初一数学《因式分解》练习题新编
2022年最新浙教版初中数学七年级下册第四章因式分解专题练习试题(无超纲)

初中数学七年级下册第四章因式分解专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、对于①3(13)x xy x y -=-,②2(3)(1)23x x x x -+=--,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解2、下列各式由左边到右边的变形,是因式分解的是( )A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=- 3、下列因式分解正确的是( )A.2p +2q +1=2(p +q )+1B.m 2﹣4m +4=(m ﹣2)2C.3p 2﹣3q 2=(3p +3q )(p ﹣q )D.m 4﹣1=(m ²+1)(m ²﹣1) 4、对于①()()2212+-=+-x x x x ,②()233x xy x x y -=-,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5、下列式子的变形是因式分解的是( )A.() m x y mx my +=+B.()22 21441x x x -=-+C.()()2 1343x x x x ++=++D.()3 11x x x x x -=+-()6、下列各式从左到右的变形,属于因式分解的是( )A.2323824a b a b =⋅B.()()311x x x x x -=+-C.2211x x x x ⎛⎫+=+ ⎪⎝⎭ D.()a x y ax ay -=-7、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 8、若()()223x x x a x b --=-+,则-a b 的值为( )A.3B.3-C.2D.2-9、多项式3254812x y x y -的公因式是( )A.x 2y 3B.x 4y 5C.4x 4y 5D.4x 2y 310、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A.6858B.6860C.9260D.9262 11、把多项式x 3﹣9x 分解因式,正确的结果是( )A.x (x 2﹣9)B.x (x ﹣3)(x +3)C.x (x ﹣3)2D.x (3﹣x )(3+x ) 12、对于任何整数a ,多项式()2255a +-都能( )A.被3整除B.被4整除C.被5整除D.被a 整除13、下列分解因式的变形中,正确的是( )A.xy (x ﹣y )﹣x (y ﹣x )=﹣x (y ﹣x )(y +1)B.6(a +b )2﹣2(a +b )=(2a +b )(3a +b ﹣1)C.3(n ﹣m )2+2(m ﹣n )=(n ﹣m )(3n ﹣3m +2)D.3a (a +b )2﹣(a +b )=(a +b )2(2a +b )14、下列各组式子中,没有公因式的是( )A.﹣a 2+ab 与ab 2﹣a 2bB.mx +y 与x +yC.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x15、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)2二、填空题(10小题,每小题4分,共计40分)1、如果9x y +=,3x y -=,那么222x 2y -的值为______.2、分解因式:22654x y xy -=________;3、因式分解:()()11x m y m -+-=____________.4、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.5、由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ),请用上述方法将多项式x 2﹣5x +6因式分解的结果是 _____________.6、因式分解:22416a b _______.7、分解因式:()()m n a b b a -+-=_________.8、已知x 2﹣y 2=21,x ﹣y =3,则x +y =___.9、因式分解:2242xy xy x ++=______.10、因式分解:4811x -=__.三、解答题(3小题,每小题5分,共计15分)1、因式分解:22496m n mn ---.2、教科书中这样写道:“我们把多项式a 2+2ab +b 2及a 2-2ab +b 2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题.例如:分解因式x 2+2x -3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1);例如求代数式2x 2+4x -6=2(x +1)2-8,当x = -1时,2x 2+4x -6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m 2-4m -5=(2)当a ,b 为何值时,多项式2a 2+3b 2-4a +12b +18有最小值,求出这个最小值.(3)当a ,b 为何值时,多项式a 2 - 4ab +5b 2 - 4a +4b +27有最小值,并求出这个最小值.3、计算:(1)(2a )3﹣3a 5÷a 2;(2)(12x 2y ﹣2xy +y 2)•(﹣4xy ).因式分解:(3)x 3﹣6x 2+9x ;(4)a 2(x ﹣y )﹣9(x ﹣y ).---------参考答案-----------一、单选题1、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:①3(13)x xy x y -=-,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;②2(3)(1)23x x x x -+=--,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算; 故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.2、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故不符合;B 、没把一个多项式转化成几个整式积的形式,故不符合;C 、没把一个多项式转化成几个整式积的形式,故不符合;D 、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.3、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:①()()2212+-=+-x x x x ,属于整式乘法,不属于因式分解; ②()233x xy x x y -=-,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.6、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.7、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A 、ax +bx +c =(a +b )x +c ,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B 、(a +b )(a ﹣b )=a 2﹣b 2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C 、(a +b )2=a 2+2ab +b 2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D 、a 2﹣5a ﹣6=(a ﹣6)(a +1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、C【分析】根据十字相乘法可直接进行求解a 、b 的值,然后问题可求解.【详解】解:()()22331x x x x --=-+,∴3,1a b ==,∴2a b -=;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.9、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为32542322328124243x y x y x y y x y x -=⋅-⋅,所以3254812x y x y -的公因式为234x y ,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.10、B【分析】根据“和谐数”的概念找出公式:(2k +1)3﹣(2k ﹣1)3=2(12k 2+1)(其中k 为非负整数),然后再分析计算即可.【详解】解:(2k +1)3﹣(2k ﹣1)3=[(2k +1)﹣(2k ﹣1)][(2k +1)2+(2k +1)(2k ﹣1)+(2k ﹣1)2]=2(12 k 2+1)(其中 k 为非负整数),由2(12k 2+1)≤2019得,k ≤9,∴k =0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.11、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x 3﹣9x=x (x 2﹣9)=x (x +3)(x ﹣3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.12、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式()22420255455a a a a =++-=++ 则对于任何整数a ,多项式()2255a +-都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.13、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A 、xy (x -y )-x (y -x )=-x (y -x )(y +1),故本选项正确;B 、6(a +b )2-2(a +b )=2(a +b )(3a +3b -1),故本选项错误;C 、3(n -m )2+2(m -n )=(n -m )(3n -3m -2),故本选项错误;D 、3a (a +b )2-(a +b )=(a +b )(3a 2+3ab -1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.14、B【分析】公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式.【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意; 故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.15、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A 、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B 、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C 、a 2-2a -3=(a +1)(a -3)分解时出现符号错误,原变形错误,故此选项不符合题意;D 、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.二、填空题1、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y - =()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.2、()69xy x y -【分析】直接提取公因式6xy 即可得解.【详解】解:22654x y xy -=6?6?9xy x xy y - =6(9)xy x y -.故答案为:6(9)xy x y -.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.3、()()1x y m --【分析】将y (1-m )变形为-y (m -1),再提取公因式即可.【详解】∵x (m -1)+ y (1-m )= x (m -1)-y (m -1),=(x -y )(m -1),故答案为:(x -y )(m -1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.4、5 4【分析】把(x +1)(x +4)展开,合并同类项,可确定a 、b 的值.【详解】解:∵(x +1)(x +4),=244x x x +++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.5、(2)(3)x x --【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】2256(23)(2)(3)(2)(3)x x x x x x +=+--+-⨯-=---故答案为:(2)(3)x x --.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.6、422a b a b【分析】先提公因式4,再利用平方差公式分解.【详解】解:22416a b -=2244a b=422a b a b故答案为:422a b a b .【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.7、()()a b m n --【分析】根据提公因式因式分解求解即可.【详解】解:()()()()()()m n m n a b b a a b a b m n b a -----+==--,故答案为:()()a b m n --.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.8、7根据平方差公式分解因式解答即可.【详解】解:∵x 2﹣y 2=(x ﹣y )(x +y )=21,x ﹣y =3,∴3(x +y )=21,∴x +y =7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.9、22(1)x y -【分析】先提取公因式2x ,然后运用完全平方公式因式分解即可.【详解】解:2242xy xy x ++ 22(21)x y y =-+22(1)x y =-,故答案为:22(1)x y -.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键. 10、2(91)(31)(31)x x x ++-先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-, 故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.三、解答题1、(23)(23)m n m n ++--【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式224(96)m n mn =-++222(3)m n =-+(23)(23)m n m n =++--.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、(1)(1)(5)m m +-;(2)当1a =,2b =-时,最小值为4;(3)当6a =,2b =时,最小值为19.【分析】(1)根据阅读材料,先将245m m --变形为2449m m +--,再根据完全平方公式写成2(2)9m --,然后利用平方差公式分解即可;(2)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答;(3)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答.【详解】解:(1)22245449(2)9(23)(23)(1)(5)m m m m m m m m m --=-+-=--=-+--=+-.故答案为(1)(5)m m +-;(2)222223412182(2)3(4)18a b a b a a b b +-++=-+++222(21)3(44)4a a b b =-+++++222(1)3(2)4a b =-+++,∴当1a =,2b =-时,222341218a b a b +-++有最小值,最小值为4;(3)22454427a ab b a b -+-++2224(1)4(1)(2)19a a b b b =-++++-+22(22)(2)19a b b =--+-+,∴当6a =,2b =时,多项式22222427a ab b a b -+--+有最小值19.【点睛】本题考查了因式分解的应用,完全平方公式、以及非负数的性质,解题的关键是熟练掌握因式分解的方法.3、(1)5a 3;(2)﹣2x 3y 2+8x 2y 2﹣4xy 3;(3)x (x ﹣3)2;(4)(x ﹣y )(a +3)(a ﹣3)【分析】(1)利用积的乘方和同底数幂的除法法则进行运算;(2)利用单项式乘多项式法则进行运算;(3)先提取公因式,再用完全平方公式进行分解;(4)先提取公因式,再利用平方差公式因式分解.【详解】解:(1)原式=8a3﹣3a3=5a3;(2)原式=﹣2x3y2+8x2y2﹣4xy3;(3)x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2;(4)a2(x﹣y)﹣9(x﹣y)=(x﹣y)(a2﹣9)=(x﹣y)(a+3)(a﹣3).【点睛】本题主要考查了因式分解、积的乘方、同底数幂的除法、单项式乘多项式,解题的关键在于能够熟练掌握相关知识进行求解.。
七年级因式分解刷题练习92题-答案版

第X 讲因式分解刷题练习(92题)-7上复习用【例题1】()()()()23222336x y x y y x y x x y -++---+【分析】 原式()()3221x y x =--【例题2】222944a b bc c -+-【分析】 原式()()()()22222944923232a b bc c a b c a b c a b c =--+=--=+--+【例题3】3223x x xy y y ----【分析】 原式()()221x xy y x y =++--【例题4】54323331x x x x x -+-+-【分析】 原式()()()223111x x x x x =-++-+【例题5】222595121824x y z xy yz zx --+-+【分析】 原式()()3553x y z x y z =++--【例题6】22121115x xy y --【分析】 原式()()4335x y x y =+-【例题7】2408124848x x --【分析】 原式()()204612x x =+-【例题8】633619216x x y y --【分析】 原式()()()()2222232439x y x y x xy y x xy y =+--+++【例题9】2222x yz axyz yz xy xz az ++---【分析】 原式()()xy z az xz y =-+-【例题10】222222444222a b b c c a a b c ++---原式()()()()b c a b c a c a b a b c =+++-+-+-【例题11】22015201420162015x x -⨯-【分析】 原式()()201512015x x =+-【例题12】()()()22592791a a a +---【分析】 原式()()()242728a a a a =-+--【例题13】()()()()26121311x x x x x ----+【分析】 原式()22661x x =-+【例题14】()()()()461413119x x x x x ----+【分析】 原式()22971x x =-+【例题15】343115x x -+【分析】 原式()()()21253x x x =--+【例题16】322772x x x -+-【分析】 原式()()()1221x x x =---【例题17】3331x y xy ++-【分析】 原式()()2211x y x y xy x y =+-++-++【例题18】432655x x x x ++++【分析】 原式()()2251x x x =+++【例题19】()()()()222222261561121x x x x x x ++++++++ 【分析】 原式()()229141x x x =+++【例题20】()()()322223a b c a a c b a b c abc +-+-++-【分析】 原式()()()a b a c a b c =+-+-【例题21】322222422x x z x y xyz xy y z --++-【分析】 原式()()22x z x y =--【例题22】()()()2122xy x y x y xy -++-+-【分析】 原式()()2211x y =--【例题23】32542071227x y x xy --【分析】 原式()()22223293293x x xy y x xy y =-++-+【例题24】43241x x x x +-++【分析】 原式()()22131x x x =-++【例题25】()()22222a a b b ab a -+--【分析】 原式()222a b b =-【例题26】43214599448x x x x -+-+【分析】 原式()()()()1238x x x x =----【例题27】432673676x x x x +--+【分析】 原式=()()()()221331x x x x -++-【例题28】()22223122331x x x x -+-+- 【分析】 原式()()()23323x x x x =--+【例题29】2244661124864x y x y x y -+-【分析】 原式()()331212xy xy =+-【例题30】()()()333222222x y z x y z ++--+ 【分析】 原式()()()()22223x y y z z x z x =-+++-【例题31】32221x ax ax a --+-【分析】 原式()()211x a x x a =--+-+【例题32】42201520142015x x x +++【分析】 原式()()2212015x x x x =++-+【例题33】22()()1ab a b a b +-++【分析】 原式22(1)(1)a ab b ab =+-+-【例题34】()()66x x y z y z y x +-+--【分析】 原式()()()()()2222x y z x y x y x xy y x xy y =+--+++-+【例题35】432227447x x x x ---+【例题36】()()()2222223241x x x x x x -+++-++ 【分析】 原式()()()2112x x x x =--++【例题37】323233332a a a b b b ++++++【分析】 原式()()222a b a b ab a b =+++-++【例题38】()322312b a a b a a -++--++【分析】 ()()212a b ab a b b =-+-+++【例题39】()()211ab ab ab a b a b +-+--+【分析】 原式()()()2111ab ab a b ab =+-+++(以1ab +为主元) ()()()()22111111a ab b ab a b a ab b =+-+-⎡⎤⎡⎤⎣⎦⎣⎦=+-+-【例题40】()()()333222x y z y z x z x y -+-+-【分析】 原式()()()()x y y z z x xy yz zx =---++【例题41】()()()()3311x a xy x y a b y b +---++【分析】 原式()()22x xy y ax x y by =-++++【例题42】22()()()()ax by ay bx ay ax by ay bx ay +++-+++-原式2222()()a ab b x xy y =++++【例题43】22222612523171319322312520a b c d ab ac ad bc bd cd a b c d ---+--+-+-+-+-【分析】 原式()()23423455a b c d a b c d =+-+--+-+【例题44】()()()()()()2222326232x y a b m n xy a b m n xy a b m n ++-+++++【分析】 原式()()()32421xy a b m n ax bx my ny =+++--+【例题45】22223273x xy y xz yz z ---+-【分析】 原式()()232x y z x y z =+--+【例题46】2299x x +-【分析】 原式()()119x x =+-【例题49】632827x x -+【分析】 原式()()()()2211339x x x x x x =-++-++【例题50】32374a a +-【分析】 原式()()()1322a a a =+-+【例题51】4464a b +【分析】 原式()()22224848a ab b a ab b =++-+【例题52】()()3211x y xy x y ++---【分析】 原式()()2211x y x y x y =+-++++【例题53】()()()2113212xy xy xy x y x y ⎛⎫+++-++-+- ⎪⎝⎭ 【分析】 原式()()()()1111x y x y =++--【例题54】22243x y x y ----【分析】 原式()()13x y x y =++--【例题55】2231032x xy y x y ---++【分析】 原式()()5221x y x y =--+-【例题56】32256x x x +--【分析】 原式()()()123x x x =+-+【例题57】4322111236x x x x --++【分析】 原式()()2223x x =+-【例题58】432262x x x x ---+【分析】 原式()()()22121x x x =--+【例题59】()()22213260x x x x -+-+ 【分析】 原式()()()()2165x x x x =-+-+【例题60】()()222248415x x x x x x ++++++ 【分析】 原式()()22264x x x =+++【例题62】()()()()11359x x x x -+++-【分析】 原式()()22246x x x =++-【例题63】()()()()245610123x x x x x ++++-【分析】 原式()()()22158235120x x x x =++++【例题64】()()42424413110x x x x x -++++【分析】 原式()()()()22221111x x x x x x =+-++-+【例题65】2222232a x acx bcx b x c ++--【分析】 原式()()2ax bx c ax bx c =-++-【例题66】()()()2222a b a b c a b ++-++ 【分析】 原式()()222a b c =++【例题67】()()()3332a b c a b b c ++-+-+【分析】 原式()()()32a b b c a b c =++++【例题68】()()ab bc ca a b c abc ++++-【分析】 原式()()()a b b c c a =+++【例题69】86421x x x x ++++【分析】 86421x x x x ++++()()()4322221x x x =+++()()()()551111x x x x +-=+-551111x x x x +-=⋅+- ()()43243211x x x x x x x x =-+-+++++【例题70】已知2220x y z --=,试将333x y z --分解成一次因式之积.【分析】 由已知,222z x y =-,222y x z =-,故()3333322x y z x y z x y --=---()()()()22x y x xy y x y x y z =-++--+()()22x y x xy y x y z ⎡⎤=-++-+⎣⎦()()222x y x xy z xz yz =-+---()()()()2x y x z x z y x z =--++-⎡⎤【例题71】证明:220162014201520172018+⨯⨯⨯是一个完全平方数【分析】 设2016x =,故原式()()()()22112x x x x x =+--++()()22222x x x x x =+--+-()222x =-()2220162=-,得证.【例题72】证明:20132014201520172018201936⨯⨯⨯⨯⨯+是一个完全平方数【分析】 设2016n =,则原式()()()()()()32112336n n n n n n =---++++()()()22214936n n n =---+()()42254936n n n =-+-+6421449n n n =-+()2227n n =-()227n n ⎡⎤=-⎣⎦ ()22201620167⎡⎤=⨯-⎣⎦,得证.【例题73】证明:22222016201620172017+⨯+是一个完全平方数【分析】 令2016n =,则2222(1)(1)a n n n n =++++()2432223211n n n n n n =++++=++, 故()22201620161a =++【例题74】证明:3320162016201620182016201720162015⨯-⨯是一个完全立方数【分析】 令20162016m =,则原数()()()()333323211812612140324033m m m m m m m m =+-+-=+++=+=【例题75】333333()()()a b b c c a a b c ++++++++【解析】 原式333333222[()][()][()]3()()a b c b c a c a b a b c a b c =++++++++=++++;【例题76】42222222()()x a b x a b -++-.【解析】 ()()()()()222242222222222222x a b x a b x a b a b a b ⎡⎤-++-=-+-++-⎣⎦ ()222224x a b a b =---()()22222222x a b ab x a b ab =--+---()()2222x a b x a b ⎡⎤⎡⎤=---+⎣⎦⎣⎦()()()()x a b x a b x a b x a b =+--+--++【例题77】()()()()()2222221ab x y a b xy a b x y ---+-++【解析】 原式2222[(1)()]()[()(1)]b xy x y ab x y a x y xy =+-++--+++2222(1)(1)()(1)(1)b x y ab x y a x y =--+--++[(1)(1)][(1)(1)]x b y a y b x a =--+-++【解析】 2227()()ab a b a ab b +++【例题79】33(1)()()(1)x a xy x y a b y b +---++ 【解析】33(1)()()(1)x a xy x y a b y b +---++33(1)()[(1)(1)](1)x a xy x y a b y b =+--+-+++ 322322(1)()(1)()a x x y xy b y x y xy =+-++++-2222(1)()(1)()x a x xy y b x xy y =+-+++-+ 22()()x xy y ax by x y =-++++【例题80】32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++ 2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--【例题81】21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式(1)(1)(1)(1)(1)(1)u v u v y x x y =+--+=++--【例题82】()()()()22222222ab cd a b c d ac bd a b c d +-+-+++--【分析】 原式()()()()()()()()22222222ab cd a d ab cd b c ac bd a d ac bd b c =+--+-++-++-()()()()()()()()()()()()()()()()()()()()222222ab cd ac bd a d ac bd ab cd b c a d b c a d a d b c d a b c b c a d b c a d b c a d b c a d b c a d b c =+++-++---=+++-+---+⎡⎤=-++--⎣⎦=-++-+++-【例题83】432234a b a b a b ab +--【分析】 ⑴原式432234332()()()()()()a b a b a b ab a b a b ab a b ab a b a b =+-+=+-+=-+【例题84】22(2)9x x -- 【分析】 原式222(23)(23)(23)(1)(3)x x x x x x x x =-+--=-++-【例题85】3139k +()1【分析】 原式2221(44)1(2)(12)(12)x xy y x y x y x y =--+=--=+--+【例题87】()()()333ax by by cz ax cz -+---【分析】 原式()()()333ax by bx cz cz ax =-+-+- ()()()3ax by bx cz cz ax =---【例题88】333()()()a b c bc b c ca c a ab a b ++++++++【分析】 原式222()()a b c a b c =++++【例题89】326116x x x +++【分析】 原式326126x x x x =-+++()()()21161x x x x =+-++()()()()22166156x x x x x x x =+-++=+++()()()()()21236123x x x x x x x =++++=+++【例题90】32254x x x +--【分析】 ()()()()232225515115x x x x x x x x x x =++--=+-+=++-【例题91】521171x x x +-+【分析】 设522321171(1)(1)x x x x ax x bx cx +-+=+-++-展开得5254321171()(1)(1)()1x x x x a b x ab c x ac b x a c x +-+=++++-+---++比较对应系数得0101117a b ab c ac b a c +=⎧⎪+-=⎪⎨--=⎪⎪+=⎩,解得225a b c =⎧⎪=-⎨⎪=⎩,∴原式232(21)(251)x x x x x =+--+-【例题92】54321x x x +-+【分析】 设()()5423232111x x x x ax x bx cx +-+=+++++展开得()()()()545432321111x x x x a b x ab c x b ac x a c x +-+=+++++++++++比较对应系数得31010a b ab c b ac +=⎧⎪++=⎪⎨++=⎪,解得12a b =⎧⎪=⎨⎪,∴原式()()2321231x x x x x =+++-+。
七年级数学因式分解练习题及答案

七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x-xy二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________22222B. x+xyC. x-y D. x+y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①?4x3?16x2?24x②8a2?123③2am?1?4am?2am?1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少?221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗?说明理由。
(完整版)初中数学因式分解练习题

因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2)B.(n-2)(m-m2) C.m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是A.a2+b2B.-a2+b2 C.-a2-b2D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12B.±24 C.12 D.±126.把多项式a n+4-a n+1分解得A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1)D.a n+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为A.8B.7 C.10D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3B.x=1,y=-3 C.x=-1,y=3D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得A.(x-10)(x+6)B.(x+5)(x-12) C.(x+3)(x-20)D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2)B.(3x-4)(x+2) C.(3x+4y)(x-2y)D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b)D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得A.(x2-2)(x2-1)B.(x2-2)(x+1)(x-1) C.(x2+2)(x2+1)D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为A.-(x+a)(x+b)B.(x-a)(x+b) C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x -1)因式的有A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab)D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.3x2+6xy-x-2y B.3x2-6xy+x-2yC.x+2y+3x2+6xy D.x+2y-3x2-6xy23.64a8-b2因式分解为A.(64a4-b)(a4+b)B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b)D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为A.(5x-y)2B.(5x+y)2C.(3x-2y)(3x+2y)D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为A.(3x-2y-1)2B.(3x+2y+1)2C.(3x-2y+1)2D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为A.c(a+b)2B.c(a-b)2C.c2(a+b)2D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为A.0B.1 C.-1D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是A.-(a2+b2)(3x+4y)B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y)D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是A.2(a+b-2c)B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b 11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B2.C3.C4.B5.B6.D7.A8.C9.D10.B11.C12.C 13.B14.C15.D16.B17.B18.D19.A20.B21.B22.D23.C 24.A25.A26.C27.C28.C29.D30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).。
初一因式分解试题及答案

初一因式分解试题及答案一、选择题1. 将多项式 \(2x^2 + 4x + 2\) 因式分解后,正确的结果是:A. \(2x(x + 2) + 2\)B. \(2(x^2 + 2x + 1)\)C. \(2(x + 1)^2\)D. \(2x^2 + 4x + 2\)答案:C2. 多项式 \(x^2 - 4\) 因式分解后为:A. \((x - 2)(x + 2)\)B. \((x + 2)^2\)C. \(x(x - 4)\)D. \((x - 2)^2\)答案:A3. 将 \(3x^2 - 12\) 因式分解,正确的选项是:A. \(3x(x - 4)\)B. \(3x(x + 4)\)C. \(3(x^2 - 4)\)D. \(3(x - 2)(x + 2)\)答案:D4. 多项式 \(x^2 + 5x + 6\) 因式分解后为:A. \((x + 2)(x + 3)\)B. \((x - 2)(x - 3)\)C. \((x + 2)(x - 3)\)D. \((x - 2)(x + 3)\)答案:A二、填空题1. 将 \(4x^2 - 12x + 9\) 因式分解,结果为 \(\boxed{(2x - 3)^2}\)。
2. 将 \(x^2 - 6x + 9\) 因式分解,结果为 \(\boxed{(x - 3)^2}\)。
3. 将 \(2x^2 + 8x + 8\) 因式分解,结果为 \(\boxed{2(x + 2)^2}\)。
4. 将 \(x^2 - 10x + 25\) 因式分解,结果为 \(\boxed{(x - 5)^2}\)。
三、解答题1. 因式分解 \(x^2 - 7x + 12\)。
答案:\((x - 3)(x - 4)\)2. 因式分解 \(4x^2 - 20x + 25\)。
答案:\((2x - 5)^2\)3. 因式分解 \(3x^2 - 12x + 12\)。
答案:\(3(x - 2)^2\)4. 因式分解 \(a^2 - 4b^2\)。
初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案一、解答题(共100题)1、阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).2、化简:a2(a﹣1)﹣a3.3、阅读材料:若x2-2xy+2y2-8y+16=0,求x、y的值.解:∵x2-2xy+2y2-8y+16=0,∴(x2-2xy+y2)+(y2-8y+16)=0∴(x-y)2+(y-4)2=0,∴(x-y)2=0,(y-4)2=0,∴y=4,x=4.根据你的观察,探究下面的问题:已知a、b满足a2+b2-4a-6b+13=0.求a、b的值.4、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.5、分解因式(1)4x2+4x+1(2)2x2﹣18(3)y3﹣2y2+y(4)4a2﹣(b+c)2.6、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.7、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.8、10x2+3x﹣4.9、已知,求的值.10、先化简,在求值:30x (y+4)-15x(y+4), 其中x=2,y=-211、(p﹣q)4÷(q﹣p)3•(p﹣q)2.12、先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.13、因式分解:(2x+y)2﹣(x+2y)2.14、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.15、已知二次函数的图象与x轴交于两点,且,求a的值.16、若a m=4,a n=2,求a2m-n17、列方程解应用题:如果一个正方形的边长增加4厘米,那么它的面积就增加40平方厘米,则这个正方形的边长是多少?18、3m3n﹣6m2n2﹣72mn3.19、利用因式分解计算:3.68×15.7-31.4+15.7×0.32.20、先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.21、己知:△ABC,AD⊥BC于点D,且AB+BD=AC+CD,求证:AB=AC.22、已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.23、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.24、已知多项式与的乘积中不含有一次项和二次项,求常数的值.25、已知多项式的结果中不含项和项,求和的值.26、分解因式: 4x2-427、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)28、有一个长方体模型,它的长为2×103cm,宽为1.5×102cm,高为1.2×102cm,它的体积是多少cm3?29、分解因式:2x2﹣8.30、解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)31、已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.32、解答发现:(1)当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?33、设n为正整数,且x2n=5,求(2x3n)2﹣3(x2)2n的值.34、已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.35、已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.36、已知.三角形的底边长为(2x+1)cm,高是(x﹣2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.37、已知x2+xy﹣2y2=7,且x、y都是正整数,试求x、y的值.38、已知a-b=3,求a(a-2b)+b2的值39、先化简,再求值:.40、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.41、已知(x+a)(x2﹣x+c)的积中不含x2项和x项,求(x+a)(x2﹣x+c)的值是多少?42、已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a的值.43、因式分解:6p(p+q)﹣4q(p+q).44、(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.45、先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.46、化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值47、“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.48、七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.49、已知:,,求和的值.50、已知:a m=5,a n=2,求(1)a2m+3n的值;(2)a4n﹣3m的值.51、对于任意自然数n,(n+7)2-(n-5)2能否被24整除,为什么?52、先化简,再求值:(x﹣y2)﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.53、说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.54、设x>0,试比较代数式x3和x2+x+2的值的大小.55、(1)解方程:x2﹣4x=0(2)化简:m(m+3)﹣(m+1)2,其中m=+1.56、数学课堂上,王老师给同学们出了道题:若(x2﹣px+3)(x﹣q)中不含x2项,请同学们探究一下p与q的关系.请你根据所学知识帮助同学们解决一下.57、已知:a+b=﹣1,ab=﹣6,求下列各式的值:(1)a2b+ab2(2)a2+b2.58、x4﹣13x2y2+36y4.59、分解因式:(1)6xy2﹣9x2y﹣y3;(2)(x2+4)2﹣16x2.60、设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.61、已知a+b=3,求代数式a2﹣b2+2a+8b+5的值.62、已知:,求代数式的值.63、请利用因式分解说明能被100整除.64、已知多项式x2-4x+m分解因式的结果为(x+a)(x-6),求2a-m的值.65、若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC 的形状.66、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)67、已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.68、已知n是正整数,且,求的值.69、先化简,再求值:.70、当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?71、已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.72、阅读理解并解答:为了求1+2+22+23+24+...+22009的值,可令S=1+2+22+23+24+ (22009)则2S=2+22+23+24+…+22009+22010,因此2S﹣S=(2+22+23+…+22009+22010)﹣(1+2+22+23+…+22009)=22010﹣1.所以:S=22010﹣1.即1+2+22+23+24+…+22009=22010﹣1.请依照此法,求:1+4+42+43+44+…+42010的值.73、在日常生活中我们经常用到密码,如取款、上网购物需要密码,有一种用因式分解法产生密码,方便记忆,其原理是:将一个多项式因式分解:例如x4﹣y4=(x2+y2)(x+y)(x﹣y),当x=8,y=9时,x2+y2=145,x+y=17,x﹣y=4则可以得到密码是145174,1741454…,等等,根据上述方法当x=32,y=12时,对于多项式x2y﹣y3分解因式后可以形成哪些数字密码?74、先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.75、已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.76、已知:a﹣b=﹣2015,ab=,求a2b﹣ab2的值.77、已知:,求78、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.79、分解因式:4n2(m﹣1)+9﹣9m.80、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.81、先化简,再求值:,其中a=﹣3,b= .82、已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.83、下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.任务1:填空:①以上化简步骤中,第一步的依据是________;②以上化简步骤中,第________步开始出现不符合题意,这一步错误的原因是________ ;任务2:请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.84、因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.85、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.86、分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.87、现有三个多项式:a2+a-4,a2+5a+4,a2-a,请你选择其中两个进行加法运算,并把结果因式分解。
因式分解练习题及答案

因式分解练习题及答案因式分解练习题及答案篇1:因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4。
2. 5xn+1-15xn+60xn-1。
4. (a+b)2x2-2(a2-b2)xy+(a-b)2y25. x4-16.-a2-b2+2ab+4分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213. (x+1)(x+2)(x+3)(x+4)+114. (x2+3x+2)(x2+7x+12)-120.15.把多项式3x2+11x+10分解因式。
16.把多项式5x2?6xy?8y2分解因式。
二证明题17.求证:32000-431999+1031998能被7整除。
18.设为正整数,且64n-7n能被57整除,证明:是57的倍数.19.求证:无论x、y为何值,的值恒为正。
20.已知x2+y2-4x+6y+13=0,求x,y的值。
三求值。
21.已知a,b,c满意a-b=8,ab+c2+16=0,求a+b+c的值 .22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1. 解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2 (x3-2x2+5y2)。
提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2. 提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。
解:原式=5 xn--1x2-5xn--13x+5xn--112=5 xn--1 (x2-3x+12)3.解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)立方和公式:a3+ b3=(a+b)( a2-ab+b2)所以,1-8 a3=(1-2a)(1+2a+4a2)4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x和(a-b)y视为一个整体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解 定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。
左边 = 右边↓ ↓多项式 整式×整式(单项式或多项式)理解因式分解的要点:1是对多项式进行因式分解;2每个因式必须是整式;3结果是积的形式;4各因式要分解到不能再分解为止。
因式分解和整式乘法的关系。
例1、下列各式的变形中,是否是因式分解,为什么?(1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=; (4)()()()()221a y x a x y y x --=-+-;1. 提公因式法——形如ma mb mc m a b c ++=++()把下列各式分解因式(1) x 2yz -xy 2z +xyz 2 (2) 14pq +28pq 2 (3) 4a 2b -8ab 2 (4)-8x 4-16x 3y(5)3a 2b -6ab +6b (6)-x 2+xy -xz (7) -16y 4-32y 3+8y 2(8)(2a +b)(2a -3b)-3a(2a +b) (9) x(x +y)(x -y)-x(x +y)2(10)(m +n)(p +q)-(n +m)(p -q) (11)x(a -b)-y(b -a)+z(a -b)2.运用公式法——平方差公式:a b a b a b 22-=+-()(),完全平方公式:a ab b a b 2222±+=±()思想方法 (1)直接用公式。
如:x 2-4 a ab b a b 222442++=+() (2)提公因式后用公式。
如:ab 2-a =a (b 2-1)=a (b+1)(b -1)(3)整体用公式。
如: ()()[()()][()()]()(2222223322a b a b a b a b a b a b a b a b+--=++-⋅+--=-+ (4)连续用公式。
如:()a b c a b 2222224+-- (5)化简后用公式。
如:(a +b )2-4ab(6)变换成公式的模型用公式。
如: x xy y x y x y x y x y 22222221211++--+=+-++=+-()()()1、式:x x y x y x x y ()()()+--+2 2. x y 4416- 3. x y xy 33- 4. ()x y x --3422 5.13231322x xy y ++ ⒍ (x -y)2-6(x -y)+9 ⒎ (a +b)2+4(a +b)c +4c 2⒏ x 3-xy 2 ⒐ a 3+2a 2b +ab 2 ⒑ -a 2-8ab -16b 2 ⒒ x 2(m -n)-4x(n -m)-4(n -m) ⒓ 2x 2-2x +21⒔ (x 2-y 2)(x +y)-(x -y)3 ⒕ p 4-q 43. 十字相乘法 x p q x pq x p x q 2+++=++()()()1、=++232x x2、=+-672x x3、=--2142x x4、=-+1522x x5、=++8624x x6、=++-+3)(4)(2b a b a7、=+-2223y xy x8、=--234283x x x 9、=++101132x x10、=+-3722x x 11、=--5762x x12、=-+22865y xy x 13、=++71522x x14、=+-4832a a 15、=-+6752x x26、=-+1023522ab b a 例2、因式分解(1) ;823x x - (2) 121164+--n n a b a (3) .9622224y y x y x +- (4)、()();742--+x x 例3、 设a =21m +1,b =21m +2,c =21m +3,求代数式a 2+2ab +b 2-2ac -2bc +c 2的值. 练习1、a 5-a ;2、-3x 3-12x 2+36x ;3、 9-x 2+12xy -36y 2;4、(a 2-b 2)2+3(a 2-b 2)-18;5、a 2+2ab +b 2-a -b ;6.(m 2+3m )2-8(m 2+3m )-20; 7、4a 2bc -3a 2c 2+8abc -6ac 2;8、(y 2+3y )-(2y +6)2. 9、2x n +2+4x n -6x n -210、;25942n m - 11、;4482--a a 12、()();44y x y x --+ 13、;12222c b a ab +-- 14、()();2222b a cd d c ab +++ 《分解因式》测试题一、选择题:1.下列各多项式中,不能用平方差公式分解的是( )-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+12.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为( )A .-3B .-6C .±3D .±63.下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xyB .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2D .x 2-9-6x=(x+3)(x -3)-6x4.下列多项式的分解因式,正确的是( )(A ))34(391222xyz xyz y x xyz -=- (B ))2(363322+-=+-a a y y ay y a(C ))(22z y x x xz xy x -+-=-+- (D ))5(522a a b b ab b a +=-+5.满足0106222=+-++n m n m 的是( )(A )3,1==n m (B )3,1-==n m (C )3,1=-=n m (D )3,1-=-=n m6.把多项式)2()2(2a m a m -+-分解因式等于( )A ))(2(2m m a +-B ))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1) 7.下列多项式中,含有因式)1(+y 的多项式是( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y8.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c bB 、2,6=-=c bC 、4,6-=-=c bD 、6,4-=-=c b9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是() A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。
把余下的部分剪拼成一个矩形(如图)。
通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A 、))((22b a b a b a -+=-B 、2222)(b ab a b a ++=+C 、2222)(b ab a b a +-=-D 、)(2b a a ab a -=-二、填空题: 11.多项式-2x 2-12xy 2+8xy 3的公因式是_____________.12.利用分解因式计算:32003+6×32002-32004=_____________.13._______+49x 2+y 2=(_______-y)2.14.请将分解因式的过程补充完整: a 3-2a 2b+ab 2=a (___________)=a (___________)215.已知a 2-6a+9与|b -1|互为相反数,计算a 3b 3+2a 2b 2+ab 的结果是_________.16.+162x ()2) (1=+, 2y]) [()] (21[) (4122-+=-x x 17.若)4)(2(2-+=++x x q px x ,则p = ,q = 。
18.已知31=+a a ,则221aa +的值是 。
19.若n mx x ++2是一个完全平方式,则n m 、的关系是 。
20.已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。
三、解答题:21:分解因式(1)(x 2+2x)2+2(x 2+2x)+1 (2)xy y x xy ++++)1)(1)(1((3)21222++x x (4))()3()3)((22a b b a b a b a -+++- 22.已知x 2-2(m -3)x+25是完全平方式,你能确定m 的值吗?不妨试一试.?23.先分解因式,再求值:(1)25x -y)2-10y(y -2,其中x=,y=.??(2)已知22==+ab b a ,,求32232121ab b a b a ++的值。
24.利用简便方法计算(1) 2022+1982 (2)2005×?2004× 25.若二次多项式2232k kx x -+能被x -1整除,试求k 的值。
26.不解方程组⎩⎨⎧=-=+1362y x y x ,求32)3(2)3(7x y y x y ---的值。
27.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。
28.读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).。