael Faraday和美国的Joseph Henry 发现的电磁学中最基 本的效应之一------电磁感应现象
e N d N d(BA)
dt
dt
磁通变化率与磁场强度、磁路磁阻、线圈与磁场相对运动的速度有关, 改变其中一个因素都会改变线圈中的感应电势。
H=(B/μo)-M式中B是磁感应强度;M是磁化强度;μo是真空磁导率。在 线性各向同性磁介质中,M与H成正比,即M=xmH,xm是磁介质的磁化 率。于是上式表为B=μo(1+xm)H=μoμrH式中μr=1+xm称为磁介质 的相对磁导率。
磁学量的单位
CGSE,又称静电单位制(electrostatic units)简称ESU 基本量为长度、质量和时间。基本单位为cm、g和s。 通过库仑定律,并令k=1确定电荷单位,库仑。电场强度E、极化强度P和电位 移D量纲都相同。 安培环路定律和法拉第电磁感应定律分别确定磁感应强度B和磁场强度H,量纲 不同,真空中也不相等,真空磁导率μ 0=1/c2。
磁电传感器应用 1、振动测量
2、扭矩测量
3、流量测量
涡轮由导磁系数较高 的材料(如不锈钢2 Cr13、3Cr1 3等)制成。
4、位移测量
5、接近传感器 (探测磁性金属)
6、磁场测量:磁通门
螺线管线圈的电感与它的磁导率有关,而 螺线管磁芯的磁导率以饱和的方式依赖于 外部的磁场,B—H曲线,μ为在某一给 定点曲线的斜率。如果器件在其曲线的 “膝盖”位置受到一个恒定偏置磁场(如 线圈偏置电流),外部磁场的一个微小变 化将引起磁导率的显著变化,因此电感也 发生变化。
CGSM,又称电磁单位制(electromagnetic units)简称EMU ,CGSM 制的 基本量和基本单位与CGSM制的一样,但是确定电磁量单位的物理公式不同。 它是通过安培-毕奥-萨伐尔定律 并令K=1确定电流单位, D和E具有不同的量纲 真空介电常数ε0=1/c2。 但B和H的单位相同,但通常B的单位称为高斯,H的单位称为奥斯特。磁导率μ 是无量纲的。
相关文档
最新文档