高等数学课件ppt

合集下载

《高等数学极限》课件

《高等数学极限》课件

THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。

高等数学优秀课件(完整版)

高等数学优秀课件(完整版)

2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a ,b R ,且 a b .
{xaxb} 称为开区间, 记作 (a,b)
oa
b
x
{xaxb} 称为闭区间, 记作 [a,b]
oa
b
x
高等数学优秀课件(完整版)
{xaxb} 称为半开区间, 记作 [a,b)
{xaxb} 称为半开区间, 记作 (a,b]
数集间的关系: N Z ,Z Q ,Q R . 若 A B ,且 B A ,就称 A 与 B 相 集 .(A等 合 B) 例如 A{1,2},
C{xx23x20},则AC. 不含任何元素的集合称为空集. (记作 ) 例如, {xxR ,x210}
规定 空集为任何集合的子集.
高等数学优秀课件(完整版)
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A { a 1 ,a 2 , ,a n }
有限集
M{xx所具有的}特无征限集
若 x A ,则 x B 必 ,就 A 是 说 B 的.子集 记作 AB.
高等数学优秀课件(完整版)
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
yf(x) 数集D叫做这个函数的定义域
因变量
自变量
当 x 0 D 时 ,称 f(x 0)为函 x 0 处 数的 在 . 函 点
函数值全体组成的数集 W{yy f(x),xD}称为函数的 . 值域
高等数学优秀课件(完整版)
函数的两要素: 定义域与对应法则.
( x D x0)
对应法则f
(

高等数学教学课件PPT

高等数学教学课件PPT

注 (1) 周期函数在每个周期上有相同的图形
(2) 通常周期函数的周期是指最小正周期
(3) 并非每个周期函数都有最小正周期
例:常量函数 f ( x) C
y
狄利克雷函数
1 f (x) 0
xQ x QC
1
概念
概念
集映

合射
逆映射
反函数

区邻 间域
构造 复合映射
构造
➢概念
设函数 f : D f (D) 是单射, 则它存在逆映射 f 1 : f (D) D 称映射 f 1 为函数f 的反函数. 一般地, y f ( x), x D的反函数记成 y f 1( x), x f (D)
1, x 0
y
sgn
x
0,
x0
1, x 0
y
1
o
x
1
y
注 分段函数不一定就是非初等函数!
2 1o 1 2 3 4 x
x x0
2
例5 设f(x)的定义域D=[0,1],求下述函数的定义域
当 x1 x2 时,恒有 f ( x1) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o
类似可定义函数f (x)在区间I上是单调减少的
x1 x2 x
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
➢ 如果对于区间I上的任意两点x1及x2,
当 x1 x2 时,恒有 f ( x1) f ( x2 )
设f是从集合X到集合Y的映射

即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射
若对X中任意两个不同的元素 则称f为X到Y的单射

全版高等数学上册课件.ppt

全版高等数学上册课件.ppt
f ( x nl) . nl (n N ) 也是 f ( x) 的周 期.
若 在周期函数 f (x)的所有周期中存在 最小的正 周期T ,则称这个最小正周期T 为 f ( x)的 基本周期 .
通常我们所说的函数的周期都是指基本周期.
.精品课件.
27
f ( x) sin x,cos x 的周期为T 2 , 常 f ( x) tan x,cot x 的周期为T , 用 F ( x) Asin(x B) C 的 周 期 为T 2 ,
业成绩以10% 记入期末总评成绩。
4. 辅导答疑:
时间:待定;地点:南堂 112 答疑室。
电话:15020063032
.精品课件.
6
《高等数学练习册》 发放时间、地点及相关要求:
时 间:星期二、三、五(9月20、21、23日)
下午 3:00 — 5:00 地 点:文理楼 237 室 《高等数学练习册》每本售价:17元
定理 函数 f ( x) 在 D 上有界 函数 f ( x) 在 D 上既有上界又有下界.
(3) 若 M 0,xM D f ( xM ) M , 则称 f ( x) 在 D 上无界 .
.精品课件.
21
例6 证明:f ( x) 1 在 ( ,0) 与 (0, ) ( 0) 无界,
x
在任何不包含原点的闭区间 [a, b] 上有界 .
16
有些特殊的函数只能用语言来描述对应法则 f ,
并用约定的符号予以表示:
例1 “x R, 对应的 y 是不超过x 的最大整数”.
记作:y [x] , x R . 称为取整函数
例如:[5.3]= 5, [ - 4.9]= 5 .
当n x n 1 (n Z) 时,

《高数基础知识》课件

《高数基础知识》课件
05
CHAPTER
空间解析几何
空间直角坐标系是描述空。
空间直角坐标系
在空间直角坐标系中,点的位置可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴。
点的坐标表示
在空间解析几何中,向量可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴上的分量。
平面与直线的交点
如果一条直线和一个平面相交,那么它们的交点可以用直线和平面的方程联立求解得到。
平面与平面的交线
如果两个平面相交,那么它们的交线可以用两个平面的方程联立求解得到。
06
CHAPTER
多项式函数与插值法
多项式的定义
多项式是数学中一个基本概念,由一个或多个项通过加法或减法组合而成。
多项式的根
总结词
详细描述
总结词
掌握极限的四则运算法则,理解极限运算的基本方法
详细描述
极限的四则运算法则包括加减乘除和复合运算,是研究函数极限行为的基础。极限运算的基本方法包括利用极限的四则运算法则、等价无穷小替换、洛必达法则等,这些方法可以帮助我们求解各种极限问题,并进一步研究函数的性质和变化规律。
03
CHAPTER
样条插值法的应用
THANKS
感谢您的观看。
详细描述
总结词
高数的发展历程
详细描述
高数的发展可以追溯到17世纪,随着微积分学的发展,高数逐渐形成并完善。在18世纪和19世纪,高数的发展取得了巨大的进步,许多数学家如欧拉、高斯等都为高数的发展做出了杰出的贡献。
总结词
高数在日常生活和科学中的应用
详细描述
高数在日常生活和科学中有着广泛的应用。例如,在物理学中,高数被用于描述和解决力学、电磁学、光学等领域的问题;在经济学中,高数被用于研究金融、投资、贸易等问题;在工程学中,高数被用于设计、分析、优化各种系统和结构。

高等数学向量及其运算PPT课件.ppt

高等数学向量及其运算PPT课件.ppt
例如, a、r、v、F 或a 、r 、v 、F .
2
• 自由向量 与起点无关的向量, 称为自由向量, 简称向量.
• 向量的相等 如果向量a和b的大小相
等, 且方向相同, 则说向量a 和b是相等的, 记为a=b.
相等的向量经过平移后可以完全重合.
3
•向量的模 向量的大小叫做向量的模.
向量 a、a 、AB 的模分别记为|a|、|a| 、|AB| .
23
例3 已知两点A(x1, y1, z1)和B(x2, y2, z2)以及实数-1,
在直线 AB 上求一点 M, 使 AM =MB .
解 由于
解 由于 AM =OM-OA , MB=OB-OM ,
=OM-OA , MB=OB-OM ,
因此 OM-OA=(OB-OM) ,
从而
OM =
1
(OA+ OB)
当两个平行向量的起点放在同一点时, 它 们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.
设有k(k3)个向量, 当把它们的起点放在同 一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面.
6
二、向量的线性运算
1.向量的加法
设有两个向量a与b, 平移向量, 使b的起点与a
当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
10
•向量与数的乘积的运算规律
(1)结合律 (a)=(a)=()a; (2)分配律 (+)a=a+a;
(a+b)=a+b.
•向量的单位化
设a0, 则向量 a 是与a同方向的单位向量,
记为ea.
|a|

高等数学上册第七章课件.ppt

高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程

解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档