桥梁结构的抗震设计
桥梁结构抗震设计与设防措施

桥梁结构抗震设计与设防措施摘要:对于桥梁工程来说,采取有效的措施来提高桥梁结构的抗震性能意义重大。
作为相关的设计人员,需要对桥梁工程的结构特点有非常清晰地了解,并且在设计之前需要充分做好桥梁工程的地质勘查,进而采取有效的抗震设计措施来做好桥梁结构的抗震设计工作,确保桥梁结构的抗震等级达到相应的要求和标准,降低地震灾害对桥梁结构所造成的影响,以更好地保障出行人员的安全。
关键词:桥梁结构;抗震设计;设防措施一、桥梁结构的震害分析地震对桥梁结构的影响是巨大的,会直接导致桥梁结构破坏,进而影响桥梁安全和质量。
为了更好的做好桥梁结构的抗震设计与设防工作,就必须对桥梁结构的震害类型及原因有所了解。
桥梁结构震害包括桥梁结构振动和场地相对位移产生强制变形两种形式。
第一种形式主要为场地运动所引起,在惯性力作用下会把地震作用施加在桥梁结构上,进而导致桥梁结构振动。
第二种形式主要为场地相对位移所引起,在场地位移下通过支点强制变形产生的超静定内力,进而导致桥梁结构变形。
地震作用下,桥梁结构会受到不同程度的破坏,进而导致各种质量安全问题的发生。
如桥墩开裂、倾斜,支座锚栓剪断,桥墩滑移、落梁倒塌等。
由于地震对桥梁结构的破坏程度不同,所以震害的表现形式也有所不同,如地震发生后,导致桥梁产生位移,在位移过程中就会对桥梁上部结构的各个节点造成影响,节点承载力和角度发生变化,导致桥梁梁体相互撞击,出现桥梁整体隆起的现象;地震发生后,桥梁地基周围土质发生液化,导致桥梁发生不均匀沉降,在沉降影响下,很容易导致桥梁出现落梁的现象。
除此之外,桥墩剪切破坏、支座破坏、桥墩弯曲破坏都是桥梁震害的常见表现形式。
对此,为了最大程度降低桥梁震害的影响,就必须做好桥梁结构的抗震设计及设防措施。
二、桥梁工程中桥梁结构抗震设计的关键点(一)桥梁结构的合理化计算合理计算桥梁结构应当与具体情况相结合,计算整个桥梁的结构。
在计算过程中因墩柱高度的不同,使得其受到梯度温度、汽车制动力等因素的影响,导致桥梁上部结构产生的水平力,或力的分配不均匀,因此在计算过程中需要结合实际情况模拟边界条件。
土木工程中的桥梁抗震设计

土木工程中的桥梁抗震设计随着现代城市建设的迅猛发展,桥梁作为城市交通的重要组成部分,其安全性和可靠性越来越受到关注。
在地震频发的地区,桥梁抗震设计成为不可忽视的问题。
本文将介绍土木工程中桥梁抗震设计的原则和方法。
一、地震力的计算桥梁的抗震设计首先需要计算地震力。
地震力的计算一般采用地震反应谱分析方法,该方法可以将地震作用的时间历程转换为最大加速度、加速度峰值、速度和位移的变化曲线。
根据地震反应谱,可以估计桥梁在地震作用下的响应。
二、结构设计在桥梁结构设计中,应根据地震力计算结果考虑以下几个因素:1. 强度:桥梁的各构件和节点必须具有足够的强度,能够承受地震作用下的荷载,并保证不发生破坏。
2. 刚度:桥梁的刚度对于减小地震响应有重要影响。
通过增加桥梁刚度,可以减小桥梁的变形和振动。
3. 韧性:桥梁的韧性是指结构在地震作用下出现破坏时的变形能力。
增加桥梁的韧性可以减小破坏的可能性,并降低地震造成的损失。
4. 阻尼:桥梁的阻尼对于减小地震响应同样很重要。
通过增加桥梁的阻尼,可以减小结构的振动幅度。
三、土壤-结构相互作用土壤-结构相互作用是桥梁抗震设计中需要考虑的另一个重要因素。
土壤对于桥梁的刚度、阻尼和能量耗散等性能有着重要影响。
为了准确评估桥梁的地震响应,需要考虑土壤的动态反应。
常用的土壤-结构相互作用分析方法包括:弹性地基理论、半空间理论和数值模拟等。
四、桥梁抗震措施在桥梁抗震设计中,可以采取以下几种措施:1. 采用适宜的结构形式:合理的结构形式对于提高桥梁的抗震能力很重要。
例如,钢筋混凝土桥梁比砖石桥梁具有更好的抗震性能。
2. 设置防护装置:在桥梁结构中设置防护装置,如减震器、阻尼器等,能够有效减小地震响应。
3. 加固改造:对于现有桥梁,可以通过加固改造提高其抗震能力。
常用的加固措施包括:加固柱、增加剪切墙、加固梁、加固桩等。
4. 高质量工艺:在桥梁施工过程中,严格控制质量,确保结构的强度和韧性。
桥梁施工中的抗震设计要点

桥梁施工中的抗震设计要点抗震设计是桥梁施工中至关重要的一环。
地震是一种破坏性极高的自然灾害,对桥梁的稳定性和安全性造成极大的挑战。
因此,在桥梁施工中,合理的抗震设计是确保桥梁工程安全可靠的关键。
一、地震对桥梁的影响地震可以对桥梁产生水平和垂直方向的作用力,引起桥墩和桥梁结构的振动。
而不合理的桥梁设计会导致结构的破坏,甚至发生倒塌。
因此,抗震设计是桥梁工程中必不可少的一项工作。
二、抗震设计的基本原则1.合理选取地震烈度等级合理选择适应当地地震烈度等级的设计参数,是抗震设计的基础。
不同地区的地质条件和地震历史都不相同,因此需要根据不同地区的实际情况来选择适应的烈度等级。
2.合理设计桥墩和桥梁结构在桥梁设计中,合理的桥墩和桥梁结构设计是保证抗震性能的重要因素。
桥墩应具备足够的强度和稳定性,能够承受地震引起的作用力;桥梁结构应具备一定的柔度和韧性,能够有效地分散地震能量。
3.合理选取地基处理方式地基处理是桥梁抗震设计中不可忽视的一环。
合理选取地基处理方式,可以提高桥梁的抗震性能。
常用的地基处理方式包括加固土地基、采用桩基础等。
4.合理布置缝隙和变形缝合理的缝隙和变形缝的布置,有助于桥梁在地震中产生一定的变形,从而分散地震力,减轻对桥梁结构的作用。
缝隙和变形缝的布置需要根据地震烈度等级和桥梁结构特点来确定。
三、抗震设计的关键技术1.减震技术减震技术是提高桥梁抗震性能的重要手段之一。
常用的减震技术包括橡胶隔震、摩擦减震等。
这些技术可以有效地降低地震作用力,保护桥梁结构免受破坏。
2.加固技术如果桥梁存在一定的抗震问题,可以采用加固技术来提高其抗震性能。
加固技术包括加固桥墩、加固梁体等。
通过加固措施,可以有效地提升桥梁的整体抗震能力。
3.动力分析技术动力分析技术是抗震设计不可或缺的手段。
通过利用计算机模拟桥梁在地震中的动力响应,可以更加准确地评估桥梁的抗震性能,并得出合理的设计参数。
四、桥梁施工中的抗震措施1.增加结构的重量增加桥梁结构的重量,可以提高其地震响应的周期和阻尼比,从而增加桥梁的稳定性。
钢结构桥梁的抗震设计与优化

钢结构桥梁的抗震设计与优化钢结构桥梁在现代的交通建设中起到了至关重要的作用。
然而,地震是一种不可预测的自然灾害,如果桥梁在地震中无法承受地震力引起的振动,将会给交通运输和人们的生命财产安全带来巨大威胁。
因此,钢结构桥梁的抗震设计与优化成为了一项重要的任务。
一、抗震设计原则在进行钢结构桥梁的抗震设计时,需要遵循以下原则:1. 保证整体结构的稳定性:桥梁在地震发生时需要保持完整并能承受地震力引起的振动,因此在设计中应考虑结构的整体稳定性,避免出现局部失稳。
2. 提高刚度和强度:增加结构的刚度可以有效降低桥梁在地震中的振动幅度,而提高强度可以使桥梁能够承受更大的地震力。
3. 控制自振周期:自振周期是桥梁在地震中的重要参数,过大或过小的自振周期都会对桥梁的抗震性能造成影响。
因此,需要通过设计来控制自振周期,使之在一个合理的范围内。
二、设计方法为了实现钢结构桥梁的抗震设计与优化,以下是几种常用的设计方法:1. 强度设计方法:该方法以保证桥梁在地震中不发生破坏为目标,通过增加钢材规格、增加钢板厚度等手段提高结构的强度。
这种方法的优势在于简单易行,但可能会导致结构重量增加,造成经济上的浪费。
2. 刚度设计方法:该方法以增加桥梁的整体刚度为目标,通过增加支撑、加固螺栓连接等手段来提高桥梁的抗震性能。
这种方法的优势在于能够有效降低桥梁的振动幅度,但可能会对桥梁的结构造成一定的改动。
3. 换能设计方法:该方法引入了特殊的结构装置,将地震作用转化为其他形式的能量,从而降低了地震对桥梁的影响。
这种方法的优势在于能够有效减小地震对桥梁的破坏,但需要较高的技术水平和经济投入。
三、优化思路为了实现钢结构桥梁的抗震优化设计,以下是几个关键的优化思路:1. 结构材料的选用优化:通过选择合适的钢材规格和性能,可以提高桥梁的抗震性能,同时减少结构的重量。
2. 桥梁几何形状的优化:通过调整桥梁的几何形状,如桥墩的高度、桥面的坡度等,可以改善桥梁的自振周期,进而提高抗震性能。
桥梁设计中的抗震设计规范解读

桥梁设计中的抗震设计规范解读设计一座桥梁时,抗震设计是必不可少的一项工作。
抗震设计规范旨在规范桥梁的抗震能力,以保证桥梁在地震或其他外力作用下不会倒塌或轻微损坏。
本文将解读桥梁设计中的抗震设计规范。
一、桥梁抗震设计的基本原则在设计中,桥梁的抗震设计需要遵循以下基本原则:1. 建立适当的耐震能力目标:桥梁的设计耐震能力要与场地特点和重要性相适应,以达到灾害损失控制的要求。
2. 充分考虑动力效应:桥梁在地震作用下所承受的力不仅包括静力荷载,还包括动力荷载。
因此,在抗震设计时,应对桥梁在地震中的动力反应进行充分的研究。
3. 选取适当的地震波:地震波是桥梁抗震设计中的重要参考依据。
选择与实际场地相符合的地震波,能更好地反映地震灾害的损伤情况。
4. 均衡造价与耐震能力:建立可靠的抗震设计方案,尽可能达到规定要求,但也要考虑造价因素。
5. 要有系统的桥梁抗震设计文件:桥梁抗震设计文件需要详尽、清晰、全面地说明整个设计过程,以便建造方、监理方或审核单位审核和验收。
二、抗震设计规范的具体要求根据相关规范,进行桥梁的抗震设计时,需要遵循以下具体要求:1. 桥墩设计:与桥梁基础联结强度要求高,桥墩的纵向和横向的强度应适宜,特别是在桥墩土基础不良的情况下,要对桥墩加强抗震支撑和加固。
2. 桥面铺装设计:(1)桥面铺装的振动感应要素在桥梁的横向和纵向上的传递原则应有规定。
(2)桥面铺装的直接基础的作用范围是桥墩、上部结构和基础,后期在桥梁设计方案及施工中应考虑铺装的垂直和水平方向受震影响的设定。
(3)桥面铺装设计中的连接构件,如伸缩缝、支座、传动杆、角钢、焊缝、螺栓等,应有相应的规范,特别是在连接构件处的振动应力会引起硬件结构变形,对硬件的材料和工艺水平等要求较高。
3. 桥梁设计标准:(1)要求各种附属设施的设计、材料和施工,必须获得质量检验合格证书。
(2)在桥梁设计和制造中,对材料的选用和材料的变形、疲劳特性以及统计学参数要求非常的苛刻。
桥梁工程中的抗震设计

桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
桥梁结构抗震设计PPT120页

图中的横坐标为结构自振周期T(以秒为单位)
根据设计反应谱计算的单质点地震作用为:
FE CiCzkhG CiCz1G(5 3)
kh | xg |max / g
G mg
| xg x* |max / | xg |max (5 4)
1 kh
式中,水平地震系数Kh和动力放大系数β的乘积即为 水平地震作用影响系数α1 (无量纲);
i 1
i 1
第i个质点的地震作用Fi为
Fi CiCzkH 11Gi Hi / H (5 10)
5.2
桥桥梁梁按按反反应应谱谱理理论论的的计计算算方方法法
四. 桥梁构件截面抗震验算--按反应谱方法
1、抗震荷载效应组合下截面验算设计表示式:
Sd b Rd
Sd Sd g Gk ; q Qdk ;
H≤12米时 整个结构采用 1 H>12米时 随结构高度而变,底面
1,墩台顶面及顶面以上 2 ;中间任一点处的 I 1 Hi / H0
式中H对于桥墩为墩顶面至基底(即基础底面)的高 度(以米计),对于桥台则自桥台道碴槽顶面至基底 的高度。
Hi为验算截面以上任一质量的重心至墩台底(即基础 底面)的高度(以米计)。
桥梁按反应谱理论的计算方法
表5—2 综合影响系数Cz
桥梁和墩、台类型
桥墩计算高度H (米)
H 10≤H< 20≤H<
<10 20
30
柔性 柱式桥墩、排架桩墩、薄 墩 壁桥墩
梁
实体 墩
天然基础和沉井基础上实 体桥墩
桥
多排桩基础上的桥墩
0.3 0
0.2 0
0.2 5
0.33 0.25 0.30
0.35 0.30 0.35
桥梁设计中的抗震规范要求

桥梁设计中的抗震规范要求桥梁是连接两个地点的重要交通设施,其结构稳定性对于交通运输的安全和效率具有至关重要的作用。
然而,地震是一种常见的自然灾害,给桥梁带来严重的破坏和风险。
因此,在桥梁设计中,抗震规范要求成为了必不可少的考虑因素。
1. 抗震设计目标桥梁的抗震设计目标是确保在地震发生时,桥梁结构能够保持稳定并限制破坏。
主要目标包括:- 控制桥梁的渐进破坏,避免局部破裂或崩溃;- 限制桥梁结构的变位,确保桥梁对车辆通行的影响最小化;- 确保桥梁的结构完整性,防止桥梁产生全面崩溃。
2. 抗震力学分析桥梁的抗震设计需要进行抗震力学分析,以研究桥梁在地震作用下的受力和变形情况。
主要分析内容包括:- 桥梁的自振周期分析,确定振动特性;- 桥梁在地震作用下的动力响应分析,包括受力、位移和动应力等参数;- 确定桥梁结构的抗震性能指标,如抗震弹性系数和耗能能力等。
3. 抗震设计方法根据抗震力学分析的结果,抗震设计方法主要包括以下几个方面:- 采用适当的抗震设计参数,如强度等级和位移限制;- 选择合适的结构形式和材料,以提高抗震能力;- 优化桥梁结构,确保在地震作用下的受力均匀分布;- 加强桥墩和桥梁连接处的抗震性能,避免发生局部破坏;- 设计合适的减震措施和能量耗散装置,提高桥梁的耐震能力;4. 抗震设防要求抗震设防要求是指桥梁设计中对于地震作用的规定和要求。
根据地震地区的构造特点和地震烈度,抗震设防要求会有所不同。
一般包括以下方面的要求:- 设计地震加速度谱和反应谱,用于抗震力学分析;- 限制桥梁结构的最大变位,确保正常通行;- 确定桥梁的最小抗震强度,以保障结构的安全性;- 要求采用抗震构造措施,如加强桥墩和桥梁连接部位;- 确定抗震设计的控制材料性能和构件尺寸。
5. 抗震施工要求除了设计阶段的抗震规范要求,抗震施工要求也是确保桥梁抗震性能的重要环节。
主要包括以下几个方面:- 选用符合抗震要求的材料和设备;- 严格按照设计要求进行施工,避免施工质量问题对抗震性能的影响;- 设置合适的监测装置,及时掌握桥梁结构的变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 桥梁结构抗震设防原则
抗震设防的目标
具体通过“三水准”的抗震设防要求和“两阶段”的抗震设计方法 实现。
三水准:“小震”“中震”“大震”;
地震影响
众值烈度(Im) 基本烈度(I0) 罕遇烈度(Is)
小震 中震 大震
50年超越概率 63.2% 10% 2-3%
地震重现期 50年 475年
1642-2475年
“两阶段”抗震设计方法
第一阶段设计(E1地震作用):以小震作用效应和其它荷载效应的基 本组合验算结构构件的承载能力,以及在小震作用下验算结构的弹 性变形:满足第一水准抗震设防目标的要求:
第二阶段设计(E2地震作用):在大震作用下验算结构的弹塑性变形 ,以满足第三水准抗震设防的要求。
说明:第二水准的设防要求,是通过概念设计和构造措施来满足的,对 大多数结构.可只进行第一阶段设计;只有对《公路桥梁抗震设计细则》 所规定的部分结构,如有特殊要求的桥梁和地震时易倒塌的结构以及有 明显薄弱层的不规则桥梁结构,才进行第二阶段的抗震验算
应保证不致倒塌或产生严 重结构损伤,经临时加固后 可供维持应急交通使用
C类
D类
E1地震作用: 工程场地重现期 较短的地震作用, 对应于第一级设 防水准。 E2地震作用: 工程场地重现期 较长的地震作用, 对应于第二级设 防水准。
☆☆☆但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复 (抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。
3.1 桥梁结构抗震设防原则
各类桥梁的抗震设防类别的适用范围
桥梁抗震 设防类别
适用范围
A类
单跨跨径超过150m的特大桥
B类
单跨跨径不超过150m的高数公路,一、二级公路上的大桥和特大桥
C类
二级公路上的中小桥,单跨跨径不超过150m的三、四级公路上的特 大桥和大桥
D类
三、四级公路上的中小桥
3.1 桥梁结构抗震设防原则
第三 水准
大震不倒
当遭受高于本地区抗震设防烈度的预估的罕遇地 震影响时,不致倒塌或发生危及生命的严重破坏
3.1 桥梁结构抗震设防原则
各类桥梁的抗震设防目标
桥梁抗震 设防类别
A类
E1地震作用
设防目标
E2地震作用
可发生局部轻微损伤,不 需修复或经简单修复可继续 使用
B类
一般不受损或不需修复可 继续使用
第三章 桥梁结构的抗震设计
本章目录
3.1 桥梁结构抗震设防原则 3.2 地基的抗震设计 3.3 梁桥的抗震设计 3.4 大跨度桥梁抗震设计实例
3.1 桥梁结构抗震设防原则
总目标
桥梁抗震的目标是减轻桥梁工程的地震破坏,保障人民生命财产的 安全,减少经济损失。因此,既要使震前用于抗震设防的经济投入不超 过我国当前的经济能力,又要使地震中桥梁的破坏程度限制在人们可以 承受的范围内。换言之,需要在经济与安全之间进行合理的平衡,这是 桥梁抗震设防的合理安全度原则。
地段划分
地段类别 有利地段 不利地段
危险地段
地质、地形、地貌
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土等
软弱土,液化土,条状突出的山嘴,高耸孤立的山丘,非岩质的 陡坡,河岸和边坡的边缘,平面分布上成因、岩性、状态明显不 均匀的土层(如古河道、疏松的断破裂带、暗埋的塘浜沟谷和半 填半挖地基)等
一般关系
烈度: Im=I0-1.55, Is<=I0+1 加速度:PGAo=PGAm*3; PGAs=PGAm*(4-6)
3.1 桥梁结构抗震设防原则
抗震设防的目标
水准 涵义
要
求
第一 水准
小震不坏
当遭受低于本地区设防烈度的多遇地震影响时, 一般不受损坏或不需修理仍可继续使用
第二 水准
中震可修
当遭受相当于本地区抗震设防烈度的地震影响时, 可能损坏,经一般修理或不需修理仍可继续使用
b. 对于基本烈度为7、8、9度地区的公路工程按《抗震设计 细则》进行抗震设计,9度以上地区的桥梁和有特殊要求的大 跨径或特殊桥梁,其抗震设计应作专门研究。
c. 对于跨径不超过150米的钢筋砼和预应力砼梁桥、圬工或 钢筋砼拱桥的抗震设计按规范进行抗震设计,斜拉桥、悬索桥、 单跨跨径超过150m的特大跨径梁桥和拱桥必须进行专门抗震设 计计算;
地基失效:指造成建筑破坏的直接原因是由于场地和地基稳定性引起 的。 • 场地和地基的破坏作用大致有地面破裂、滑坡、坍塌等; • 一般通过场地选择和地基处理来减轻地震灾害的。
3.2.1 场地
为什么需要考虑场地的影响
场地的地震动作用:指由于强烈地面运动引起地面设施振动而产生的 破坏作用。 • 主要途径是合理的进行抗震和减震设计和采取减震措施,为此要 确定工程场地的设计地震动参数。
3.2 地基的抗震设计——场地
什么是场地?
场地指工程群体所在地,具有相似的反应谱特征,其范围相当于厂区 、居民小区和自然村或不小于1.0平方公里的平面面积。
为什么需要考虑场地的影响
历史震害调查发现,在具有不同工程地质条件的建筑场地上,建筑物 在地震中的破坏程度明显不同。
从破坏性质和工程对策角度,地震对结构的破坏作用可分为两种类型 :地基失效和场地的震动作用。
地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等及发震断裂 带上可能发生地表错位的部位
3.2.1 场地
水边地的地下水位较 高,土质也较松软,容易 在地震时产生土壤滑动或 地层液化。
山坡地在地震时会产 生土壤滑动
冲积地的土质松软, 地震时容易塌陷,如果 此处有地下水层,还容 易发生液化。
3.1 桥梁结构抗震设防原则
各类公路桥梁抗震设防烈度
抗震设防烈度 桥梁等级
A类 B类 C类 D类
6 0.05g
7 7 6 6
7
0.1g 0
7
7
8
9
0.2g 0.3g 0.4g
9
专门研究
9
9
≥9
8
8
9
8
8
9
3.1 桥梁结构抗震设防原则
各类公路桥梁抗震设防措施等级
a. 抗震设防烈度为6度及6度以上地区的公路桥梁,必须进行 抗震设计;
抗震设防的目标
地震是一种随机性极强的自然灾害,不可能保证结构在地震作用下的 绝对安全,也不可能不抗震设防,如何办?
使用寿命期内对不同频度和强度的地震,要求结构具有不同的抵抗能 力,使设计的结构在未来地震作用下发生破坏的概率为社会所接受, 同时为当前的经济条件所允许。合理的抗震设计应满足经济和安全之 间的合理平衡,三水准(中国)