五种算法知识讲解
五种常用算法

五种常用算法
贪心算法是一种贪婪地选择局部最优解来构建全局最优解的算法。
它的基本思路是每次选择当前看起来最优的解,直到找到全局最优解。
贪心算法通常适用于解决那些具有最优子结构性质的问题,即子问题的最优解可以推导出原问题的最优解。
2.分治算法
分治算法是一种将问题分解成若干个子问题分别求解的算法。
分治算法的基本思路是将原问题划分成若干个规模较小的子问题,分别求解这些子问题,然后将子问题的解合并成原问题的解。
分治算法通常适用于处理那些可以划分为若干个独立子问题的问题。
3.动态规划算法
动态规划算法是一种通过将原问题划分为若干个子问题来求解
的算法。
动态规划算法的基本思路是采用递推的方式,先求解子问题的最优解,再由子问题的解推导出原问题的最优解。
动态规划算法通常适用于那些具有最优子结构性质的问题,即子问题的最优解可以推导出原问题的最优解。
4.回溯算法
回溯算法是一种通过试错的方式来寻找问题解的算法。
回溯算法的基本思路是从可能的解开始搜索,如果当前搜索的解不符合要求,则回溯到上一个状态重新搜索。
回溯算法通常适用于那些具有多个决策路径的问题。
5.深度优先搜索算法
深度优先搜索算法是一种通过对所有可能的情况进行枚举来寻
找问题解的算法。
深度优先搜索算法的基本思路是从开始状态开始搜索,每次尝试一种可能的情况,直到找到问题的解或者无法继续搜索为止。
深度优先搜索算法通常适用于那些具有多个决策路径的问题。
常见5种基本匹配算法

常见5种基本匹配算法在计算机科学中,匹配算法(Matching algorithms)是指用于确定一个集合中的元素是否与另一个集合中的元素相匹配的算法。
匹配算法可以应用于各种领域,如字符串匹配、模式匹配、图匹配等。
下面介绍五种常见的基本匹配算法。
1. 暴力匹配算法(Brute Force Matching Algorithm):暴力匹配算法是最基本的匹配算法之一、它遍历待匹配字符串和目标字符串,逐个字符进行比较,直到找到匹配或者遍历完整个字符串。
该算法的时间复杂度为O(n*m),其中n和m分别是待匹配字符串和目标字符串的长度。
2. KMP匹配算法(Knuth-Morris-Pratt Matching Algorithm):KMP匹配算法是一种优化的字符串匹配算法。
它通过预处理待匹配字符串的信息,快速确定定位下一次比较的位置,减少了不必要的比较次数,从而提高了匹配效率。
该算法的时间复杂度为O(n+m),其中n和m分别是待匹配字符串和目标字符串的长度。
3. Boyer-Moore匹配算法:Boyer-Moore匹配算法是一种高效的字符串匹配算法。
它利用了字符出现位置的规律,从目标字符串的末尾开始匹配,并利用预处理的跳转表格快速跳过不匹配的字符,从而减少比较次数。
该算法的平均时间复杂度为O(n/m),其中n和m分别是待匹配字符串和目标字符串的长度。
4. Aho-Corasick算法:Aho-Corasick算法是一种多模式匹配算法,适用于在一个文本中同时查找多个模式串的情况。
该算法利用Trie树的特性,同时利用一个自动机状态转移表格进行模式匹配,可以高效地找到多个模式串在文本中的出现位置。
该算法的时间复杂度为O(n+k+m),其中n是文本长度,k是模式串的平均长度,m是模式串的个数。
5. Rabin-Karp算法:Rabin-Karp算法是一种基于哈希函数的字符串匹配算法。
它通过对待匹配字符串和目标字符串的部分子串进行哈希计算,比较哈希值是否相等,进而确定是否匹配。
五种实用的简算法

五种实用的简算法作者:林革来源:《数学小灵通·3-4年级》2022年第04期小朋友,在计算两位数乘两位数时,如果你能掌握一些计算的技巧,对几类计算题就可达到脱口而出的奇效。
我们一起来学习吧!一、十几乘十几口诀:尾乘尾,尾加尾,头乘头例1. 计算12×14。
两个乘数个位上的数分别是2 和4(如算式1),先算2×4=8,把8 写在积的个位上;再算2+4=6,把6 写在积的十位上; 两个乘数十位上的数都是1, 1×1=1,把1 写在积的百位上,算出12×14=168。
例2. 计算13×15。
两个乘数个位上的数分别是3 和5(如算式2),先算3×5=15,15 满十,向高位进一,把5 写在积的个位上;再算3+5=8,8 加上进的1 得9,把9写在积的十位上;两个乘数十位上的数都是1,1×1=1,把1 写在积的百位上,算出13×15=195。
例3. 计算15×19。
两个乘数个位上的数分别是5 和9(如算式3),先算5×9=45,45 满四十,向高位进四,把5 写在积的个位上; 再算5 + 9=14, 14 加上进的4 得18,18 满十,向高位进一,把8 写在积的十位上; 两个乘数十位上的数都是1, 1×1=1, 1 加上进的1 得2,把2 写在积的百位上,算出15×19=285。
二、头同尾合十(相乘的两个两位数十位上的数相同,个位上的数之和为10,我们称之为“头同尾合十”的两位数乘法)口诀:尾乘尾,头加1 的和乘头。
例4. 计算24×26。
两个乘数个位上的数分别是4 和6(如算式4),先算4×6=24,把2 和4 分别写在积的十位和个位上; 两个乘数十位上的数都是2,(2 + 1)×2=6,把6 写在积的百位上,算出24×26=624。
五大基础算法

五大基础算法算法是计算机科学中的一个重要概念,它是指为解决某一问题而设计的一系列计算步骤的有序集合。
在计算机科学中,算法是非常重要的,它们是计算机程序的核心部分,可以解决各种计算机科学问题,从简单到复杂都有。
基础算法是算法学习中最基本、最常用的一类算法,在日常生活当中也得到广泛应用。
接下来我们就来介绍五大基础算法。
一、排序算法排序算法是将一组数据按照某种规则进行排序的算法。
在日常生活中,我们经常使用排序算法来对一些数据进行排序,例如比赛名次,商品价格等等。
常见的排序算法有冒泡排序、快速排序、选择排序和插入排序等。
冒泡排序是一种较为简单的排序算法,它的基本思想是对相邻的数据进行比较和交换,从而达到排序的目的。
具体实现过程中需要通过两个嵌套的循环来进行比较和交换。
快速排序则是一种比较高效的排序算法,它的基本思想是采用“分治”策略,将数据分为两个子序列,一个比关键字小,一个比关键字大。
通过递归的方式不断进行分治,最终完成排序。
选择排序是通过选择最小的元素放到前面的位置,从而达到排序的目的。
插入排序则是通过将元素插入到已经排好序的序列中,使得整个序列有序。
二、递归算法递归算法是指函数调用自身的一种算法。
在计算机科学中,递归算法是一种基本的算法思想,它可以解决一些复杂的问题。
例如,二叉树的遍历、图的遍历、背包问题等等都可以使用递归算法来解决。
三、查找算法查找算法是在一个数据集中查找某一个元素的算法。
常见的查找算法有线性查找、二分查找和哈希查找等。
线性查找是将数据集中的元素与目标元素逐一比较,直到找到目标元素为止。
二分查找也叫折半查找,它的基本思想是先找到中间元素,再与目标元素进行比较。
通过每次缩小查找范围,最终找到目标元素。
哈希查找则是通过哈希函数将数据集映射到不同的散列表中,从而进行查找的算法。
四、贪心算法贪心算法是一种基于贪心策略的算法思想。
贪心策略是指每一步都选择当前局部最优解,从而最终达到全局最优解的策略。
五种层次聚类法

五种层次聚类法
- K均值聚类:这可能是最知名的聚类算法。
在代码中很容易理解和实现。
该算法的优点是速度非常快,因为它的计算复杂度为线性O(n)。
但缺点是必须选择要使用的类/组的数量,而且结果可能因随机初始化聚类中心而异,缺乏一致性。
- K-Medians聚类:与K-Means类似,但不是使用组的中心点来重新计算组的中心点,而是使用组的中值向量。
这种方法对异常值不太敏感,但对于较大的数据集要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。
- Mean-Shift聚类:这是一种基于滑动窗口的算法,试图找到密集的数据点区域。
这是一个基于中心的算法,通过更新中心点的候选者作为滑动窗口内点的平均值来定位每个组/类的中心点。
然后这些候选窗口被过滤到后处理阶段,以消除近似的重复,形成最终的中心点集及其相应的组。
- DBSCAN Density-Based Spatial Clustering of Applications with Noise)聚类:该算法根据数据点的密度来聚类。
它可以识别任意形状的簇,并且可以处理噪声点。
该算法具有简单、高效的优点,但需要选择两个参数:邻域半径和最小密度阈值。
- OPTICS Ordering Points to Identify the Clustering Structure)聚类:该算法通过创建一个基于距离的层次结构来识别聚类。
它可以处理大型数据集,并且可以识别任意形状的簇。
该算法的优点是速度快,但需要选择一个参数:邻域半径。
多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法

多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法一、本文概述随着计算机视觉技术的飞速发展,特征点检测与描述算法在图像匹配、目标识别、三维重建等领域扮演着举足轻重的角色。
在众多特征点算法中,SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)、SURF(Speeded Up Robust Features,加速鲁棒特征)、BRISK(Binary Robust Invariant Scalable Keypoints,二进制鲁棒不变可伸缩关键点)、ORB(Oriented FAST and Rotated BRIEF,带方向性的FAST和旋转的BRIEF)以及FREAK(Fast Retina Keypoint,快速视网膜关键点)等算法因其优秀的性能而备受关注。
本文旨在对这五种算法进行多角度的比较分析,以便读者更全面地了解它们的性能特点,为实际应用提供参考。
我们将从算法原理、计算效率、特征点稳定性、抗噪声干扰能力、旋转不变性、尺度不变性等多个维度对五种算法进行深入探讨。
通过理论分析和实验验证,本文将揭示各算法在不同应用场景下的优势和不足,为算法的选择和优化提供有力依据。
本文还将结合实际应用案例,展示各算法在图像匹配、目标跟踪、全景拼接等领域的实际应用效果,以便读者更好地理解各算法在实际应用中的表现。
通过本文的阅读,读者将能够全面掌握五种主流特征点检测与描述算法的核心原理、性能特点和应用场景,为计算机视觉领域的深入研究和实践应用提供有力支持。
二、算法原理比较在深入了解SIFT、SURF、BRISK、ORB和FREAK这五种算法的原理之后,我们可以从多个角度对它们进行比较。
首先是特征点检测与描述子生成。
SIFT(尺度不变特征变换)通过DOG(差分高斯)金字塔来检测关键点,并使用128维向量进行描述。
SURF(加速鲁棒特征)则使用Hessian矩阵和积分图像进行关键点检测,并生成64维描述子。
算法的五种描述方法

算法的五种描述方法
算法是指解决特定问题的规律和步骤的组合,是一种按照特定规则进行计算和操作的工具,是一种解决特定问题的有效性和有效性的可行的技术,且不仅仅与计算机有关。
二、算法的五种描述方法
1. 泛函分析法:通过分析算法输入,输出,及处理的操作来描述算法。
它是将算法分解为必要的操作,以表达出算法的结构,从而更容易地实现和理解算法。
2. 归纳法:这种方法是借助统计数据对算法进行描述,以确定算法的可行性。
3. 时间复杂度分析法:该方法着重于分析算法的性能,例如算法运行时间等,以及分析算法在特定情况下,是否可以最优化。
4. 空间复杂度分析法:这是一种分析算法所需要的存储空间的分析方法,即分析算法所需要的内存,可以更容易地理解算法是如何实现的。
5. 逻辑表达式法:该方法是一种把算法表示为“输入 -> 输出”的形式,用于表达算法的逻辑思路,比如条件语句等,使用它可以更容易地描述算法。
- 1 -。
五种常见的排序方法

五种常见的排序方法在计算机科学中,排序是一种非常重要的操作,它可以将一组数据按照一定的顺序排列。
排序算法是计算机科学中最基本的算法之一,它的应用范围非常广泛,例如数据库查询、数据压缩、图像处理等。
本文将介绍五种常见的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单的排序算法,它的基本思想是将相邻的元素两两比较,如果前面的元素大于后面的元素,则交换它们的位置,一遍下来可以将最大的元素放在最后面。
重复这个过程,每次都可以确定一个最大的元素,直到所有的元素都排好序为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
二、选择排序选择排序是一种简单的排序算法,它的基本思想是每次从未排序的元素中选择最小的元素,将它放到已排序的元素的末尾。
重复这个过程,直到所有的元素都排好序为止。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序插入排序是一种简单的排序算法,它的基本思想是将一个元素插入到已排序的元素中,使得插入后的序列仍然有序。
重复这个过程,直到所有的元素都排好序为止。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、快速排序快速排序是一种高效的排序算法,它的基本思想是选择一个基准元素,将序列分成两个子序列,其中一个子序列的所有元素都小于基准元素,另一个子序列的所有元素都大于基准元素。
然后递归地对这两个子序列进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
五、归并排序归并排序是一种高效的排序算法,它的基本思想是将序列分成两个子序列,然后递归地对这两个子序列进行排序,最后将这两个有序的子序列合并成一个有序的序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
总结在实际的应用中,选择合适的排序算法非常重要,不同的排序算法有不同的优劣势。
冒泡排序、选择排序和插入排序是三种简单的排序算法,它们的时间复杂度都为O(n^2),在处理小规模的数据时比较适用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法分治算法一、基本概念在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
四、分治法的基本步骤分治法在每一层递归上都有三个步骤:step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较小的子问题P1 ,P2 ,...,Pk4. for i←1 to k5. do yi ← Divide-and-Conquer(Pi) △递归解决Pi6. T ← MERGE(y1,y2,...,yk) △合并子问题7. return(T)其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。
因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。
算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
五、分治法的复杂性分析一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。
设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。
再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。
用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:T(n)= k T(n/m)+f(n)通过迭代法求得方程的解:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。
通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。
六、可使用分治法求解的一些经典问题(1)二分搜索(2)大整数乘法(3)Strassen矩阵乘法(4)棋盘覆盖(5)合并排序(6)快速排序(7)线性时间选择(8)最接近点对问题(9)循环赛日程表(10)汉诺塔七、依据分治法设计程序时的思维过程实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法2、然后考虑随着问题规模增大时的求解方法3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
动态规划一、基本概念动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。
一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
二、基本思想与策略基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。
在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。
依次解决各子问题,最后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。
三、适用的情况能采用动态规划求解的问题的一般要具有3个性质:(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。
也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。
(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)四、求解的基本步骤动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。
这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。
如图所示。
动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态图1 动态规划决策过程示意图(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。
在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。
当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
所以如果确定了决策,状态转移方程也就可写出。
但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。
实际应用中可以按以下几个简化的步骤进行设计:(1)分析最优解的性质,并刻画其结构特征。
(2)递归的定义最优解。
(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值(4)根据计算最优值时得到的信息,构造问题的最优解五、算法实现的说明动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。
使用动态规划求解问题,最重要的就是确定动态规划三要素:(1)问题的阶段(2)每个阶段的状态(3)从前一个阶段转化到后一个阶段之间的递推关系。
递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。
确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。
f(n,m)=max{f(n-1,m),f(n-1,m-w[n])+P(n,m)}六、动态规划算法基本框架代码1for(j=1; j<=m; j=j+1) // 第一个阶段2 xn[j] = 初始值;34for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段5for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式6xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};89 t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案1011 print(x1[j1]);1213for(i=2; i<=n-1; i=i+1)15 {17 t = t-xi-1[ji];1819for(j=1; j>=f(i); j=j+1)21if(t=xi[ji])23break;25 }贪心算法一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。