LTE网规网优基础

合集下载

LTE无线网络优化要点及方法ppt课件

LTE无线网络优化要点及方法ppt课件

主要差异
• LTE与UMTS网络结构不同、采用的技术不同,导致系统优化过程中接
入、切换等各种流程涉及的参数不同;同时,LTE系统的干扰和UMTS 系统的干扰来源也有较大不同,需要通过不同手段规避;
后续探索
• 目前LTE的网络优化方法和参数主要来自前期的研究成果和试验网的一
些经验总结,后续还需继续加强对网络优化技术的研究,和新工具、新
S1
S1

E-UTRAN eNB
S1
RNC Iub Iub
RNC
eNB
X2
S1
X2


S1接口类似于WCDMA系统中 的Iu接口
X2
eNB

NodeB
NodeB
NodeB
NodeB
X2接口类似于WCDMA系统中 的Iur接口

LTE 功能扁平化,去掉RNC的物理实体,把部分功能下移到 eNodeB,以减少时延,增强调度能力。 采用全IP技术,继续实行用户面和控制面分离,部分功能上移到核心网,以加强移动交换管理。
• 以控制干扰为导向
• 重叠覆盖能确保强的RSRP,但导致吞 吐率明显下降
• 对于LTE, 峰值速率要求SINR 达到25dB
以上,12dB时的速率不及峰值的一半
12
LTE与UMTS优化手段对比
• DT与CQT • 覆盖评估 • 性能评估:接入、切换、掉话、平均吞吐 量 • SON
• PCI自配置 • 自动邻区关系(ANR) • 移动负载均衡优化(MLB) • 移动鲁棒性优化(MRO) • 覆盖与容量优化(CCO)
• 不同点:指标名称、取值有差异
• 参数规划与优化 • 覆盖 • 接入、切换、系统算法 • 不同点:参数的规划、优化原则有所不同, LTE涉及的参数更多

LTE网络基础知识简介

LTE网络基础知识简介

LTE网络基础知识简介目录一、LTE网络概述 (2)1.1 LTE概念及发展历程 (3)1.2 LTE技术优势与演进 (4)二、LTE网络架构 (5)2.1 EPC网络组成 (7)2.2 UTRAN网络组成 (8)2.3 eNB与gNB的关系及切换 (9)三、LTE关键技术 (11)四、LTE网络规划与部署 (12)4.1 需求分析 (13)4.2 网络设计 (14)4.3 部署策略 (16)五、LTE网络测试与优化 (17)5.1 测试目的与方法 (18)5.2 关键性能指标(KPI)分析 (19)5.3 网络优化策略 (20)六、LTE与其他无线通信技术的比较 (22)6.1 与2G/3G的比较 (23)6.2 与Wi-Fi的比较 (24)七、LTE未来发展趋势 (26)7.1 5G技术发展与LTE演进 (27)7.2 IoT与LTE的关系 (28)八、总结与展望 (29)8.1 LTE技术成果总结 (30)8.2 对未来LTE发展的展望 (32)一、LTE网络概述LTE(LongTerm Evolution,长期演进)是一种基于新一代无线通信技术的4G移动通信标准。

它采用了全球通用的频段和编码技术,可以实现高速、低时延、大连接数的移动通信服务。

LTE网络在全球范围内得到了广泛的应用和推广,为用户提供了更加便捷、高效的移动互联网体验。

LTE是3G(第三代移动通信技术)的升级版,相较于3G,LTE在数据传输速度、时延、网络容量等方面都有显著提升。

LTE也是4G(第四代移动通信技术)的基础,两者共享相同的技术规范和频谱资源。

LTE可以看作是4G的一个过渡阶段,为后续5G网络的发展奠定了基础。

高速:LTE网络的最大下行速率可达100Mbps,上传速率可达50Mbps,大大满足了用户的上网需求。

低时延:LTE网络的空口时延较低,一般在10ms左右,用户体验较好。

大连接数:LTE网络具有较高的并发连接能力,可支持数百万人同时在线。

LTE网规网优基础

LTE网规网优基础

Page 8
PCI冲突场景
PCI冲突主要分成PCI碰撞和PCI混淆:

PCI碰撞是指相同PCI的两个或多个同频LTE小区在地理位置上的隔离度过小,使得UE在这两个或多个
小区信号交叠区域无法正常同步。 若服务小区与测量小区的RSRP满足切换门限,且该测量小区与服务小区的邻区同频、同PCI,则有可 能导致切换失败、掉话。这样PCI冲突称为PCI混淆。存在两种场景: A. 满足切换条件的CellB是服务小区CellA的 邻区,且与服务小区的其它邻区CellC同频、 同PCI,eNodeB不能分辨UE测量到服务小 区的哪个邻区,从而导致切换失败,如下 图所示:
Ø增强导频功率; Ø调整天线方向角和下倾角,
使两基站覆盖交叠深度加大, 电缆、定向天线等方案来解 保证一定大小的切换区域;
决;
Ø此外需要注意分析场景和
注意:覆盖范围增大后可能
带来的同邻频干扰
地形对覆盖的影响。
增加天线挂高,更换更高增 益天线。
Page 12
案例-通过路测UE寻找弱覆盖区
通过进行空载路测,得到 测试路线上信号强度的具 体分布,根据路测工具显 示的分布情况,找出信号 的弱覆盖区,如图中红色
则一旦当移动台离开该“岛”时,就会立即发生掉话。而且即便是配置了邻区,由于“岛”的区域过小,
也会容易造成切换不及时而掉话。
Ø避免扇区天线的主瓣方向正 Ø在天线方位角基本合理的情 Ø对于高站的情况,降低天线
对道路传播;对于此种情况应 当适当调整扇区天线的方位角, 使天线主瓣方向与街道方向稍 微形成斜交,利用周边建筑物 的遮挡效应减少电波因街道两 边的建筑反射而覆盖过远的情 况
Same EARFCN Same PCI

LTE网规网优基础知识问答

LTE网规网优基础知识问答

LTE网规网优基础知识问答目录一、LTE概述与基本原理 (2)1. LTE基本概念及发展历程 (3)2. LTE网络架构与主要组件 (4)3. LTE关键技术及特点 (5)二、网规基础知识 (7)1. 网规概述及重要性 (8)2. 网络规划目标与原则 (10)3. 网络规划流程 (10)4. 基站选址与布局规划 (11)5. 频率规划与干扰协调 (12)三、网优基础知识 (14)1. 网络优化概述及目的 (15)2. 网络优化流程与方法 (16)3. 无线网络性能评估指标 (18)4. 容量优化与负载均衡技术 (19)5. 覆盖优化与信号增强措施 (20)四、LTE系统性能参数与配置优化 (22)1. 系统性能参数介绍 (24)2. 性能参数配置与优化策略 (25)3. 小区间干扰协调与优化方法 (27)4. 基站设备配置与优化建议 (28)五、LTE网络故障排查与处理 (30)1. 网络故障分类与识别方法 (31)2. 常见故障原因分析及处理措施 (32)3. 故障处理流程与案例分析 (32)4. 网络维护与管理技巧分享 (34)六、案例分析与实践经验分享 (35)1. 成功案例介绍与分析角度 (36)2. 实践中的经验教训总结 (38)3. 案例中的优化策略与实施效果评估 (39)七、LTE发展趋势与展望 (40)1. LTE技术发展趋势分析 (42)2. 新技术在LTE网络中的应用前景探讨 (43)一、LTE概述与基本原理LTE(Long Term Evolution,长期演进)是一种标准的无线宽带通信,主要用于移动设备和数据终端,其设计目标是提供一种高速、低延迟、高连接性的无线通信服务。

LTE的发展是为了满足移动通信市场的需求,特别是在3GPP的长期演进计划中,旨在解决3G网络中的瓶颈问题,提高无线通信的速度和质量。

LTE的关键技术包括正交频分复用(OFDM)、多输入多输出(MIMO)、密集波分复用(Dense WDM)、链路自适应技术等。

LTE网络优化

LTE网络优化

VS
详细描述
网络性能监测系统通常可以监测网络的各 种性能指标,例如信号质量、数据速率、 延迟、丢包率等,还可以对网络中的各种 事件进行监测和分析,例如故障、拥塞等 。它可以帮助优化人员及时发现和解决问 题,提高网络性能和稳定性。
网络规划软件
总结词
网络规划软件是一种用于模拟和预测网络性能的工具,可以帮助优化人员制定更 加合理的网络规划方案。
优化策略制定
根据优化目标,制定相应的优化策略,例如调整 基站参数、增加基站数量、优化频段分配等。
优化方案实施计划
根据优化策略,制定具体的实施计划,包括实施 时间、实施步骤、预期效果等。
实施优化方案
资源调配与准备
根据实施计划,调配相关资源,包括人力、物力、财力等,进行 必要的前期准备工作。
方案实施与监控
数据业务流量监测
网络拓扑结构分析
采集LTE网络的性能指标数据, 包括但不限于SINR、下载速度 、上传速度、时延等。
通过抓包工具等手段采集LTE网 络中相关的信令流程数据,包括 但不限于附着、寻呼、连接建立 等过程。
监测LTE网络中的数据业务流量 ,包括各业务的数据量、数据流 向、数据传输质量等。
分析LTE网络的拓扑结构,包括 基站分布、基站型号、频段分配 等。
06
LTE网络优化展望
5G时代的LTE网络优化
01
5G与4G并存
随着5G网络的逐渐普及,LTE网络优化将更加注重与5G网络的共存和
协同,提升网络整体性能。
02
频谱扩展
未来LTE网络优化可能会关注频谱扩展,通过引入更高频段,增加网
络容量和覆盖,提升用户使用体验。
03
智能化技术运用
借助人工智能、机器学习等技术实现网络的自适应优化,提高网络运

LTE网规网优基础知识问答汇总

LTE网规网优基础知识问答汇总

LTE网规网优基础知识问答汇总一、 LTE网规网优FAQ_基本概念篇二、LTE网规网优FAQ_物理层篇三、LTE网规网优FAQ_规划优化篇四、LTE网规网优FAQ_切换随机接入篇一、 LTE网规网优FAQ_基本概念篇1.1问题描述:为什么要从3G向LTE演进?问题答复:LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。

之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。

在LTE系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖范围、降低运营成本:•显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s;•在保持目前基站位置不变的情况下,提高小区边缘比特速率;•显著的提高频谱效率,例如达到3GPP R6版本的2~4倍;•无线接入网的时延低于10ms;•显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间));•支持灵活的系统带宽配置,支持1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz 带宽,支持成对和非成对频谱;•支持现有3G系统和非3G系统与LTE系统网络间的互连互通;•更好的支持增强型MBMS;•系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速度>350km/h的用户提供100kbps的接入服务;•实现合理的终端复杂度、成本、功耗;•取消CS域,CS域业务在PS域实现,如VOIP;1.2问题描述:LTE扁平网络架构是什么?问题答复:●LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面;●LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成;●eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;●S1接口连接eNodeB与核心网EPC。

LTE网规网优基础知识

LTE网规网优基础知识
LTE 网规网优基础知识问答 汇总 - Made by UNREGISTERED version of Easy CHM
LTE 网规网优基础知识问答汇总 - MaEasy CHM
Table of Contents
1. LTE 网规网优 FAQ_基本概念篇................................................................................................... 4 1.1 为什么要从 3G 向 LTE 演进 .............................................................................................. 4 1.2 LTE 扁平网络架构是什么 ................................................................................................... 4 1.3 相对于 3G 来说 LTE 采用了哪些关键技术....................................................................... 5 1.4 OFDM 基本原理................................................................................................................... 7 1.5 单用户 MIMO 和多用户 MIMO 的区别 .......................................................................

LTE网规网优基础培训

LTE网规网优基础培训

工程参数总表 传播模型 仿真所需参数 仿真软件 数字地图 相关指导书
网规规划预规划报告模版 网络规划输入信息 网络估算报告 基站勘测报告 系统仿真输出信息
输出
《xx项目网络预规划报告》 《XX网络预规划方案》 。。。。。。
LTE网络预规划流程
信息搜集
无线网络 估算
无线网络估算 报告
LTE网规网优基础
第1章 LTE 网络规划基本知识 第2章 LTE 常规优化方法和案例 第3章 LTE KPI及其影响因素分析
无线网络规划流程概述
建 建 输入
网网 信
成目 息

本标
..
线网
基 基 输出
络估 算
站站 信
数配 息
..
目置
被 估 输入
选站点 结论算
..
信 息
无 线网


小 理 输出
区半 论站
LTE网络规模估算流程
客户需求分析
覆盖要求
质量要求
确定输入参数
创建链路预算
频谱信息
传播模型
……
业务模型
规划用户数
最大允许路径损耗
获得小区半径
容量估算
最大小区半径
计算单站覆盖面积
单小区容量 网络容量估算
最大单站覆盖面积
覆盖估算站点数
容量估算站点数
最大站点数
估算站点规模
无线网络预规划
预规划是综合信息收集、网络估算、站址选择、系统仿真,完成无线网络的初步设计 。
不同时期网络建设的策略 基站规划情况 小区参数规划情况 仿真结果分析 特殊场景覆盖容量解决方案
清频测试报告
站址选择
N
系统仿真
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Same EARFCN Same PCI
B. 满足切换条件的CellB不是服务小区CellA的邻区, 但是与服务小区的邻区CellC同频、同PCI, eNodeB误以为UE测量到了服务小区的邻区CellC ,从而发起向邻区CellC的切换。此时,若当前区 域没有邻区CellC的信号覆盖,则可能导致掉话。 如下图所示:
Page 114
案例-分析找出无主导小区区域
Ø 现象: 一段测试路线上, UE反复在几个相同小区进行小区重选或者乒乓切换
Ø 分析: 通过观察信令流程和PCI 分布图。 这里通过观察Best PCI分布图,如果是无主导小区的现象,那么图中会出现两种或几种颜色的
PCI交替变换。
无主导小区
无主导小区
1.PCI distribution in cluster xx
Page 14
LTE 常规优化方法和案例
第1节 优化流程和基本方法 第2节 网络参数核查(邻区,PCI,参数) 第3节 覆盖类问题分类和案例
Page 15
邻区核查及优化——ANR
全称“Automatic Neighbor Relationship”,是LTE SON特性的主要功能之一,主要通过UE上报邻 区CGI的方式,解决网络中存在的非正常邻区关系,包括邻区漏配、邻区PCI冲突和非正常邻区覆盖。 从而提高切换成功率,提高网络性能,并降低网规网优运维成本。
RF指标是否满足KPI要求?
Y RF优化结束
调整实施: Ø 工程参数调整 Ø 邻区参数调整
问题分析:
N
Ø Ø
覆盖问题分析 导频污染问题分析
Ø 切换问题分析
Page 12
RF优化目标:覆盖率(RSRP & SINR)
Ø RSRP表示导频信号的功率,表示了导频信号的强度,而非质量。UE驻留小区的最 低RSRP要求一般设置为-120dBm,而对网络覆盖率统计来说,一般要求RSRP大于110dBm的比例不低于95%;
Same EARFCN Same PCI
CellC
CellA
CellB
Nbr of Serving
Cell
UE
Seving Cell
Dis the Neighboring Cell of
Cell A
CelB is also the Neighboring Cell of
Ø避免扇区天线的主瓣方向正 对道路传播;对于此种情况应 当适当调整扇区天线的方位角 ,使天线主瓣方向与街道方向 稍微形成斜交,利用周边建筑 物的遮挡效应减少电波因街道 两边的建筑反射而覆盖过远的 情况
Ø在天线方位角基本合理的情 况下,调整扇区天线下倾角,… 或更换电子下倾更大的天线。 调整下倾角是最为有效的控制 覆盖区域的手段。下倾角的调 整包括电子下倾和机械下倾两 种,如果条件允许优先考虑调 整电子下倾角,其次调整机械 下倾角
上行
•基站接收灵敏度。 •天线分集增益。 •终端发射功率。 •上行无线信号传播损耗 , •塔放对上行的影响
Page 111
弱覆盖、覆盖空洞
弱覆盖 各小区的信号在某区域都小于优化基线,导致终端无法注册网络或接入的业务无法满足Qos的要求。
覆盖空洞 某一片区域没有无线网络覆盖或者覆盖电平过低产生的弱覆盖区,弱覆盖区域内下行接收电平很不稳定, 从而会导致手机的接收电平小于MS最小接入电平(RXLEV_ACCESS_MIN)而掉网;通话态的用户进入弱覆盖 区域后无法切换到电平更强的小区,会明显感到通话质量下降,甚至因为低电平低质量而掉话。
Cell A
CellC
Nbr of Serving
Cell
CellA
CellB
UE
Seving Cell
Detected Cell
CellC is the Neighboring Cell of
Cell A
CelB is not the Neighboring Cell of
Cell A
Page 19
LTE 常规优化方法和案例
第1节 优化流程和基本方法 第2节 网络参数核查(邻区,PCI,参数) 第3节 覆盖类问题分类和案例
Page 110
覆盖问题分类和主要影响因素
弱覆盖(覆盖空洞) 越区覆盖
无主导小区 针尖效应 拐角效应 上下行不平衡
下行
•发射功率 •合路损耗 •路径损耗PL •频段 •接收点距离基站的距离 •电波传播的场景和地形 •天线增益 •天线挂高 •天线的参数(方向图) •天线下倾角 •天线方位角
Ø对于电梯井、隧道、地下 车库或地下室、高大建筑物 内部的信号盲区可以利用 RRU、室内分布系统、泄漏 电缆、定向天线等方案来解 决; Ø此外需要注意分析场景和 地形对覆盖的影响。
Page 112
案例-通过路测UE寻找弱覆盖区
通过进行空载路测,得到 测试路线上信号强度的具 体分布,根据路测工具显 示的分布情况,找出信号 的弱覆盖区,如图中红色 区域。
Ø SINR表示有用信号相对干扰+底噪的比值,在LTE中又可分为RS SINR和PDSCH SINR, 通常在描述覆盖时说的是导频的SINR。
Ø 如果需要选择近中远点进行测试,建议先进行整网路测,然后得到RSRP和RS SINR 的CDF分布,分别选择90%,50%,10%对应的点
Ø 如果不采用CDF,通常情况可以参考以下RSRP标准:近点:-85dBm ,中点:95dBm ,远点:-105dBm
Ø 针对无主导小区的区域,确 定网络规划时用来覆盖该区 域的小区,应当通过调整天 线下倾角和方向角等方法, 增强某一强信号小区(或近 距离小区)的覆盖,削弱其 他弱信号小区(或远距离小 区)的覆盖。
Ø 如果实际情况与网络规划 有出入,则需要根据实际情 况选择能够…对该区域覆盖最 好的小区进行工程参数的调 整。
1> 服务小区启动UE测量服务小区和邻区的信道质量 ;
2> UE检测到服务小区和邻区的信道质量满足切换条 件,上报邻区的PCI;
3> 服务eNB检测到该PCI不在NCL中,启动UE读取该 PCI所对应的邻区的CGI信息;
4> UE通过监听邻区的系统消息,读取邻区的CGI和 TAC;
5> UE将读取到的CGI上报给服务eNB,服务eNB即可 添加到NCL(外部小区)和NRT(邻区)中,然 后完成切换。
Page 115
越区覆盖
越区覆盖一般是指某些基站的覆盖区域超过了规划的范围,在其他基站的覆盖区域内形成不连续的主导区 域。比如,某些大大超过周围建筑物平均高度的站点,发射信号沿丘陵地形或道路可以传播很远,在其他 基站的覆盖区域内形成了主导覆盖,产生的“岛” 的现象。因此,当呼叫接入到远离某基站而仍由该基 站服务的“岛”形区域上,并且在小区切换参数设置时,“岛”周围的小区没有设置为该小区的邻近小区 ,则一旦当移动台离开该“岛”时,就会立即发生掉话。而且即便是配置了邻区,由于“岛”的区域过小 ,也会容易造成切换不及时而掉话。
Ø SINR则取决于网络加载的水平,在邻区100%加载下通常认为:近点:20dB ,中点: 10dB ,远点:0dB
Page 13
网络优化基本方法
调整天线下倾角
调整天线方向角
发射功率调整
网络优化
参数调整
调整天线高度
特性配置
上述方法中,调整天线下倾角,方向角,天线高度和功率属于常规RF优化内容,在各个制式中都是基 本相同的;参数调整主要是针对切换和重选相关参数;特性配置需要根据具体的场景需求,并且系统 侧也有对应的可商用的特性时才会使用,普适性的算法特性通常版本缺省都会打开。
区信号交叠区域无法正常同步。 若服务小区与测量小区的RSRP满足切换门限,且该测量小区与服务小区的邻区同频、同PCI,则有可能
导致切换失败、掉话。这样PCI冲突称为PCI混淆。存在两种场景:
A. 满足切换条件的CellB是服务小区CellA的 邻区,且与服务小区的其它邻区CellC同频 、同PCI,eNodeB不能分辨UE测量到服务 小区的哪个邻区,从而导致切换失败,如 下图所示:
Ø 调整措施: 从右下图可以看出,下倾角从3度调 整到6度后,288小区的越区覆盖得 到了明显的控制。
Page 117
案例-主干道波导效应引起的越区覆盖
在PCI170下时,受到图中左下角, 1km外的PCI23信号突然出现,模3冲 突,干扰掉话。并且在掉话后从PCI 接入到PCI23,又反过来被PCI170干 扰,再次发生掉话。 由于现场是全向天线固定电下倾, 因此只能通过降低PCI23小区的功率 来减小越区覆盖的影响。
Ø对于高站的情况,降低天线 高度。 Ø在不影响不小区业务性能的 前提下,降低载频发射功率 。
Page 116
案例-下倾角设置不合理导致越区覆盖
Ø 现象:
右上图所示PCI为288的小区出现越 区覆盖,会对其它小区造成干扰, 增加掉话的机率。
Ø 分析: 由图中可以看出,出现越区覆盖最 可能的原因就是此处天线高度过高 或天线下倾角设置不合理,经过核 查当前的工参设置,确实发现下倾 角设置偏小,建议增大下倾角设置。
基于路测观察是否邻区漏配置步骤 1.UE上报测量报告,没有收到切换命令。(在RSRP较好的情况下,排除测量报告eNodeB没有收到) 2.通过MML :LST EUTRANINTRAFREQNCELL(同频邻区查询) 确认是否添加该同频邻区。
LST EUTRANINTERFREQNCELL(异频邻区查询)确认是否添加该异频邻区。 3.在MOCN的场景下:通过MML :LST EUTRANEXTERNALCELLPLMN 查询确认是否添加了PLMN。 例:UE不断上报测量报告,未收到切换命令。打开测量报告,目标切换的PCI为211,RSRP=51-140=-89dBm,远比服务小区的
红色topology:表示因为拓扑结构新增的邻区(表示漏配)可点击comfim勾选显示其关系 红色symmetry: 表示因为双向补齐新增的邻区(表示漏配)可点击comfim勾选显示其关系 灰色的表示:保留的邻区, 具体核查方法 请详见《U-Net邻区核查指导书》
相关文档
最新文档