热敏电阻温度特性研究
热敏电阻实验报告

热敏电阻实验报告————————————————————————————————作者:————————————————————————————————日期:班 级__光电3班___________ 组 别____第二组_________ 姓 名__邓菊霞___________ 学 号_1110600095_____日 期___2012.11.20____ 指导教师_刘丽峰___【实验题目】 热敏电阻温度特性实验【实验目的】1、研究热敏电阻的温度特性;2、掌握非平衡电桥的工作原理;3、了解半导体温度计的结构及使用方法【实验仪器】直流稳压电源、滑线变阻器、热敏电阻、温度计、电阻箱、微安表、检流计、保温杯、冰块等。
【实验原理】热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。
热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。
正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。
本实验所用的是负温度系数热敏电阻。
负温度系数热敏电阻其电阻-温度关系的数学表达式为:)]T T (B exp[R R n T T 0011-= (1) 式中T R 、0T R 代表温度为T 、0T 时热敏电阻的阻值,n B 为热敏电阻的材料系数(n 代表负电阻温度系数)。
上式是一个经验公式,当测温范围不太大时(<450℃),该式成立。
其关系曲线如左图所示。
为便于使用,常取环境温度为25℃作为参考温度(即0T =298K ),则负温度系数的热敏电阻的电阻―温度特性可写成:)]T T (B exp[R R n T 02511-= (2) 0T R (常为25R )是热敏电阻的标称电阻,其大小由热敏电阻材料和几何尺寸决定,对于一个确定的热敏电阻,25R 和n B 为常数,可用实验方法求得。
热敏电阻温度特性研究实验

热敏电阻温度特性研究实验热敏电阻是一种电阻值随温度变化而变化的电阻器件,其特性可以用于温度测量、温度补偿和温度控制等应用。
为了研究热敏电阻的温度特性,我们可以进行以下实验来获取相关数据并分析。
第一步:实验准备在进行实验之前,我们需要准备以下材料和仪器:1. 热敏电阻:选择一款具有明确参数和规格的热敏电阻。
我们可以根据实际需求和实验目的选择合适的材料和规格。
2. 温度控制装置:使用恒温水槽或热电偶与温控器等设备来提供稳定的温度环境。
3. 电阻测量设备:选择一台高精度的电阻计来测量热敏电阻的电阻值。
4. 数据记录装置:通过连接电阻计和计算机,或是使用独立的数据记录设备,将实验数据记录下来以便后续分析。
第二步:实验过程1. 首先,将热敏电阻与电阻测量设备连接。
注意确保连接的稳定和可靠,避免因为松动或接触不良导致实验误差。
2. 将热敏电阻放置在温度控制装置中,并设定一系列不同的温度值。
可以根据实验需求选择适当的温度范围和步进值。
3. 保持每个温度值下的稳定状态,等待热敏电阻达到热平衡。
这样确保测量的数据准确可靠。
4. 使用电阻计测量每个温度下热敏电阻的电阻值,并记录下来。
为了提高准确度,可以对每个温度值进行多次测量并取平均值。
5. 根据实验需要,可以重复多次实验以获得更加可靠的数据。
第三步:实验数据分析与应用1. 整理实验数据,将测量得到的热敏电阻电阻值与相应的温度值进行对应。
2. 基于这些数据,我们可以绘制出热敏电阻的温度特性曲线,其中横轴表示温度,纵轴表示电阻值。
通过曲线的形状和趋势,我们可以分析出热敏电阻的温度响应特性和敏感度。
3. 进一步,我们可以根据实验数据和温度特性曲线,开发出与热敏电阻相关的温度测量、控制和补偿等应用。
例如,使用热敏电阻的温度特性来实现恒温控制系统、电子温度计或温度补偿技术。
其他专业性角度:1. 理论分析:可以通过数学模型和物理方程来解释和解析热敏电阻的温度特性。
例如,通过电阻和温度之间的数学关系,可以计算出电阻值随温度变化的速率或曲线斜率。
半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告半导体热敏电阻特性研究实验报告引言:半导体热敏电阻是一种基于半导体材料的温度敏感性元件,其电阻值随温度的变化而变化。
本实验旨在研究半导体热敏电阻的特性,并探索其在温度测量和控制中的应用。
实验一:热敏电阻与温度关系的测量在本实验中,我们选择了一种常见的热敏电阻材料,并使用了恒流源和数字温度计来测量其电阻值与温度之间的关系。
首先,我们将热敏电阻与恒流源相连,并将电流保持在恒定值。
然后,我们使用数字温度计测量不同温度下的电阻值。
通过多次测量,我们得到了一组电阻-温度数据。
根据实验数据,我们绘制了电阻-温度曲线。
结果显示,热敏电阻的电阻值随温度的升高而下降,呈现出明显的负温度系数特性。
这意味着热敏电阻在高温下具有较低的电阻值,在低温下具有较高的电阻值。
实验二:热敏电阻在温度测量中的应用在实验一的基础上,我们进一步探索了热敏电阻在温度测量中的应用。
我们设计了一个简单的温度测量电路,将热敏电阻与电压源和电压测量仪相连。
通过测量电压测量仪的输出电压,我们可以间接地推算出热敏电阻的电阻值,从而得知温度。
实验结果表明,该方法能够较准确地测量温度,且具有较高的灵敏度和稳定性。
实验三:热敏电阻在温度控制中的应用除了温度测量,热敏电阻还可以应用于温度控制。
我们设计了一个简单的温度控制电路,其中包括热敏电阻、比较器和加热元件。
当温度超过设定阈值时,热敏电阻的电阻值会下降,导致比较器输出高电平信号,进而控制加热元件的工作。
当温度降低到设定阈值以下时,热敏电阻的电阻值上升,比较器输出低电平信号,停止加热。
实验结果表明,该温度控制电路能够实现对温度的自动控制,具有较高的精度和稳定性。
这种基于热敏电阻的温度控制方法在实际应用中具有广泛的潜力。
结论:通过本次实验,我们研究了半导体热敏电阻的特性,并探索了其在温度测量和控制中的应用。
实验结果表明,热敏电阻具有良好的温度敏感性能,可广泛应用于各种温度相关的领域。
热敏电阻温度特性的研究

热敏电阻温度特性的研究一、实验目的:了解和测量热敏电阻阻值与温度的关系二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理热敏电阻是其电阻值随温度显著变化的一种热敏元件。
热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。
PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。
适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。
热敏电阻的电阻-温度特性曲线如图1所示。
图1NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。
与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点:1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量;3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制;4.制造工艺比较简单,价格便宜。
半导体热敏电阻的缺点是温度测量范围较窄。
NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示)/exp(T B A R T = (1)式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。
由式(1)可得到当温度为0T 时的电阻值R ,即)/exp(00T B A R = (2)比较式(1)和式(2),可得)]11(exp[00T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为T 时的电阻值R ,就可以利用式(3)计算在任意温度T 时的T R 值。
热敏电阻温度特性研究实验

半导体热敏电阻特征研究(平衡电桥)热敏电阻是开发早、种类多、发展较成熟敏感元器件。
热敏电阻器经典特点是对温度敏感, 不一样温度下表现出不一样电阻值。
根据温度系数不一样分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)以及临界温度热敏电阻(CTR)。
正温度系数热敏电阻器在温度越高时电阻值越大, 常见正温度系数电阻有BaTiO3或SrTiO3或PbTiO3为关键成份烧结体; 负温度系数热敏电阻器在温度越高时电阻值越低, 该电阻材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上金属氧化物进行充足混合、成型、烧结等工艺而成半导体陶瓷。
热敏电阻关键特点是: ①灵敏度较高, 其电阻温度系数要比金属大10~100倍以上, 能检测出10-6℃温度改变; ②工作温度范围宽, 常温器件适适用于-55℃~315℃, 高温器件适用温度高于315℃(现在最高可达成℃), 低温器件适适用于-273℃~55℃; ③体积小, 能够测量其她温度计无法测量空隙、腔体及生物体内血管温度; ④使用方便, 电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂形状, 可大批量生产; ⑥稳定性好、过载能力强。
所以, 它在测温技术、无线电技术、自动化和遥控等方面都有广泛应用。
一、试验目1.了解热敏电阻电阻---温度特征和测温原理2.掌握惠斯通电桥原理和使用方法二、试验原理1.半导体热敏电阻电阻-温度特征半导体热敏电阻基础特征是它温度特征, 而这种特征又是与半导体材料导电机制亲密相关。
因为半导体中载流子数目随温度升高而按指数规律快速增加。
温度越高, 载流子数目越多, 导电能力越强, 电阻率也就越小。
所以热敏电阻伴随温度升高, 它电阻将按指数规律快速减小。
试验表明, 在一定温度范围内, 半导体材料电阻R T 和绝对温度T 关系可表示为T b T ae R = (1) 其中常数a 不仅与半导体材料性质而且与它尺寸都相关系, 而常数b 仅与材料性质相关, T 取绝对温度。
热敏电阻温度特性研究实验报告

热敏电阻温度特性研究实验报告热敏电阻温度特性研究实验报告引言:热敏电阻是一种能够随温度变化而改变电阻值的电子元件。
它在工业、医疗、环保等领域中有着广泛的应用。
本实验旨在研究热敏电阻的温度特性,探索其在不同温度下的电阻变化规律,为其应用提供参考。
实验设计:本实验采用的热敏电阻为NTC热敏电阻,其电阻值随温度的升高而下降。
实验所用的测试仪器有温度计、电压源、电流表和万用表。
实验步骤:1. 将热敏电阻与电路连接,保证电路的正常工作。
2. 将电压源接入电路,调节电压为常数值。
3. 使用温度计测量热敏电阻的温度,记录下每个温度点对应的电阻值。
4. 重复步骤3,直到覆盖整个温度范围。
实验结果:通过实验数据的收集与整理,我们得到了热敏电阻在不同温度下的电阻值变化曲线。
实验结果表明,随着温度的升高,热敏电阻的电阻值呈现出逐渐下降的趋势。
当温度较低时,电阻值变化较小;而当温度升高到一定程度时,电阻值的变化速度加快。
讨论:1. 温度对热敏电阻的影响:根据实验结果,我们可以得出结论:温度对热敏电阻的电阻值有着显著的影响。
随着温度的升高,热敏电阻的电阻值逐渐下降。
这是因为在高温下,热敏电阻内部的电导率增加,电子的运动能力增强,从而导致电阻值的降低。
2. 热敏电阻的应用:热敏电阻的温度特性使其在许多领域中得到了广泛的应用。
例如,在温度控制系统中,热敏电阻可以用来检测环境温度,并通过控制电路来实现温度的自动调节。
此外,热敏电阻还可以用于温度计、温度补偿电路等方面。
结论:通过本次实验,我们对热敏电阻的温度特性有了更深入的了解。
实验结果表明,热敏电阻的电阻值随温度的升高而下降。
这一特性使得热敏电阻在许多领域中有着广泛的应用前景。
对于今后的研究和应用,我们可以进一步探索热敏电阻的温度特性,优化其性能,并将其应用于更多的领域中,为人们的生活和工作带来更多便利。
热敏电阻特性研究

热敏电阻特性研究【原理】温度是影响材料电阻率的因素。
金属的电阻率随温度升高而增大,电阻温度系数为正值,在一定温度范围内存在线性关系)1()(t t o αρρ+=,大多数纯金属的电阻温度系数α约为℃。
而大多数绝缘料材料和半导体则具有负的电阻温度系数,可以这样定性解释:随着温度升高,会有更多的电子从价带或杂质能带跃迁到导带,产生了更多能参与导电的载流子(电子或空穴)。
载流子浓度增加使导电能力增强,电阻率迅速下降。
尤其半导体材料/0004.0α绝对值比金属大几百倍,有着极其灵敏的电阻温度效应。
用它们(例如等)制成的热敏电阻是性能良好的温度传感元件,可以制作成半导体温度计、湿度计、气压计、微波功率计等等测量仪表,并广泛应用于工业自动控制。
在一定的工作温度范围内,热敏电阻满足4243o MgCr o Fe 、TBT T B T Ae e R R ==−)11(00,式中R T 和R 0分别为温度TK 和T 0 K 下的电阻,A 和B 都是与材料物理性质有关的常数,B 称作热敏电阻常数,与电阻温度系数α的关系为21TB dT dR R −==α。
【仪器与器材】 计算机实时测量系统(温度传感器)和二个电压传感器、待测热敏电阻、加热器及升温容器、电路板与导线、100采样电阻。
Ω【实验内容】第一部分:预备实验(熟悉仪器连接与应用软件使用)小灯泡伏安特性曲线测定1. 打开文件S004.SW ,学习电压传感器的连接与实验设置(包括信号发生器设置)。
2. 实测小灯泡伏安特性曲线并转换成V I −ln 曲线。
3. 学习图形数据处理,求出特性参数。
第二部分:基本实验(测定NTC 热敏电阻的电阻温度特性)1. 测定NTC 热敏电阻的电阻—温度曲线。
2. 求出该热敏电阻的热敏电阻常数B 和25℃时电阻温度系数α。
实验步骤与图形数据处理要点提示 Datastudio1.按电路图连线。
温度传感器连接到SW750接口盒模拟信号通道A ,2个电压传感器分别连接到通道B 、C 。
热敏电阻温度特性实验报告

热敏电阻温度特性实验报告热敏电阻温度特性实验报告引言:热敏电阻是一种常用的电子元件,其电阻值会随着温度的变化而发生变化。
了解热敏电阻的温度特性对于电子设备的温度测量和控制至关重要。
本实验旨在通过测量热敏电阻的温度特性曲线,探究其电阻值与温度之间的关系。
实验材料和方法:材料:热敏电阻、直流电源、数字万用表、温度计、恒温水槽、温度控制器、导线等。
方法:1. 将热敏电阻与直流电源、数字万用表连接,组成电路。
2. 将温度计放置在恒温水槽中,并通过温度控制器控制水槽的温度。
3. 将热敏电阻放置在水槽中,使其与水温保持一致。
4. 通过调节温度控制器,使水槽的温度从低到高逐渐升高。
5. 每隔一段时间,记录热敏电阻的电阻值和相应的温度。
实验结果:在实验过程中,我们记录了热敏电阻的电阻值和相应的温度,并绘制了电阻-温度曲线图。
实验结果显示,热敏电阻的电阻值随着温度的升高而减小,呈现出明显的负温度系数特性。
随着温度的升高,电阻值的变化越来越明显,呈现出非线性的趋势。
讨论与分析:热敏电阻的温度特性是由其材料的特性决定的。
一般来说,热敏电阻的材料是半导体材料,其电阻值与材料的导电性质和能带结构有关。
在低温下,半导体材料中的载流子浓度较低,电阻值较大;随着温度的升高,载流子浓度增加,电阻值减小。
这种负温度系数特性使得热敏电阻在温度测量和控制中有着广泛的应用。
此外,热敏电阻的温度特性还受到环境因素的影响。
例如,温度的变化速率、湿度等因素都会对热敏电阻的温度特性产生一定的影响。
因此,在实际应用中,我们需要根据具体的环境条件对热敏电阻的温度特性进行修正和校准。
结论:通过本实验,我们成功地测量了热敏电阻的温度特性,并得到了电阻-温度曲线。
实验结果表明,热敏电阻的电阻值随着温度的升高而减小,呈现出负温度系数特性。
这一特性使得热敏电阻在温度测量和控制中具有重要的应用价值。
然而,需要注意的是,热敏电阻的温度特性受到环境因素的影响,因此在实际应用中需要进行修正和校准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称:热敏电阻温度特性研究
学院:
班级:
姓名:
学号:
一、实验目的及要求
了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
二、实验器材
热敏电阻测温实验装置包括:自耦调压器、待测热敏电阻和温度计、直流单臂电桥、电压源、滑线变阻器(2个)、四线电阻箱(3个)、检流计、单刀开关。
有关器材的一些注意事项:
1.实验开始时,加热电压不宜太高。
因为实验过程中,既要观察温度的变化,又要调节电桥平衡,操作有一定难度。
待操作熟练后,可适当加大电压,让温度升高的快些。
2.实验完成后,一定要将电池按钮开。
当电桥达到平衡时,检流计中电流为零。
在使用检流计时,要注意保护检流计,不要让大电流通过检流计。
3.实验完毕后,为了保护检流计,请松开“电计”和“短路”按钮,并将档位旋钮打到“红点”位置。
三、实验原理
1.半导体热敏电阻的电阻—温度特性
热敏电阻的电阻值与温度的关系为:
A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:
R t是在温度为t时的电阻值。
2.惠斯通电桥的工作原理,如图所示:
四个电阻R1,R2,R3,R x组成一个四边形,即电桥的四个臂,其中R x就是待测热敏电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B
和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有R x=(R2/R1)·R3,(R2/R1)和R3都已知,R x即可求出。
电桥灵敏度的定义为:
式中△R x指的是在电桥平衡后R x的微小改变量,△n越大,说明电桥灵敏度越高。
四、实验内容
1.用箱式电桥研究热敏电阻温度特性
(1)使用内接电源和内接检流计,按照实验电路图连线。
(2)线路连接好以后,检流计调零。
(3)调节直流电桥平衡。
(4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/R0),计算出室温时直流电桥的电桥灵敏度。
(5)调节适当的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻值R t;再将自耦调压器输出电压值调为0V,使水慢慢冷却,降温过程中每隔5℃测量一次热敏电阻值R t,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。
(6)根据测量结果,利用公式和,分别求取温度T趋于无穷时的热敏电阻阻值R∞、热敏电阻的材料常数B以及50℃时的电阻温度系数α。
2.用自组式电桥研究热敏电阻温度特性
(1)按下图所示实验电路图正确连线。
直流电桥测电阻电路图
(2)线路连接好以后,检流计调零。
(3)调节直流电桥平衡。
(4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/R0),计算出室温时直流电桥的电桥灵敏度。
(5)选择合适的自耦调压器输出电压值,使烧杯中的水温从20℃升高到85℃以上,每隔5℃测量一次热敏电阻阻值;再将自耦调压器输出电压值调为0V,在水温的从85℃下降到室温的过程中,每隔5℃测量一次热敏电阻阻值,最终求取升降温的平均电阻值,并作出热敏电阻阻值与温度对应关系曲线。
(6)根据测量结果,求取温度T趋于无穷时的热敏电阻阻值R∞、热敏电阻的材料常数B以及50℃时的电阻温度系数α。
五、实验数据及分析
1.用箱式电桥研究热敏电阻温度特性
电桥灵敏度根据公式S=△n/(△R0/R0)计算得到
最后的电桥灵敏度为三个值的均值 S = (S1 + S2 + S3) / 3 = 25.669
实验中选择的比例臂为1
60 840 832 836
65 710 702 706
70 610 602 606
75 526 512 519
80 450 444 447
85 390 382 386
由得lnR = lnA + B/T.将以上数据进行处理后绘成散点图,如下所示:
(其中横坐标为1/T,T的单位为开尔文,须注意单位的换算,纵坐标为lnR(t),即以上表格中的最后一列)。
截距lnR∞=-4.3937,故T趋于无穷时热敏电阻的阻值R∞=0.012354931Ω,而热敏
电阻的材料常数B = 3704.7K,再由公式可求得50℃时的电阻温度系数α为-0.035509782(单位为1/K)。
2.用自主式电桥研究热敏电阻温度特性
内容 1 2 3 电阻臂R0(Ω) 6100 6100 6100
变化量ΔR0(Ω) 240 490 760
偏转格数Δn0 1 2 3 电桥灵敏度25.417 24.898 24.079 电桥灵敏度根据公式S=△n/(△R0/R0)计算得到
最后的电桥灵敏度为三个值的均值 S = (S1 + S2 + S3) / 3 = 24.798 实验中选择的比例臂为1
温度值(单位℃)升温时热敏电阻
值(Ω)降温时热敏电阻
值(Ω)
热敏电阻平均值
(Ω)
20 5000 5000 5000
25 4040 4040 4040
30 3290 3270 3280
35 2720 2660 2690
40 2200 2190 2195
45 1820 1810 1815
50 1550 1490 1520
55 1280 1240 1260
60 1070 1060 1065
65 900 900 900
70 770 760 765
75 650 650 650
80 560 560 560
85 480 480 480
由得lnR = lnA + B/T.将以上数据进行处理后绘成散点图,如下所示:
(其中横坐标为1/T,T的单位为开尔文,须注意单位的换算,纵坐标为lnR(t),即以上表格中的最后一列)。
截距lnR∞=-4.3933,故T趋于无穷时热敏电阻的阻值R∞=0.012359874Ω,而热敏
电阻的材料常数B = 3783.9K,再由公式可求得50℃时的电阻温度系数α为-0.036268919(单位为1/K)。
六、思考题
1.如何提高电桥的灵敏度?
答:①提高驱动电源电压
②增加变化的桥臂。
2.电桥选择不同量程时,对结果的准确度(有效数字)有何影响?
答:选取原则:
①应使电桥比较臂电阻旋钮尽量多地使用,获得最多有效数字,提高
测量精度。
②一般情况下倍率的选取要使能读取四位有效数字。
如果不按照通电桥比率臂的倍率值的选取原则,测量结果会有误差,
有效数字选取不够导致结果不准确。
七、总结与思考
本次虚拟仿真实验,个人认为操作难度主要在升温和降温时调节电桥平衡,若电压调得过小,升温过慢,容易失去耐心,而若调得过高,升温过快,可能还没把电桥调平衡就过了需要记录电阻值的温度,故掌控好升温的速度以及及时调
节电桥平衡是实验的难点。
顺便一提,在降温的时候不应该直接将电压调为0,那样降温过快,同样会导致没把电桥调平衡就过了需要记录电阻值的温度的情况。
对于实验数据的处理,我用到了excel表格,通过输入数据和关系式我得到了需要的图表,有利于对数据的分析。
本次实验还是存在对仪器不够熟悉导致实验过程较手忙脚乱的问题,所幸慢慢地来最后也都得到了正确的数据。