问答系统的设计与实现

合集下载

智能问答系统设计与实现

智能问答系统设计与实现

智能问答系统设计与实现智能问答系统是一种人工智能技术的应用,旨在通过机器对用户提问进行理解,并给予准确、全面的回答。

这种系统利用自然语言处理、信息检索和知识图谱等技术,能够逐步提高回答的准确性和完整性。

在本文中,我们将讨论智能问答系统的设计与实现,包括核心技术、架构和应用。

一、智能问答系统的核心技术1. 自然语言处理(NLP):NLP是智能问答系统的基础技术,用于对用户的问题进行语义理解和分析。

其中包括词法分析、句法分析、语义角色标注和语义解析等技术,以获取问题的关键信息。

2. 信息检索(IR):IR技术是智能问答系统的核心组成部分,主要用于在海量知识库中寻找与用户问题相关的答案。

常见的IR技术包括倒排索引、向量空间模型和BM25等,能够高效地检索相关文档并得出答案。

3. 知识图谱(KG):KG是智能问答系统的重要组成部分,它包含了丰富的实体和实体间的关系,可以帮助系统更好地理解问题和提供准确的回答。

构建知识图谱需要进行实体抽取、关系抽取和知识表示等任务。

二、智能问答系统的架构设计1. 输入模块:包括用户问题的输入和预处理,将问题进行分词、句法分析和语义解析,以提取问题的核心信息。

2. 检索模块:利用信息检索技术,在事先构建好的知识库中搜索相关的文档和知识,获取候选答案。

3. 理解模块:对候选答案进行进一步的语义解析和推理,结合问题的上下文和语境,从候选答案中选择最合适的答案。

4. 生成模块:根据选定的答案和用户的问题,生成最终的回答,并进行适当的排版和修饰,以提高用户的阅读体验。

5. 输出模块:将生成好的回答通过界面展示给用户,并根据用户的反馈进行调整和改进。

三、智能问答系统的应用领域1. 在线客服:智能问答系统可以作为网站或移动应用的在线客服,为用户提供快速、准确的问题解答和服务支持,提升用户的满意度和体验。

2. 教育辅助:智能问答系统可以提供学术领域的问题解答和知识点的解释,帮助学生更好地学习和理解知识。

智能问答系统的设计与实现

智能问答系统的设计与实现

智能问答系统的设计与实现随着互联网和人工智能技术的发展,智能问答系统在日常生活中越来越得到广泛应用。

智能问答系统是一种基于自然语言处理、机器学习等技术,能够理解用户提出的问题,并给出相应的答案的系统。

智能问答系统的实现需要考虑系统架构、语言处理、数据库设计等多个方面。

一、系统架构的设计智能问答系统的设计需要考虑系统架构,即如何将不同的模块组合在一起形成一个完整的系统。

系统架构的设计需要考虑以下几个方面:1. 数据获取和预处理:智能问答系统需要从不同的数据源中获取数据,并将数据进行预处理。

数据源可以是结构化数据,比如数据库中的数据,也可以是非结构化数据,比如网页上的内容。

预处理包括数据清洗、数据分析和问题标注等过程。

2. 自然语言处理:自然语言处理是智能问答系统的核心技术之一。

自然语言处理的过程包括分词、词性标注、依存句法分析、命名实体识别等步骤。

自然语言处理的结果可以被用于实现问答系统中的意图识别、实体识别、关系提取等功能。

3. 对话管理:对话管理是指如何处理用户提出的问题,并给用户提供相应的答案。

对话管理的过程包括意图识别、实体识别、关系提取、答案生成等步骤。

对话管理需要根据用户的输入进行相应的分析,以确定用户的意图和需要回答哪些问题。

4. 数据库设计:智能问答系统需要将从不同数据源中获取的数据存储在数据库中。

数据库设计需要考虑数据的结构化和关系,以支持系统的高效查询和检索。

二、语言处理的实现智能问答系统的实现需要涉及自然语言处理(NLP)的技术。

NLP技术主要包括以下几个方面:1. 分词:将一个文本分成一个个单独的词语。

2. 词性标注:确定每个词语的词性。

3. 命名实体识别:识别由实体组成的词组,如人名、地名、日期等。

4. 依存句法分析:确定词语之间的语法关系。

5. 关键词提取:提取文本中最重要的关键词。

实现NLP技术需要使用一些常用的工具和算法,例如NLTK、Stanford NLP和OpenNLP等。

基于人工智能的智能问答系统设计与实现

基于人工智能的智能问答系统设计与实现

基于人工智能的智能问答系统设计与实现一、引言随着人工智能技术的不断发展,智能问答系统在各个领域得到了广泛的应用。

智能问答系统是一种能够理解用户提出的问题,并给出相应答案的人工智能系统。

本文将介绍基于人工智能的智能问答系统的设计与实现过程,包括系统架构、核心技术和实际案例分析。

二、系统架构1. 数据采集与处理智能问答系统首先需要建立一个庞大的知识库,以支持对用户问题的回答。

数据采集可以通过网络爬虫等方式获取各种文本数据,然后进行处理和清洗,构建结构化的知识图谱。

2. 自然语言处理自然语言处理是智能问答系统中至关重要的一环,包括分词、词性标注、句法分析等技术。

通过自然语言处理技术,系统可以理解用户提出的问题,并将其转化为计算机可处理的形式。

3. 问题匹配与检索在接收到用户问题后,系统需要进行问题匹配与检索,找到最相关的答案。

这一过程通常包括倒排索引、相似度计算等技术,以提高检索效率和准确性。

4. 答案生成与展示根据检索到的结果,系统需要生成符合用户需求的答案,并以易懂的方式展示给用户。

这可能涉及到文本生成、知识推理等技术,以确保答案的准确性和可读性。

三、核心技术1. 机器学习机器学习是智能问答系统中常用的核心技术之一,包括分类、聚类、回归等算法。

通过机器学习,系统可以从海量数据中学习规律,并不断优化自身的表现。

2. 深度学习深度学习是近年来备受关注的人工智能技术,在智能问答系统中也有广泛应用。

深度学习模型如神经网络可以帮助系统更好地理解复杂问题,并给出更精准的答案。

3. 强化学习强化学习是一种通过试错来优化决策的方法,在智能问答系统中可以用于优化问题匹配和答案生成过程。

通过强化学习,系统可以不断改进自身的表现。

四、实际案例分析以目前比较知名的智能问答系统小冰为例,它基于微软亚洲研究院开发的人工智能技术,可以回答各种类型的问题,并且具有较高的准确率和流畅度。

小冰通过不断学习用户反馈和数据更新,逐渐提升了自身的智能水平。

基于人工智能的智能问答系统设计与实现

基于人工智能的智能问答系统设计与实现

基于人工智能的智能问答系统设计与实现随着科技的不断发展和人工智能技术的日益成熟,智能问答系统逐渐成为人们获取信息和解决问题的重要工具。

本文将探讨基于人工智能的智能问答系统的设计和实现。

一、引言智能问答系统是一种能够根据用户的提问,通过分析和理解问题的语义,找到相关的答案并进行回复的系统。

它不仅能提供及时有效的解答,还能根据用户的反馈不断学习和提升自身的智能水平。

基于人工智能技术的智能问答系统具有广泛的应用前景,可以应用于各行各业的知识服务、智能客服等领域。

二、设计原理1. 数据准备:智能问答系统需要大量的数据作为知识库,这些数据可以来自于结构化和非结构化的数据源。

可以通过爬取互联网上的文本数据、整理已有的专业知识库等方式来获取所需的数据。

2. 自然语言处理:智能问答系统需要对用户的自然语言进行处理,以便理解和分析问题的意图。

可以使用自然语言处理技术,如词性标注、命名实体识别、语义角色标注等,将自然语言转化为结构化的表达形式,方便问题的理解和答案的搜索。

3. 信息检索与推荐:智能问答系统需要从大量数据中检索出与问题相关的答案。

可以使用信息检索技术,如倒排索引和向量空间模型等,提高问题与答案的匹配度。

同时,根据用户的历史提问和反馈,系统可以采用推荐算法,为用户提供更加个性化和精准的答案推荐。

4. 语义匹配与答案生成:智能问答系统需要通过语义匹配找到与用户问题相匹配的答案。

可以利用深度学习模型,如卷积神经网络和循环神经网络等,对问题和答案进行表示和匹配,以提高答案的准确性和可读性。

三、系统实现基于以上设计原理,可以按照以下步骤来实现智能问答系统:1. 数据收集与预处理:收集大量与系统目标领域相关的数据,并进行去重、清洗和格式化处理,以便后续的数据挖掘和分析。

2. 数据建模与知识表示:将处理后的数据进行语义建模,可以使用向量空间模型或者图表示来表示知识的结构和关系。

同时,可以使用知识图谱等知识表示工具,将不同领域的知识进行组织和关联。

高效准确的智能问答系统设计与实现

高效准确的智能问答系统设计与实现

高效准确的智能问答系统设计与实现智能问答系统是一种基于人工智能技术的应用,旨在为用户提供高效准确的问题回答和信息获取服务。

设计和实现一款高效准确的智能问答系统需要考虑多个方面,包括语义理解、知识获取、问题匹配和答案生成等环节。

本文将详细介绍智能问答系统的设计与实现方法。

一、语义理解语义理解是智能问答系统的关键环节,其目标是将用户提出的问题进行语义解析,转化为计算机能够理解的形式。

实现语义理解的方法有多种,包括规则匹配、机器学习和深度学习等。

其中,深度学习在自然语言处理领域取得了较好的效果,可以通过使用神经网络模型对问题进行编码和解码,实现精确的语义匹配。

二、知识获取为了回答用户的问题,智能问答系统需要获取相关的知识。

知识获取有多种途径,包括构建知识图谱、利用现有的知识库和抓取互联网上的信息等。

其中,构建知识图谱是一种常见的方法,可以将事实和知识以图的形式进行组织和表示,方便系统进行知识推理和查询。

三、问题匹配问题匹配是智能问答系统的关键环节之一,其目标是从知识库中找到与用户问题相匹配的相关知识。

问题匹配可以通过基于规则的方法和基于机器学习的方法实现。

前者依赖于建立的规则库,通过匹配问题中的关键词和知识库中的关键词进行匹配;后者则依赖于训练好的模型,可以根据问题的语义和上下文信息进行匹配。

四、答案生成答案生成是智能问答系统的最终目标,其目标是根据匹配到的知识,生成准确的回答并返回给用户。

答案生成可以利用规则模板、机器学习和自然语言生成等方法。

其中,自然语言生成是一种常见的方法,可以通过使用生成模型,根据问题的语义和上下文生成准确、连贯的回答。

除了以上四个环节之外,还有一些附加功能可以增强智能问答系统的性能和用户体验。

例如,实体识别和关系抽取可以帮助系统更好地理解问题和知识;用户反馈和评价机制可以帮助系统不断改进和优化。

在实际的设计和实现过程中,还需要考虑系统的性能和可扩展性。

对于大规模的知识库和用户量,需要设计有效的存储和检索算法,并采用分布式计算和并行处理等技术来提高系统的速度和吞吐量。

智能问答系统设计与实现

智能问答系统设计与实现

智能问答系统设计与实现一、引言随着人工智能技术的不断发展,人们对于智能问答系统的需求也越来越强烈。

智能问答系统是一种基于自然语言处理技术构建的智能化系统,在人们需要获取各种信息的情况下,能够高效地回答用户的问题。

本文将探讨智能问答系统的设计与实现。

二、需求分析在设计智能问答系统之前,需要对其需求进行分析。

智能问答系统需要满足以下几点要求:1.能够理解自然语言:智能问答系统需要具备自然语言处理技术,能够理解用户发出的问题,并给出正确的答案。

2.能够进行知识管理:智能问答系统需要能够管理用户提出的问题和相应的答案,方便用户以后查找。

3.能够进行对话交互:智能问答系统需要与用户进行对话交互,能够根据用户提出的问题,灵活地进行回答。

4.能够进行数据挖掘:智能问答系统需要能够从大量的数据中挖掘有用的信息,并将其呈现给用户,提高用户的满意度。

三、系统架构设计基于上述需求,智能问答系统的架构设计应当包括以下几个组成部分:1.自然语言处理模块:该模块能够对用户提出的问题进行语义分析,提取关键词,将问题转化为计算机可识别的形式。

2.知识管理模块:该模块能够对问题和答案进行分类、存储、检索和更新,方便用户随时查找。

3.对话交互模块:该模块能够与用户进行自然语言交互,根据用户提出的问题,提供正确的答案。

4.数据挖掘模块:该模块能够从大量数据中快速挖掘有用的信息,并将这些信息整理成可视化报表,提高用户的满意度。

四、系统实现在实现智能问答系统的过程中,可以采用以下技术:1.语义分析:采用自然语言处理技术,对用户提出的问题进行语义分析和关键词提取,将问题转化为计算机可识别的形式。

2.机器学习:采用机器学习技术,训练出适应各种问题的回答模型,并对回答模型进行不断地优化。

3.知识图谱:采用知识图谱技术,将知识组织成一张图谱,用于快速检索和查询。

4.数据挖掘:采用大数据技术,对大量的数据进行挖掘和整理,用于为用户提供有用的信息。

基于Java的智能问答系统设计与实现

基于Java的智能问答系统设计与实现

基于Java的智能问答系统设计与实现智能问答系统是一种能够理解自然语言并给出准确答案的人工智能系统。

随着人工智能技术的不断发展,智能问答系统在各个领域得到了广泛的应用,如智能客服、智能助手等。

本文将介绍基于Java语言的智能问答系统的设计与实现过程。

1. 智能问答系统概述智能问答系统是一种基于自然语言处理和人工智能技术的应用系统,其核心功能是接受用户提出的问题,并给出相应的答案。

智能问答系统通常包括问题理解、知识检索和答案生成三个主要模块。

在本文中,我们将使用Java语言来实现一个简单的智能问答系统。

2. 技术选型在设计智能问答系统时,我们需要选择合适的技术栈来支撑系统的实现。

考虑到Java语言在企业级应用开发中的稳定性和可靠性,我们决定采用Java作为主要开发语言。

此外,我们还将使用以下技术来构建系统:Spring框架:用于构建系统的后端服务,提供依赖注入和面向切面编程等功能。

Elasticsearch:用于存储和检索知识库中的问题和答案。

Stanford CoreNLP:用于自然语言处理,包括分词、词性标注、句法分析等功能。

3. 系统架构设计基于以上技术选型,我们设计了如下的智能问答系统架构:前端界面:用户通过前端界面输入问题,并展示系统返回的答案。

后端服务:包括问题理解、知识检索和答案生成三个模块。

问题理解:利用自然语言处理技术对用户输入的问题进行分析和理解。

知识检索:通过Elasticsearch从知识库中检索相关问题和答案。

答案生成:根据检索结果生成最终的回答,并返回给用户。

知识库:存储系统所需的问题和对应的答案,以便后续检索和生成。

4. 系统实现步骤4.1 数据准备首先,我们需要准备一个包含问题和答案对的知识库。

可以手动录入一些常见问题和标准答案,也可以通过爬虫等方式从互联网上获取数据。

将这些数据存储在Elasticsearch中以便后续检索。

4.2 问题理解模块问题理解模块是整个系统的核心部分,它需要对用户输入的问题进行分词、词性标注、句法分析等处理,以便后续进行知识检索。

基于信息检索技术的问答系统设计与实现

基于信息检索技术的问答系统设计与实现

基于信息检索技术的问答系统设计与实现摘要:问答系统是一种能够通过用户提出的问题,准确地回答问题的人机交互系统。

本文基于信息检索技术,通过介绍问答系统的基本原理和设计流程,详细探讨了问答系统的设计与实现方法。

一、引言问答系统是人工智能技术的重要应用之一,它能够通过人工智能算法和知识库,快速、准确地回答用户提出的问题。

近年来,随着自然语言处理和信息检索技术的发展,问答系统在各个领域得到了广泛的应用和研究。

本文将基于信息检索技术,探讨问答系统的设计与实现。

二、问答系统的基本原理问答系统的基本原理主要包括问题理解、信息检索和答案生成。

首先,通过对用户提出的问题进行自然语言处理,进行问题理解,将问题转化为计算机能够理解的形式。

然后,通过信息检索技术,从语料库或知识库中提取相关信息,并获取与问题相关的文档或答案。

最后,通过对获取的信息进行筛选、融合和排名,生成最终的答案。

三、问答系统的设计与实现方法1. 语言模型和自然语言处理:问答系统的核心是自然语言处理技术,通过构建语言模型,训练模型使得系统能够理解和生成自然语言。

目前常用的语言模型包括统计语言模型和神经网络语言模型,可以通过机器学习和深度学习算法进行训练。

2. 信息提取和知识表示:为了能够从大规模的文本中准确提取相关信息,需要使用信息提取技术。

通过实体识别、关系抽取、事件提取等方法,将文本中的实体、关系和事件提取出来,并构建知识表示形式,以方便后续的检索和答案生成。

3. 信息检索和搜索引擎:为了快速地从大规模的语料库或知识库中检索相关信息,需要使用信息检索和搜索引擎技术。

常用的方法包括倒排索引、向量空间模型和语义搜索等。

通过构建索引和优化搜索算法,可以提高信息检索的效率和准确性。

4. 答案生成和评估:根据问题的类型和要求,需要设计合适的答案生成方法。

对于事实性问题,可以通过匹配和提取文本中的答案;对于推理性问题,需要使用推理和推理机制来生成答案。

同时,还需要设计合适的答案评估指标,通过计算答案的准确性和相关性,评估系统的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1目录引言 (3)第一章研究背景 (4)1.1问答系统研究背景 (4)1.2传统的问答系统的不足 (4)1.3问答系统研究现状 (4)1.4问答系统的类型区分 (5)1.5问题的类型进行区分 (6)1.6中文问答系统研究 (6)1.7相关评测 (7)第二章系统分析 (8)2.1市场调查 (8)2.2问答系统的问题分析 (8)2.3问题分类 (8)2.4问题相似性判定 (9)2.5关键词扩展 (10)第三章数据库设计 (12)3.1数据库的需求分析 (12)3.2数据库表结构设计 (12)3.3E-R模型 (14)第四章系统详细设计与实现 (17)4.1系统工作原理介绍 (17)4.2系统数据流图 (18)4.3系统的实现算法 (18)4.4注册模块的设计与实现 (21)4.5注册模块的设计与实现 (33)4.6 系统首页的设计与实现 (36)4.7用户提问模块的设计与实现 (39)4.8问题显示模块的设计与实现 (42)4.9问题回答模块的登录与实现 (44)4.10后台管理模块的设计与实现 (45)第五章系统测试 (47)第六章总结 (48)致谢 (49)参考文献 (50)引言问答系统的设计目标是用简治、准确的答案回答用户用自然语言提出的问题。

在人工智能和自然语言处理领域,问答系统都有着较长的历史。

1950年英国数学家图灵(A.M.Turin8)在论文“Computing Machinery and Intelligence”中形象地指出了什么是人工智能,以及机器应该达到的智能标准。

也就是通过自然语言问答的方式,判断机器是否具有智能。

20世纪70年代随着自然语言理解技术的发展,出现了第一个实现用普通英语与计算机对话的人机接口LUNAR,该系统是伍德(W.Woods)于1972年开发用来协助地质学家查找、比较和评价阿波罗一号飞船带回的月球岩石和土壤标本的化学分析数据的系统。

本文将简要介绍国内外问答系统研究的进展情况。

并且针对问答系统中的一个难点以及实现方法进行了讨论。

并给出如何识别用户搜索关键字的方法。

第一章研究背景1.1问答系统研究背景随着因特网的快速发展,网络上流通的信息日益增加,它已俨然成为巨大的讯息流通交换平台,要在如此大量的数据库中找寻有用的数据着实不易,通常会藉助于搜索引擎的功能来达成,然而以关键词为主的搜索引擎常会找出所有相关的信息,但是其中也包含许多无用的数据,用户浪费很多时间浏览不相关的网页。

随着互联网的发展,网络已成为人们获取信息的重要手段。

目前,世界上最大的搜索引擎Google能够搜索的网页数量已经超过了百亿。

传统的搜索引擎存在很多不足的地方,其中主要有三个方面:一是以关键词的逻辑组合来表达检索需求二是返回的相关性信息太多三是以关键词为基础的索引,停留在语言的表层,而没有触及语义,因此检索效果很难进一步提高。

以上两点使得人们在互联网上的海量信息中快速准确地找到自己所需要的信息变得越来越困难。

1.2传统的问答系统的不足传统的问答系统虽然可以对用户提出的问题给出确定的答案,但是这些问答系统的数据源是基于一个固定的文档集合,尚且不能满足用户的各种各样的需求。

利用互联网上的资源是有效的解决之道互联网上具有丰富的信息,是问答系统数据源的理想资源,因此将问答系统与互联网结合起来,就变得非常必要。

这也就促使了基于互联网的问答系统的出现和发展的问答系统的出现和发展。

1.3问答系统研究现状问答系统的概念虽然提出的时间并不长,但已经形成发展出了一些比较成熟的系统。

美国麻省理工学院人工智能实验室于1993年开发出来的START,系统(/projects/infolab/start.html)是全世界第一个基于Internet的问答系统。

START系统旨在为用户提供准确的信息,它能够回答数以百万的英语问题,主要包括与地点相关的问题(城市、国家、湖泊、天气、地图、人口统计学、政治和经济等)、与电影相关的问题(片名、演员和导演等)、与人物相关的问题(出生日期、传记等)以及与词典定义相关的问题等。

该系统采用基于知识库和基于信息检索的混杂模式,系统还保留着原来的两个知识库,"START KB”和“Internet Public Library"。

如果用户提出的问题属于这两个知识库的范畴,START就直接利用知识库中的知识返回比较准确的回答。

反之,START系统将问题解析得到查询的关键词,通过搜索引擎得到相关信息,通过后续处理得到准确而简洁的回答返回给用户。

比如提出一个问题“Who was Bill Gates? ", START系统回答“Cofounder,Microsoft. Born William H. Gates on October 28, 1955,Seattle,Washington. "。

同时系统还返回一个关于“Bill Gates"网页链接,如果用户希望了解更详细的信息时就可以浏览改网页。

美国华盛顿大学开发的MULDER系统(http://mulder.cx/)是最早实现的基于Internet的全自动的问答系统。

该系统没有知识库,而完全利用Internet上的资源得到答案。

对于一个问题,MULDER系统返回的不是唯一的答案,而是一组候选回答,并利用统计的方法给每一个回答赋值一个权重,称之为置信度。

比如,对于一个问题“Who was the fast American in space?" ,MULDER系统的返回的候选答案中,"Alan Shepard”具有70%的置信度,"John Glenn”具有15%的置信度。

同时在每一个答案下面给出相关的网页链接和该网页内容的摘要。

AskJeeves (/)是美国一个比较著名的商用问答系统。

对于自然语言提出的问题,AskJeeves系统采用多种方式进行回答,直接返回一段文本,并返回一系列文档链接及其内容摘要,同时还采用多媒体文件的形式提供相关信息。

比如对于问题" Who was Bill Gates?",系统在文本回答的基础上还将显示一张Bill Gate的照片。

作为一个商用系统,AskJeeves的服务种类很多,不仅仅可以查找Web网页,也可以采用图片、新闻、产品作为数据源,从而得到所需的信息。

AskJeeves系统中的问题分析部分是依赖手工完成的,为了能够正确理解用户的查询AskJeeves雇佣了数百专职人员构造问题模板,并为这些问题模板中常见的问题进行了缓存。

系统的问题模板虽然能够细化和明确用户的需求,但由于需要人工产生和维护的,工作量非常大。

美国密歇根大学开发的AnswerBus (/)系统在多语种问题上进行了一些尝试,可以回答英语、西班牙语、德语、意大利语、葡萄牙语的问题。

Microsoft公司的Encarta (/)系统作为一个在线百科全书式的问答式搜索引擎,也提供了多语种的支持。

对于用户的每一次查询,AnswerBus将返还5个网页链接,并给出XML和TXT的Possible answers。

新加坡开发的LAMP为了更加正确的理解用户的查询意图,列出了person,organization,location,date,time。

money,percent等7种查询类别让用户进行选择,LAMP不是返回网页链接,而是直接返还答案。

LAMP所在网址.sg/cgi-bin/smadellz/lamp_query.pl此外,南加州大学利用自然语言处理、文本摘要等技术,开发的Webclopedia系统在各项评测中也取得了很好的效果;美国Language Computer公司的问答系统(/demos/question_answering)在TREC评测中一直名列前茅。

国内复旦大学开发的原型系统(FDUQA)己经具有了初步的效果,同时哈尔滨工业大学(金山客服)和中国科学院计算技术研究所也在从事该领域的研究。

1.4问答系统的类型区分问答系统(Question Answering System, QA)是信息检索系统的一种高级形式。

它能用准确、简洁的自然语言回答用户用自然语言提出的问题。

其研究兴起的主要原因是人们对快速、准确地获取信息的需求。

问答系统是目前人工智能和自然语言处理领域中一个倍受关注并具有广泛发展前景的研究方向。

1.5问题的类型进行区分问答系统问答问题的类型进行区分:询问人(如:谁发现了北美洲?)、询问时间(如:人类哪年登录月球?)、询问数量(如:珠穆朗玛峰有多高?)、询问定义(如:什么是氨基酸?)、询问地点和位置(如:芙蓉江在重庆市哪个县?)、询问原因(如:天为什么是蓝的?)。

问答系统分类如图1.1图1.1 问答系统分类从系统的设计与实现来看,自动问答系统一般包括三个主要组成部分:问题分析、信息检索和答案抽取。

目前国际上,问答系统的研究方兴未艾,许多大的科研院所和著名公司,都积极参与到该领域的研究,其中比较著名的如MICROSOFT、IBM、MIT、University of Amsterdam、National University of Singapore、University of Zurich、University of Southern California、Columbia University等等,国内在问答系统方面的研究相对国外较为不足,主要有中科院计算所、复旦大学、哈尔滨工业大学、沈阳航空工业学院、香港城市大学、台湾中研院等一些单位。

1.6中文问答系统研究中文问答系统相对于英文有如下几个方面的难点或不足之处:连写:中文是连续书写,分词是汉语言处理的基础。

中文问答系统由于是句子级别的信息检索,要分析句子,首先要分词。

形态:汉语缺乏狭义的形态变化,如英文中的主动被动语态,完成时进行时等,形态对于计算机就是标记,有利于计算机的处理。

语法:汉语语法灵活,句子各成分之间的关系靠词序、“意合”、虚词,变化较多。

语义:一词多义、同音词、同义词、近义词等,以及丰富的表达方式,上下文依赖度高,省略语等都是计算机处理的难点。

语法研究:面向计算机处理的中文语法研究不足,如中文问答系统需要的关于中文句型形式化、不同句型之间的转换的研究资料极少。

相关资源:缺乏包括语法、语义词典等中文语言学资源和相关生熟语料,国外这方面强得多,如TREC就提供的相当数量的可用于英文问答研究和评测的语料。

中文问答系统需要在现有的中文信息处理技术基础上,充分研究和利用问答的特性与需求,通过各种方法解决和克服(或暂时回避)以上难点和困难,设计和开发问答系统。

1.7相关评测自1999 年文本检索会议( Text Retrieval Conference ,简称TREC) 引入问答系统评测专项(Question Answering Track ,简称QA Track) 后,人们对基于自然语言的问答系统再次产生了浓厚的兴趣,在近些年的TREC 比赛中,QA Track 是最受关注的评测项目之一。

相关文档
最新文档