变形高温合金的特性分类及用途(精)
【研究】GH3625(N06625)特性、标准、成分、性能...

上海钢研-张工:158–O185-9914GH3625(GH625)合金是以钼铌为主要强化元素的固溶强化型镍基变形高温合金,具有优良的耐腐蚀和抗氧化性能,从低温到980摄氏度均具有良好的拉伸性能和疲劳性能,并且耐盐雾气氛下的应力腐蚀。
因此,可广泛用于制造航空发动机零部件、宇航结构部件和化工设备。
概述1.1、合金特性:● 对氧化和还原环境的各种腐蚀介质都具有非常出色的抗腐蚀能力●优秀的抗点腐蚀和缝隙腐蚀的能力,并且不会产生由于氯化物引起的应力腐蚀开裂●优秀的耐无机酸腐蚀能力,如硝酸、磷酸、硫酸、盐酸以及硫酸和盐酸的混合酸等●优秀的耐各种无机酸混合溶液腐蚀的能力●温度达40℃时,在各种浓度的盐酸溶液中均能表现出很好的耐蚀性能●良好的加工性和焊接性,无焊后开裂敏感性●具有壁温在-196~450℃的压力容器的制造认证1.2、应用领域●含氯化物的有机化学流程工艺的部件,尤其是在使用酸性氯化物催化剂的场合●用于制造纸浆和造纸工业的蒸煮器和漂白池●烟气脱硫系统中的吸收塔、再加热器、烟气进口挡板、风扇(潮湿)、搅拌器、导流板以及烟道等●用于制造应用于酸性气体环境的设备和部件●乙酸和乙酐反应相近牌号、化学成分与标准2.1、相近牌号UNS NO6625 Inconel625(美国)、 NC22DNb(法国)、/.Nr.2.4856(德国)2.2、执行标准GJB 1953-1994 《航空发动机转动件用高温合金热轧棒材规范》GJB 2611-1996 《航空用高温合金冷拉棒材规范》GJB 2612-1996 《焊接用高温合金冷拉丝材规范》GJB 3020-1997 《航空用高温合金环坯规范》GJB 3165-1998 《航空承力件用高温合金热轧和锻制棒材规范》GJB 3782-1999 《航空用高温合金棒材规范》HB 5198-1982 《航空叶片用变形高温合金棒材》物理性能3.1、密度ρ=8.4g/cm33.2、熔化温度1290~1350℃金相组织结构该合金为面心立方晶格结构。
高温合金牌号 国标

高温合金牌号国标摘要:1.高温合金概述2.高温合金牌号国标分类3.各类高温合金的特点及应用4.国标高温合金牌号的选择与实用建议正文:高温合金是指在高温环境下具有良好的抗氧化性、热疲劳性、蠕变性等性能的合金。
它们广泛应用于航空航天、电力、石油化工等高温环境中。
根据我国国家标准,高温合金牌号分为以下几类:1.镍基高温合金:以镍为主要基体的合金,具有优良的抗氧化性、热疲劳性和蠕变性能。
常见的牌号有IN718、IN738、IN925等。
2.铁基高温合金:以铁为主要基体的合金,具有良好的高温强度和抗氧化性。
常见的牌号有Fecralloy、Fe-Cr-Al等。
3.钴基高温合金:以钴为主要基体的合金,具有优异的耐热腐蚀性和高温强度。
常见的牌号有CoCrMo、CoNiCr等。
4.铜基高温合金:以铜为主要基体的合金,具有良好的导热性和抗氧化性。
常见的牌号有Cu-Al-Mn、Cu-Ni-Mn等。
在选择高温合金牌号时,需根据实际应用场景和性能要求进行筛选。
以下是一些实用建议:1.针对高温环境,优先选择具有良好抗氧化性、热疲劳性和蠕变性能的合金。
例如,镍基高温合金在高温下具有优异的抗氧化性,适用于高温氧化性环境。
2.考虑合金的力学性能和使用寿命。
不同牌号的高温合金具有不同的力学性能,如强度、硬度等。
在满足使用要求的前提下,选择具有较高使用寿命的合金。
3.关注合金的加工性能。
高温合金的加工性能较差,选择时应充分考虑生产工艺的可行性。
如铁基高温合金较易加工,适用于生产制造。
4.考虑合金的焊接性能。
部分高温合金在焊接过程中易产生裂纹、变形等问题,选择时应注意其焊接性能。
如镍基高温合金焊接性能较好,可用于焊接结构件。
5.结合实际应用场景,参照国标牌号表进行选择。
国标中详细列出了各类高温合金牌号及其性能参数,可根据实际需求进行筛选。
总之,在选择高温合金牌号时,应充分考虑使用环境、性能要求、加工焊接等因素。
高温合金材料的应用-ppt课件.pptx

课件
谢谢!!!
2.合理选择刀具结构形式与几何参数
为了提高刀具刚性防止切削振动,一般需要可采用整体式硬质合金刀 具。 为了获得刃口锋利的刀片,要采用合理刀片刃磨的方法,提高刀片的 刃磨质量。 切削高温合金时,为了减小塑性变形,减小切削力,降低切削温度和 减小加工硬化,应在保证刀刃强度前提下,尽量选用正前角(30.100), 当切削速度较高时,可以采用负前角。对于薄壁零件宜选用较大前角。
课件
改善高温合金的切削加工性的方法----传统方法
1.选择合适的刀具材料
切削高温合金应刀具,只有在车削断续表面和复杂型面时,才使用高 性能高速钢刀具。常选用YG类及含Ta(N选用耐热性好、抗弯强度高、耐磨、 导热性好、抗粘结性好的刀具材料。连续车削应采用硬质合金b)C的YG类 硬质合金,以减少与工件材料中钛(Ti)元素的亲和作用,减小刀具的粘结 磨损和扩散磨损。推荐牌号:YC,6,YC,6A,643,726,813,YM051, YM052等。
FWP14
FWP14
FWS10
WP7系列、WP13系列 WZ9、WJ9、WS11、WZ6、WP8 WP7系列、WP13系列
WP7、WP13系列、WZ9、WS11、WZ6、WP6甲、FWP14
WZ9、WP6、WZ6、WP7甲、WP7系列、WP13系列、FWP14、FWS10、WZ6
FWP14、FWS10、FWS10、YGY
课件
3.合理设置切削参数
在高温合金加工过程中,随着切削速度的增加,切削温度将会升高。 为避免切削温度过高,应采用较低的切削速度。
4.正确选择切削液
一般加工高温合金,宜选用极压油类,以降低刀具一切屑接触面产生 的粘结磨损。但为防应力腐蚀降低疲劳强度,加工镍基高温合金不宜用硫 (s)系极压切削液,可用乳化液、透明水基切削液。
高温合金的基本知识和应用

高温合金的基本知识和应用一、高温合金是指在600度以上的高温下承受复杂的应力,而能很好发挥它的力学和化学性能的一种合金。
二、常用的高温合金牌号有GH3030、GH2132、GH3039、GH3044、GH3128、GH4169、GH4145、GH333三、化学成分另外附有表格。
四、几种最常用的高温合金的材质和力学性能:GH2132(GH132)时效硬化型铁基合金产品牌号:GH2132(GH132/IncoloyA-286/S66286)产品规格:Φ3-350mm执行标准:ASTM B160,B164,B166,B408,B425,B574,GB149921、GH2132钢的特性该合金是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。
在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。
1.GH2132相近牌号A-286 P.Q.A286 UNSS666286(美国)、ZbNCT25(法国)、X5NiCrTi26-15、1.4980、1.4944(德国)2.GH2132生产执行标准3.GH2132工艺性能与要求:1)、该合金具有良好的可锻性能,锻造加热温度1140℃,终锻900℃。
2)、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。
3)、合金具有满意的焊接性能。
合金于固溶状态进行焊接,焊后进行时效处理。
4.GH2132 金相组织结构:该合金在标准热处理状态下,在γ基体上有球关均匀弥散的NI3(Ti,Al)型γ'相以及TiN,TiC,晶界有微量的M3B2,晶界附近可能有少量η相和L相。
2、GH2132 化学成份:(GB/T14992-1994)3、GH2132力学性能(在20℃检测机械性能的最小值)4、GH2132 物理性能5、用途在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。
适合制造在650℃以下长期工作的航空发动机高温承力部件,制造汽车航空发动机和工业燃气涡轮机上的零部件,加力燃烧室、紧固件等。
变形高温合金的特性分类及用途

变形高温合金的特性分类及用途变形高温合金是指在高温环境下具有优异性能的合金材料。
它们主要由镍、钴或铁作为主要基体元素,通过添加一定数量的其他合金元素,如铬、钨、钼等,以及稀土元素等来改善其高温性能。
变形高温合金具有优异的高温力学性能、耐热腐蚀性能和抗疲劳性能,适用于航空航天、能源、化工、石油开采等领域。
根据不同的材料组成和特性,变形高温合金可以分为镍基合金、钴基合金和铁基合金。
1.镍基合金:镍基合金是变形高温合金中使用最广泛的一类。
其主要特点包括优异的高温强度、较好的抗氧化性能和耐腐蚀性能。
这使得镍基合金在航空航天领域中得到广泛应用,如用于制造燃气轮机中的涡轮叶片、燃烧室等。
此外,镍基合金也用于制造化工设备、石油开采工具、核能设备等。
2.钴基合金:钴基合金具有优异的高温强度、抗氧化性能和耐热腐蚀性能。
相比于镍基合金,钴基合金的耐腐蚀性能更好,适用于一些酸性环境或具有氯化物腐蚀的场合。
钴基合金常用于制造高温气轮发动机的叶片和涡轮盘、航空发动机的喷气喉管等。
3.铁基合金:铁基合金是一种相对较新的变形高温合金,具有良好的高温强度和耐腐蚀性能。
相比于镍基合金和钴基合金,铁基合金在材料成本上更加优惠。
铁基合金主要用于制造煤制气锅炉、医疗设备、化工设备等。
1.航空航天领域:变形高温合金广泛用于航空发动机、航空涡轮、燃烧室等关键部件。
这些材料能够承受如高温、高压、高速等极端环境,确保飞机和宇航器的高效、可靠运行。
2.能源领域:变形高温合金用于制造发电厂的燃烧室、燃气轮机等部件,能够承受高温高压的要求。
它们也被用于制造核电站中的包芯管道、核燃料元件等。
3.化工领域:在化工领域,变形高温合金用于制造化工设备,如反应器、管道、催化剂等。
这些设备需要承受高温、高压、腐蚀等严酷条件,变形高温合金能够提供良好的耐热、耐腐蚀性能。
4.石油开采领域:石油开采工具需要具备良好的耐磨损性能和耐腐蚀性能。
在高温、高压、腐蚀性气体和液体环境下,变形高温合金能够提供优异的性能,用于制造油井套管、油井工具等。
2-高温合金

等轴多晶体
定向凝固柱状晶
单晶
4、机械合金化高温合金
这种技术是通过高能球磨,将元素或合金粉末机械 混合、均匀分布以实现合金化。适用于生产氧化物 弥散强化合金、 非晶、超饱和固溶体及纳米材料.
氧化物弥散强化(ODS)合金是采用独特的机械合金化 (MA)工艺, 超细的(小于50nm )在高温下具有超稳定 的氧化物弥散强化相均匀地分散于合金基体中, 而形 成的一种特殊的高温合金.
制出的单晶合金,其使用温度接近合金熔点的90%,至今,各国先进航空发动
机无不采用单晶高温合金涡轮叶片。
我国高温合金发展历程
第一阶段, 从1956 年至20 世纪70 年代初是我国高温合金的创业和起始阶段. 在苏联专家的指导下炼出的第一炉高温合金G H 3030, 拉开了我国研制和生 产的序幕。自主开发了一批新合金, 特别针对我国缺N i 少C r 的资源情况, 研制 出一批铁镍基高温合金。
制造工艺对高温合金的发展起着极大的推进作用。
二十世纪40年代~50年代中期: 通过合金成分的调整来提高合金的性能。
二十世纪50 年代:
出现了真空熔炼技术,去除合金中有害杂质和气体,精确控制合金成分,如 Mar-M200、In100和B1900等高性能的铸造高温合金。
二十世纪60年代:
定向凝固、单晶合金、粉末冶金、机械合金化、陶瓷过滤、等温锻造等新型 工艺的研究开发。其中定向凝固工艺所起的作用尤为重要,采用定向凝固工艺
性能对尺寸的影响不敏感。
3、合金化程度高:含有Cr、 Co、Mo、W、B、Zr、Ta、V、 Al、Ti等十多种元素。起固溶强化、第二相强化、晶界强
化等综合强化作用。
4、耐蚀性好:耐中性、酸性、碱性、氧化及还原介质的腐蚀。 耐高温腐蚀和氧化。 5、铸造镍基高温合金可进一步提高合金化程度,从而具有更 高的高温强度。镍基高温合金的使用温度已接近1100℃。
高温合金的蠕变特性及机制探究

高温合金的蠕变特性及机制探究高温合金是一种能够高温下稳定运行的重要材料,广泛应用于航空、航天、能源等领域。
然而,高温下的蠕变现象会严重影响高温合金的机械性能和使用寿命,因此研究高温合金的蠕变特性及机制具有重要意义。
一、高温合金的蠕变特性高温下的蠕变是指在一定应力下,物质在温度较高的条件下发生变形,表现为时间依赖的塑性应变。
高温合金的蠕变特性的研究主要包括蠕变应变速率与应力的关系、蠕变变形的时间依赖性、蠕变断裂机制等方面。
蠕变应变速率与应力的关系是高温合金蠕变特性的重要参数之一,通常用蠕变曲线来表示。
一般来说,蠕变曲线可以分为三个阶段:初期、稳定期和后期。
初期表现为瞬时蠕变,稳定期表现为缓慢蠕变,而后期表现为加速蠕变。
在初期和稳定期,蠕变曲线的斜率较小,而在后期则斜率增大,蠕变速率加快。
随着时间的增加,高温合金的蠕变应变也会逐渐增加。
在相同应力下,温度越高,蠕变应变越大。
高温合金的蠕变变形具有明显的时间依赖性,即在相同应力下,蠕变应变随时间的增加而增加。
这种时间依赖性表现为蠕变应变速率的变化。
蠕变变形的时间依赖性不仅影响高温合金的机械性能,还影响其使用寿命。
高温合金的蠕变断裂机制是指高温下材料断裂时的机制。
蠕变断裂主要有两种机制:晶粒边界间断裂和扩展型断裂。
晶粒边界间断裂可以在初期或稳定期发生,而扩展型断裂则通常发生在后期。
二、高温合金蠕变机制高温合金的蠕变机制是指材料在高温下发生蠕变的物理和化学机制。
高温合金蠕变机制的研究对于提高高温合金的性能以及延长其使用寿命具有重要意义。
高温合金的蠕变机制主要有两种:晶粒滑移和晶界扩散。
晶粒滑移是指晶体中原子在应力作用下发生的移动。
晶界扩散则是指晶界扩散的原子在应力作用下发生移动。
高温合金蠕变过程中,滑移和扩散机制通常同时存在。
不同的高温合金,其蠕变机制可能不同,同时机制的比例也可能不同。
在晶粒滑移机制中,晶体原子会沿着晶格面产生移动,使晶体的某些方向延伸,另外一些方向则收缩。
《高温合金简述》课件

3
未来发展
随着技术的不断创新,取向结晶技术在高温合金制备中的应用前景广阔。
高温合金的热处理工艺
1
固溶处理
高高温合金的强度和耐腐蚀性能。
3
退火处理
改善高温合金的晶粒结构和内部应力。
高温合金的机械性能和腐蚀性能
机械性能
高温合金具有高强度、高硬度和良好的韧性。
腐蚀性能
《高温合金简述》
高温合金是一种特殊的金属材料,具有出色的耐高温性能和机械性能,被广 泛应用于航空航天、能源、化工、医疗器械和汽车工业等领域。
高温合金的分类
镍基合金
包括有铸造合金、变形合金和粉末冶金合金 等。
铁基合金
具有良好的耐腐蚀性能和高温强度,适用于 核电和石油化工等领域。
钴基合金
应用于高温腐蚀环境中,例如炼油和化工行 业。
高温合金的组成和制造工艺
合金组成
制造工艺
高温合金通常由金属元素和合金元素组成,如镍、 铁、钴、钛和铝等。
高温合金的制造过程包括熔炼、铸造、变形加工 和热处理等。
取向结晶技术在高温合金制备中的应用
1
取向结晶原理
通过控制结晶取向,提高高温合金的性能和使用寿命。
2
应用案例
取向结晶技术已成功应用于航空发动机叶片等高温合金零件的制备。
钛基合金
具有良好的高温强度和耐腐蚀性能,用于航 空航天和船舶制造。
高温合金的特性及应用
1 耐高温性能
高温合金具有出色的耐高温性能,可长时间在高温环境中工作。
2 优异的机械性能
高温合金具有高强度、高硬度和良好的抗腐蚀性能。
3 广泛应用领域
高温合金被广泛用于航空航天、能源、化工、医疗器械和汽车工业等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科技名词定义
塑性变形
科技名词定义
中文名称:塑性变形
英文名称:plastic deformation
定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。
应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科)
本内容由全国科学技术名词审定委员会审定公布
塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。
目录
介绍
机理
影响
介绍
机理
影响
展开
编辑本段介绍
材料在外力作用下产生而在外力去除后不能恢复的那部分变形
塑性变形。
材料在外力作用下产生应力和应变(即变形)。
当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。
当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。
在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。
这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。
编辑本段机理
固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。
由于多种原因,晶粒内的原子结构会存在各种缺陷。
原
塑性变形
子排列的线性参差称为位错。
由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。
通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。
滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。
孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。
原子移动的距离和孪晶面的距离成正比。
两个孪晶面之间的原子排列方向改变,形成孪晶带。
滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。
多晶体的晶粒边界是相邻晶粒原子结构的过渡区。
晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。
某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。
编辑本段影响
金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。
加工硬化
塑性变形引起位错增殖,位错密度增加,不同方向的位错发
塑性变形力学原理
生交割,位错的运动受到阻碍,使金属产生加工硬化。
加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。
内应力
塑性变形在金属体内的分布是不均匀的,所以外力去除后,各部分的弹性恢复也不会完全一样,这就使金属体内各部分之间产生相互平衡的内应力,即残余应力。
残余应力降低零件的尺寸稳定性,增大应力腐蚀的倾向。
各向异性
金属经冷态塑性变形后,晶粒内部出现滑移带或孪晶带。
各晶粒还沿变形方向伸长和扭曲。
当变形量很大(如70%或更大)而且是沿着一个方向时,晶粒内原子排列的位向趋向一致,同时金属内部存在的夹杂物也被沿变形方向拉长形成纤维组织,使金属产生各向异性。
沿变形方向的强度、塑性和韧性都比横向的高。
当金属在热态下变形,由于发生了再结晶,晶粒的取向会不同程度地偏离变形方向,但夹杂物拉长形成的纤维方向不变,金属仍有各向异性。
再结晶和回复
经过冷变形的金属,如加热到一定温度并保持一定的时间,原子的激活能增加到足够的活动力时,便会出现新的晶核,并成长为新的晶粒,这种现象称为再结晶。
经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。
再结晶温度
通常以经一小时保温完成再结晶的温度为金属的再结晶温度。
各种金属的再结晶温度,按绝对温度(K)计大约相当于该金属熔点的40~50%。
低碳钢的再结晶温度约460℃。
当变形程度较小时,在再结晶过程中,尤其是当温度偏高时,再结晶的晶粒特别粗大。
因此如要晶粒细小,金属材料在再结晶处理前会有较大的变形量。
再结晶温度对金属材料的塑性加工非常重要。
在再结晶温度以上进行的塑性加工和变形称为热加工和热变形;在再结晶温度以下进行的塑性加工和变形称为冷加工和冷变形。
热变形时,金属材料在变形过程中不断地发生再结晶,不引起加工硬化,假如缓慢地冷却,也不出现内应力。
回复
冷变形后的金属,当加热到稍低于再结晶温度时,通过原子的扩散会减少晶体的缺陷,降低晶体的畸变能,从而减小内应力;但是不出现新的晶粒,金属仍保留加工硬化和各向异性,这就是金属的回复。
这样的热处理称为去应力退火。
变形量和塑性
塑性变形变形量的大小,常依变形方式的不同用不同的指标来表示。
有的用坯料变形前后截面积的变化表示,有的用某一方向长度的变化表示,扭转时用转角的大小表示。
镦粗和压缩的变形量在工程上常用压缩率表示。
如坯料原始高H0,镦粗后高H1
(图2),则压下量△H=H 0-H 1,压缩率为
公式1
金属在锻压过程中所能承受的变形量有一定的限值。
金属能承受较大的变形量而不破裂的性能称为塑性。
金属的塑性可由实验测定(见锻造性能试验)。
金属塑性的好坏与化学成分、内部组织结构、变形温度和速度、变形方式等因素有关。
纯金属和合金元素低的金属(如铝、紫铜、低碳钢等)塑性好,高合金和含杂质多的金属塑性差。
一般金属在低温时塑性差,高温时塑性好。
金属的塑性还与变形方式有关,例如在自由锻镦粗时,坯料的周围向外凸出,材料受拉应力,金属的塑性低,容易开裂。
挤压时,坯料三向受压,金属的塑性高。
在很小的变形下就开裂的金属称为脆性材料,如铸铁。
脆性材料通常不宜锻压加工。
变形力在锻压过程中,坯料内部一般处于三向应力状态。
开始塑性变形的应力不是由某一方向的应力单独确定的。
用1、2、3代表坯料内任意一点单元体上三个相互垂直方向的主应力(图3),实验表明,如要这个单元体发生塑性变形,则三个主应力所引起的弹性畸变能应达到一定值。
它的数学表达式为
公式3
式中Y为金属的变形抗力,由抗拉试验或抗压试验测定。
上式表示金属坯料内任意一点开始塑性变形时三个方向主应力所应达到的条件,称为屈服准则。
在锻压过程中,坯料内某些面上各点都会发生塑性变形,这时所加的外力称为变形力。
影响变形力P的主要因素有4个,即
公式2
式中Y为金属的静载变形抗力,它与化学成分、温度、变形过程等有关。
低碳钢的变形抗力低,高合金钢的变形抗力高;低温时变形抗力高,高温时变形抗力低;
塑性变形
室温下的退火金属在开始锻压时变形抗力低,经过变形产生加工硬化后变形抗力增高。
A为锻件加力方向的横截面积。
α1为应变速率系数。
在慢速的液压机上锻压时,α1=1~1.5;在应变速率高的锻锤上锻压时,α1埍3。
α2为多余功系数,它与变形方式有关,例如自由锻时坏料侧表面不受约束,α 2=1~2.5;模锻和挤压时,金属的流动受模膛约束,α2=2.5~6。
另外,模膛表面的粗糙度和润滑状况也有影响,锻模表面光洁且有良好的润滑时α 2较小;模具表面粗糙且没有润滑时,α 2较大。