水轮发电机组异常振动原因分析及处理

合集下载

简析水轮发电机组的振动原因及改进措施

简析水轮发电机组的振动原因及改进措施

简析水轮发电机组的振动原因及改进措施摘要:水轮发电机在长期运行过程中,会产生振动。

引起发电机组振动的原因可以从机械、水力和电力三方面考虑,针对这些原因,从发电机水机保护、励磁系统、发电机组导轴承方面进行改进。

关键词:水轮发电机;振动原因;改进随着现代技术的迅速发展,水轮发电机的比转速和单机容量越来越大,其结构更加复杂,机组稳定性问题日益突出。

一批像三峡工程等大、中型机组投入运行,其稳定性能尤为重要。

稳定性能成为衡量大、中型发电机组的重要性能指标。

1. 水轮发电机组的振动原因振动是旋转机械运行过程中的固有属性。

振动不仅影响机械的性能和寿命,还会引起机械故障和损坏会,造成重大经济损失。

水电机组的振动直接影响机组的安全运行、负荷的合理分配及供电的质量,如果不加以控制,还会造成严重的事故。

例如,西南某大型电厂的一台机组因导叶销破坏引起转轮周期性激振,导致转轮两块叶片振落,其它严重开裂叶片更换新转轮,直接经济损失一千万元;葛洲坝电厂某号机投产后出现明显振动,导致厂房震颇,严重地危及运行人员的身心健康。

可见,机组的振动值是一个重要的质量指标,既可以根据机组起动过程的振动来评价机组的安装质量,也可以根据机组振动状态确定机组的检修计划。

水轮发电机组的振动问题与一般动力机械的振动有所不同。

水电机组的振动除需考虑机组本身的转动或固定部分的振动外,尚需考虑作用于发电机部分的电磁力及水轮机过流部分的流体动压力对系统及其部件振动的影响。

在机组运转的情况下,流体一机械一电磁三部分是相互影响的。

因此,严格地说,水轮发电机组的振动是电气、机械、流休耦合振动。

完全按照这三者的耦合关系来研究系统的振动是非常复杂的,目前还难以建立起可以进行分析计算的数学模型,也不易在试验中同时考虑上述三种因素的互相影响。

为此,根据水电站所积累的典型经验,可将引起机组振动的原因划分为机械、水力、电气三方面。

1.1 机械因素由于制造、安装等因素引起的机械不平衡力主要有:(1)主轴弯曲或有挠度;(2)发电机转子与水轮机转轮动、静不平衡;(3)导轴承间隙调整不当;(4)推力轴承调整不良;(5)机组中心不正;(6)转动部分和固定部分不同心,产生摩擦或碰撞;(7)支持系统刚度不够。

水轮发电机组振动原因和处理措施分析

水轮发电机组振动原因和处理措施分析

水轮发电机组振动原因和处理措施分析水轮发电机组振动会让水轮发电机组正常运行产生问题,会让水轮机组出现故障。

本文首先对水轮发电机组振动带来危害作出简要阐述,然后对水轮发电机组振动原因进行分析,之后结合笔者在新庄水电站工作的实际情况,提出几点水轮发电机组振动处理措施,希望可以对业内起到一定参考作用。

标签:水轮发电机组;振动原因;处理措施前言:在水电站中,水轮发电机组的安全运行可以保证水电站经济效益,如果水轮发电机组因为振动出现故障情况,那么就会对水轮发电机组运行平稳性与发电效益造成不利影响。

水力原因、机械原因与电气原因均有可能导致水轮发电机组出现振动情况,进而产生运行故障。

一、水轮发电机组振动带来危害在水电站中,水轮机占有核心地位,水轮机组可以转化水势能为机械能,在水电厂中,水轮发电机组的安全运行可以保证其供电安全性、供电优质性和供电经济性,这和电网运行的稳定性、安全性具有直接关系,这对于水电厂的社会效益与经济效益具有决定作用。

在水轮机组的运行中,水力原因、机械原因与电气原因均会造成水轮发电机组振动情况,据统计,现阶段,水轮发电机组大约有80%事故与故障和振动有关。

水轮发电机振动会带来五点主要危害:(1)會让机组零部件出现疲劳损坏区,该区主要出现在金属和焊缝之间,长期运行会让损害程度加重,可能会有裂缝出现,导致机组报废;(2)发电机组部分紧固部件会出现松动甚至断裂情况,会让连接部件出现振动情况,减少其使用寿命;(3)水轮发电机振动会让机组旋转部分磨损程度加剧;(4)水轮机组共振会对厂房以及多种设备造成影响;(5)水轮机组振动会让尾水管中形成涡流脉动压力,此压力可能会让水管壁开裂,可能会对尾水设备正常使用造成影响。

二、水轮发电机组振动原因(一)水力原因在水力方面,水轮发电机组振动的主要原因是水轮机会受到动力水压的干扰,这种水力原因往往是具有较大随机性、很难进行控制的。

如果水轮机处于非设计环境工作,或是处于过度运行状态,那么由于不理想水流状况,机组部分组件会产生振动加速,出现断裂情况。

水轮发电机组异常振动的原因分析及应对措施

水轮发电机组异常振动的原因分析及应对措施

水轮发电机组异常振动的原因分析及应对措施摘要:水轮发电机组运行中出现异常振动是不可避免的,掌握引起机组异常振动的振源的类型、特征、危害以及振动规律等,对机组不同的异常振动进行分析、判断,迅速、准确地消除引起机组异常振动的振源或采取有效措施减小振动,确保机组安全、稳定、可靠、经济运行。

本文主要对水轮发电机组的剧烈振动原因及应对措施进行了探讨。

关键词:振动原理异常振动原因分析应对措施1 水轮发电机组振动原理在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。

流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振动,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。

2 水轮发电机组异常振动的危害旋转机械的振动是难以避免的,如果可以把振幅控制在允许范围之内,就可以保证机组安全、正常的运行,但是如果是剧烈的振动,必然会不利于机组的安全运行,其主要表现为:机组的各个连接部件出现松动,所有静止部件和转动部件之间产生摩擦甚至是扫膛而损坏;导致零部件和焊缝疲劳,形成裂缝甚至出现断裂;尾水管低频压力脉动可使尾水管壁出现裂缝,当发电机或电力系统固有频率与其频率一致的时候,会发生共振,造成机组出现剧烈振动,有可能会导致发电机组从电力系统中解列,甚至会损坏厂房和水工建筑物。

3 水轮发电机组常见异常振动的原因分析及应对措施3.1 机械因素造成的剧烈振动的原因及应对措施机械因素引起的振动是指由机械部位摩擦力和惯性力以及其他力造成的振动,其特征是振动频率相当于机组旋转频率或是机组转动频率的几倍。

引起振动的机械因素主要是导轴承缺陷、机组轴线不正、转子质量不平衡等。

(1)振动的原因分析1)转子质量不平衡:因为转子质量的不平衡,转子的中心会对轴心产生偏心距,当轴以角速度开始旋转的时候,因为失衡质量受到离心惯性力的影响,在轴上出现弓状回旋,此类的振动也被称为振摆。

对于水轮发电机组振动的原因及处理方法的研究

对于水轮发电机组振动的原因及处理方法的研究

对于水轮发电机组振动的原因及处理方法的研究水轮发电机组振动是指水轮机在运行时产生的振动现象。

水轮发电机组振动的原因主要包括以下几个方面:水力因素、结构因素以及操作因素。

首先,水力因素是水轮发电机组振动的主要原因之一、由于水轮机是通过自然水流将水流动能转化为机械能的装置,因此水流的流动状况直接影响水轮机的运行情况。

当水流入口流速过快或者过慢时,会导致水流输运不平稳,产生激烈的水力冲击,从而引起水轮机的振动。

此外,当水轮机在运行中遇到水涡、水柱等突状流场时,也容易引起振动。

其次,结构因素也是水轮发电机组振动的一个重要原因。

水轮机的结构决定了其在运行时的刚度和稳定性。

若水轮机的结构强度不足,或者存在设计缺陷、制造缺陷等问题,都会引起水轮机的振动。

此外,水轮机的附件、导流罩、导叶等也会对水轮机振动产生直接或间接的影响。

最后,操作因素也会对水轮发电机组振动产生影响。

例如,水轮机的启停过程中,由于操作不当或者控制系统故障等原因导致的运行不稳定性,都会引起水轮机振动。

此外,水轮机的维护保养不到位,如轴承磨损、机械连接松动等问题也会导致水轮机振动的发生。

针对水轮发电机组振动问题,可以采取以下处理方法来解决:首先,优化设计和制造工艺。

在水轮机的设计和制造过程中,应充分考虑各种因素对振动的影响,采用合理的结构设计和制造工艺,提高水轮机的刚度和稳定性。

其次,加强水力调节。

通过合理调节水流的流速和流量,减少水轮机在工作过程中的水力冲击和流场扰动,从而降低水轮机的振动。

再次,完善控制系统。

加强水轮机的控制系统,提高水轮机的运行稳定性,避免因操作不当或控制系统故障导致的振动问题。

最后,加强维护保养。

定期对水轮机进行维护保养,检查轴承、机械连接等关键部件的磨损情况,及时处理和修复,确保水轮机的正常运行。

综上所述,水轮发电机组振动是由水力因素、结构因素以及操作因素等多方面因素引起的。

在处理水轮机振动问题时,需要充分考虑各种因素的影响,并采取相应的措施来解决问题,从而确保水轮机的正常运行和发电效率。

水轮发电机组的振动原因

水轮发电机组的振动原因

水轮发电机组的振动原因
1.静平衡问题:在水轮发电机组运行时,水轮及配重的质量分布不均
匀或者水轮不平衡,会导致转子在高速旋转时产生离心力,进而引起振动。

2.动平衡问题:动平衡是指水轮转子系统在运转时的动态平衡状态,
即转子在高速旋转时受到离心力的作用,导致转子产生起伏振动。

这通常
是由于转子的构造不均匀或者受到外部冲击等原因引起的。

3.涡轮进水不平衡:水轮是以涡轮原理进行能量转化的机械装置,当
水流进入涡轮时,若水流分布不均匀,会导致水轮不平衡,进而引起振动。

4.轴承问题:水轮发电机组的振动还与轴承磨损和润滑不良等相关。

当轴承磨损或润滑不良时,轴承的摩擦力增加,会导致转子的转动阻力增大,从而引起振动。

5.转子失衡:转子失衡是指转子的质量分布不均匀,导致转子在高速
旋转时无法达到完全平衡的状态。

这通常是由于制造过程中的误差或者腐
蚀磨损等原因引起的。

以上是水轮发电机组振动的几个主要原因,除此之外,还可能存在其
他因素,如水轮叶片的积垢和腐蚀、发电机组机械部件的磨损等。

为了减
少振动对发电机组的影响,需要通过定期检修和保养、科学的设计和制造
以及合理的调试来确保整个发电机组在运行中的平衡和稳定。

同时,还需
要采取相应的振动监测和控制措施,及时发现并解决振动问题,以保证发
电机组的安全运行和提高发电效率。

水轮发电机组振动原因分析

水轮发电机组振动原因分析

水轮发电机组振动原因分析概述振动是机器运行中不可避免的现象。

在水轮发电机组中,振动不仅会影响设备的性能和寿命,还会影响发电厂的生产效率和安全。

因此,深入分析水轮发电机组振动原因,采取有效措施减少振动,对于保障发电厂的正常运行和机组的长期稳定运行至关重要。

模型分析水轮发电机组振动主要有几种类型:•稳态振动:指机组长期处于一种稳定的运行状态,此时振动频率和振幅相对稳定。

水轮发电机组稳态振动主要由质量不平衡和未正确安装转子引起。

•暂态振动:指振动频率和振幅在短时间内发生变化,可能是由于负载突变或冲击引起的。

暂态振动对机组疲劳损伤影响较大,长期存在可能造成机械故障。

•横向振动:指机组的振动方向与转子轴线垂直,造成机组运转不稳定。

常见的横向振动原因包括转子偏心、轴承失效等。

•纵向振动:指机组的振动方向与转子轴线平行,较为严重时可能会造成转子碰撞和轴承故障等机械故障。

除了以上几种常见振动类型,水轮发电机组还可能出现多种组合振动。

振动原因分析1. 转子偏心转子偏心是指转子在旋转时轴向偏移,导致振动频率和振幅增大。

主要原因包括转子装配不良、轴承表面磨损不均、轴箱挠曲、转子重量不均等。

针对此问题,我们可以采取如下解决措施:•调整轴承的安装平面和支撑面,以保证轴承安装的精度。

•整体调平转子,保证转子在旋转时轴向偏移量小于要求。

•检查轴承并进行必要的维护、清洁和润滑。

2. 支承失效支承失效是指轴承在运转中失效,产生异常振动。

支承失效常见原因包括轴承老化、过载运转、润滑不良等。

中长期的解决措施为定期维护和更换轴承。

短期的解决措施包括监控轴承温度和压力,确保轴承正常运行。

3. 质量不平衡质量不平衡是指转子及其附属部件质量分布不均,引起机组振动。

这种振动通常是稳态振动,振动频率与机组的物理结构有关。

当不存在其他明显的故障时,质量不平衡经常是导致振动的根本原因。

解决措施包括:•对机组进行动平衡校对来修正在机组内部的重量分配不均(即转子杂散质量)。

水轮发电机组振动原因分析及措施

水轮发电机组振动原因分析及措施

水轮发电机组振动原因分析及措施摘要:本文首先对水轮发电机组产生振动的原因进行了分析,并归纳了机组振动的特点,最后针对水轮发电机组产生振动的原因提出了相应的处理措施。

关键词:水轮发电机组;原因;处理方案引言对于水力发电站而言,水轮发电机组是不可缺少的构成内容,其运行的稳固性是确保水电站可以顺利运转的重要因素,但是,水轮发电机组是由各种机械设备组成的,有些部件还需要进行运转,设备在运作过程中运都不可避免的会存在振动,而且在实际运行的过程中,能对机组稳定性产生影响的因素有很多,如电网、水文、气候、制造、安装和时间等等,因此机组很可能会出现机组振动超标现象。

所以,要在采取恰当的技术举措把机组的振动尽可能地降低,且把其管控在相应的范围内,来确保机组运转的长效、稳健性。

可是如何将机组振动控制在合理范围内,保证机组安全稳定运行,这个问题需要引起重视,并采取适当的方法进行解决。

1 水轮发电机组的振动原因1.1 机械原因一般情况下,由机械因素引发的振动存在一个共同点:机组的振动频率一般等于转频或者是转频的几倍。

能够引起水轮发电机组振动的机械原因主要分为以下几点:(1)转子质量偏心或安装偏心。

当磁力下线通过转子与定子的间隙时,在它们之间会因磁力线自身存在缩短倾向而形成拉力,即磁拉力。

如果电机的转子制造时出现问题而出现质量偏心情况,或者在安装转子时没有按照要求进行装配而偏离中心,以及因长期运行主轴磨损而导致使转子偏心,转子都会受到不均衡的磁拉力,这样会对转子的动力特性产生影响,导致水轮发电机组产生振动现象。

(2)转子“抖动”。

具体而言,转子“抖动”是说水轮发电机组在运转的时候,导轴承产生松动亦或空隙不恰当、刚性未达标,而且机组的运行不牢固、润滑工作没有达到要求时,导轴承和转轴间产生硬性摩擦,致使轴承向相反的方向转动,进而形成水平方向的振动。

1.2 电磁原因引起的振动(1)转子绕组短路。

当一个的磁电动势因短路而减少时,与它相对的那个磁电动势并未产生改变,为此便会产生一个和转子反方向转动的和轴线同向的不均衡磁拉力,进而导致转子发生振动。

水力发电机组运行中振动的原因分析及处理办法

水力发电机组运行中振动的原因分析及处理办法
(2)发电机组遭受较大程度的磨损,或是轴剧烈的振动,则容易使轴与轴瓦温度上升,当温度达到临界值时可能烧坏瓦轴,从而无法满足机组长期运行条件。
(3)发电机转子的振动过大,会增加滑环电刷的磨损,导致电刷火花不断增大。
(4)机组振动可能会引起机组零部件金属以及焊缝之间形成并扩大疲劳破坏区,促使其机能的减弱。随着裂纹的不断扩大,导致裂缝的产生,最终会造成断裂,造成机组无法使用。
4.2机组支撑因素导致的振动及处理
(5)机组振动过大,会增加尾水管中形成的涡流脉动压力,这会使尾水管壁发生裂缝,从而影响尾水管壁的正常功能,严重时可能会导致整体尾水设施遭到严重的破坏。
2.电气原因导致的水力发电机组振动及处理方法
2.1三相负荷因素引发的振动及处理
在实际水电生产过程中,发电机组经常会出现三相负荷不对称问题,如发电机定子单向接地或者两相短路时。当负荷不平衡时,三相绕组会产生负序电流,产生负序旋转磁场。一旦负序磁场正对发电机纵轴时,较小气隙会增大转子间作用力。一旦负序磁场正对发电机横轴时,较大气隙会减小转子间作用力。因此负序磁场造成定转子间作用力忽大忽小,便会出现定子机座与转子出现振动问题。针对此种问题,需要设置发电机阻尼绕组来减小负序电流,在负序旋转磁场切割转子时,电阻中安装的漏电抗很小的阻尼绕组便可以产生较大感应电流,对负序磁场进行削弱,从而减少产生的负序电流,避免出现振动问题。
3.水力因素引起的水力发电机组振动及处理方法
3.1水力因素引起的振动原因
水力因素引起的机组振动主要有以下几个方面:(1)卡门涡列:围绕着物体的恒流通过时,在出口的两侧边缘出现了漩涡,形成了有规则交错排列、向相反方向旋转的旋涡,从而相互吸引、相互干扰,形成了非线形的涡列,通常被称为卡门涡列。当卡门涡列冲击频率和旋转物体叶片固有频率比较接近的时候,叶片的固有频率会产生共振,并带有强烈且频率单一的噪声以及金属共振的声音。(2)空腔汽蚀:水轮机有水流通过的时候,流速、流向受到流道的影响发生变化,在流速增加或脱流部位压力减少到汽化压力的时候,水流中会出现汽泡,汽泡在进入高压区之后会溃灭,从而导致汽浊出现。空腔汽蚀是在流道中由于漩涡带引起负压、脱流而导致压力交变造成的。因空腔汽蚀造成机组的推力轴承和顶盖产生剧烈的垂直振动,相较于横向振动,垂直振动的危害更大。(3)尾水管的低频率水压脉冲:水轮机在非设计工况条件下运行的时候,由于转轮受到出口处的脱流旋涡和旋转水流以及汽蚀等影响,在尾水管内常常会引起水压脉动,特别是在尾水管内出现大型涡带之后,涡带以近似固定的频率在管内转动,从而导致低频压力脉动。当水流在管道中流动时,压力脉动会激起尾水管壁、转子、蜗壳、导水机构和压力管道的剧烈振动。(4)水力不平衡:具有动能和位能的水流是由蜗壳的作用而形成的环流,它是经过均匀分布的固定以及活动导叶片作用到转轮上,转轮被激活而旋转。因为加工、安装误差,导水叶叶片、流量通道的形状大小差异较大的时候,作用转轮的水流在失去轴对称的情况下就会出现不平衡横向力,从而导致转轮振动,当无负载和低负荷运行的时候,振动比较强烈。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮发电机组异常振动原因分析及处理
摘要:轮发电机组运行中的各部位振动和摆度是机组运行健康状况的最直接反映,良好的振动和摆度对机组长期的安全稳定运行具有重要意义,将其幅值限制在规程规范要求的限值之内,是确保机组能长期安全、稳定运行的基本要求。

大修机组和新装机组在启动调试过程中,时常会遇到机组的振动和摆度超标异常情况,虽然水轮发电机组振动和摆度异常的原因主要归结有机械因素、电磁因素和水力因素三个方面,但这三个方面又都包含很多不同的具体原因,不同方面的具体原因的故障现象有些还是相似的,在实际中,往往还存在多个不同因素共同起作用。

关键词:水轮发电机组;异常震动;处理措施
引言
要找到机组振动和摆度异常的真实原因,往往需要对这些原因进行逐一仔细排查,往往需花费大量人力、物力和时间。

同时,由于现场试验手段及各种条件限制,逐一排查各种振动和摆度异常的原因并不现实,为此,如何尽快缩小排查范围、快速找到机组振动异常的原因就显得尤为重要。

1水轮发电机组异常振动原因
(1)机械因素
引起机械不平衡的常见原因主要有:转子质量不平衡、水轮机质量不平衡、轴承缺陷、机组轴线不正等。

机械不平衡一般表现为振动频率与转速一致,且和转速平方成正比。

根据表1数据,机组在空转状态下,机组各部位振动和摆度数据优良,各振动和摆度频率也以转速频率为主,其他频率成分很小,长时间空转运行机组各部位瓦温也正常。

因此,由于机械不平衡引起机组振动过大的可能性很小,可暂不考虑是由机械因素引起的机组振动过大。

(2)电磁因素
引起电磁不平衡的常见原因主要有:转子绕组短路、空气间隙不均匀、定转
子椭圆度超标等。

电磁不平衡一般表现为振动随励磁电流增大而明显增大。

机组
投入励磁,发电机机端电压为25%Ue(Ue为机端额定电压)时,机组的各部振动
和摆度都出现较明显的变化。

机组上导摆度呈下降趋势,摆度值由88μm降至
54μm,下导摆度和上导摆度则有轻微波动,无规律可循。

从机组各部位振动和
摆度频谱分析,上机架水平、上导摆度和定子水平振动仍然以转频为主。

在机端
电压由25%Ue增至100%Ue过程,除上导摆度转频分量逐步减小外,其他频率成
分分量基本保持不变;上机架水平和定子水平振动则各频率成分分量都基本保持
不变。

从机组变励磁试验看,在发电机机端电压变化过程中,机组上机架水平振动、下机架水平振动和定子水平振动都没有变化,结合各振动和摆度频谱,可判
断机组并不存在常见的引起电磁不平衡的因素,因此也可以暂不考虑是电磁因素
引起的机组振动过大问题。

2振动故障诊断
水轮机的振动问题一般是由三种原因造成,分别为机械因素、水力因素和电
气因素。

机械因素主要是由于机组的轴线不对中,转子结构不对称转动或静止部
件安装误差松动,转轮、叶轮、发电机或励磁机转子中的残余不平衡;电气因素
是指电机转子的不平衡磁拉力,定转子的间隙异常和线圈短路等;而水力因素只
要是尾水管压力脉动、空蚀、自激振动等,机组在偏离设计工况运行的时候都会
存在一个明显的水力共振区,一般在额定负荷的20%~30%区间内最为明显,所以
电厂运行人员需要通过监测机组升负荷过程中的振动情况来找到共振区,并使机
组运行避开共振区。

大量工程实践表明,水轮发电机组质量不平衡故障属常见故障,尤其在新机组的安装调试阶段。

这是因为水轮发电机转子体积大、重量也大,由很多零部件组成,在机组加工、组装过程中很难保证质量平衡。

所以新机组首
次启动过程中发电机转子很可能存在一定的质量不平衡。

当机组异常振动情况发生时,首先是进行现场排查,主要包括以下几个方面:一是检查发电机,主要包括定转子间隙、磁极线圈短路等方面,以排除磁拉力不
平衡的问题;二是检查上机架、下机架及顶盖连接螺栓和水导油槽座螺栓等结构
受力部件,以排除固定部件松动的问题;三是导瓦间隙和瓦温检查,以排除出现
轴承瓦间隙变化的情况。

现场人员对以上问题进行了排查并未发现异常情况。


外观检查没有发现问题的时候,则考虑从振动本身来找到解决方案。

当机组出现
不正常振动,振动的频率是最直接的体现。

一般振动都以工频为主,而当机组出
现不同故障就会产生不同的振动频率,例如:摩擦振动是工频并掺杂其他分量;
电磁振动时以高频为主;油膜震荡则是以低频为主,转子不平衡的频率为工频。

对振动进行频率分析能有效帮助我们去分析振动产生的原因,对振动原因能有一
个初步的判断。

3水轮发电机组异常振动的处理措施
3.1巡查重点
水电机组启停相对频繁,停机前应检查制动用气压力正常与否,停机过程中
密切监视机组数据,若风闸未自动投入,应立即手动投入。

每次停机后要对制动
系统各部位进行检查,确保制动系统无故障信号。

运行日常巡检中关注制动柜气压、各阀门状态、各装置运行是否正常,若发现异常立即告知负责人并采取相应
处理措施,然后通知维护人员处理。

维护人员巡检时检查设备指示、气味,记录
开关数据,检查盘柜内PLC模块、电气元器件、仪表工作是否正常,柜内电源
回路有无发热灼烧痕迹,检查现地自动化原件是否完好,有无渗漏、污迹,各自
动化原件工作是否正常。

3.2定期维护
制动系统的维护重点在于电气自动化元件检查测试和机械器件状态检查维护。

主要内容有:盘柜内回路检查、电源、电缆、自动化元件、PLC、定值、通讯
的检查测试,盘柜清灰。

确保电气制动能够正常投退。

机组设备表面及各设备间
的清洁,制动储气罐定期排污,避免制动粉尘及灰尘等颗粒物影响制动用气质量
及其他设备绝缘等性能。

机组检修时对输气管路进行疏导、清理,去除管内的锈蚀、粉尘,维持气管干净、通畅。

监视制动环和闸板表面损伤程度,损伤程度较
高的及时修复或更新。

4处理过程
首先打开蜗壳进入门和锥管进人门,分别对活动导叶开度检查、大轴补气管、尾水补气管检查,均未发现异常。

然后复核机组盘车数值和大轴定中心数值,均
在优良范围,不存在轴系不好、转动部件不在中心的问题。

最后对联轴螺栓、顶
盖螺栓、导叶开度、导瓦间隙等部位检查,确认无异常。

但在梳理机组检修回装
过程,发现发电机和水轮机联轴法兰经过加垫处理,以调整机组整体轴线垂直,
垫片厚度由原来修前的0.15mm调整为0.12mm,垫片位置也有所改变。

因此,将
发电机和水轮机联轴法兰垫片由0.15mm恢复到修前的0.12mm,垫片位置恢复到
修前垫片位置,同时将发电机和水轮机联轴螺栓真正预紧。

并再次对机组进行盘车、定中心、调整导瓦间隙,对机组进行全面检查无异常。

完成上述工作后,开
启4号机组,分别进行了空转、空载、负荷试验。

数据显示,本次开机过程中的
空转、空载、带额定负荷各阶段上下机架振动、各导轴摆度数值达到优良指标,
具体数值见表2。

至此,此次4号机组振动过大故障得到成功处理。

结束语
水轮发电机组在检修后启动过程中因水、发联轴螺栓预紧力程度不够、螺栓
垫片厚度和位置不合适引起机组振动过大的问题。

水、发联轴螺栓预紧力程度不
够是机组带负荷后出现水力不平衡的根源,其特点为上机架水平振动和上导摆度
中出现一个在转频和2倍转频之间且频率大小变化的振动分量。

机组在检修过程中,重要部位的连接螺栓要用专用工具按要求进行预紧;同时做好机组拆解过程
重要位置的标识、标记,并作为回装的依据和参考。

参考文献
[1]陈立.水轮发电机组桨叶故障原因分析及处理[J].水电站机电技
术,2021,44(03):44-46.
[2]冯国柱.灯泡贯流式水轮发电机组的振动与振动区的界定[J].水电站机电
技术,2023,46(02):5-8.
[3]梁德帅.水利工程水轮发电机组运行异常问题及处理措施探析[J].地下
水,2020,42(03):235-236.
作者简介:黄剑波(1978-),男,壮族,广西南宁人,本科,工程师,主要从事水电厂电气设备运行、检修、事故分析处理、技术改造工作。

相关文档
最新文档