锂离子电池安全性及影响因素分析
锂离子电池的安全性评估评估锂离子电池的安全性能和风险控制策略

锂离子电池的安全性评估评估锂离子电池的安全性能和风险控制策略锂离子电池的安全性评估及风险控制策略随着科技的不断发展,锂离子电池已成为现代生活和工业生产的重要能源储存装置。
然而,由于其本身的特性,锂离子电池也存在着一定的安全隐患和风险。
为了确保锂离子电池的安全性能,并有效控制潜在的风险,对其进行全面的安全性评估和采取相应的风险控制策略显得尤为重要。
一、安全性评估1. 锂离子电池的基本结构和工作原理锂离子电池由正极、负极、电解质和隔膜等组成。
正极材料主要有氧化钴、氧化镍、锰酸锂等;负极材料通常采用石墨;电解质主要由有机溶剂和盐组成,如碳酸丙烯酯和聚合物电解质;隔膜则用于阻止正负极直接接触。
2. 安全性能评估指标安全性评估指标通常包括热失控温度、短路电流、过充电容性、内阻、循环寿命等。
热失控温度是指在特定条件下电池发生热失控的温度,其低于该温度时电池工作稳定;短路电流则是指在电池发生短路时的输出电流;过充电容性是指电池在过充电状态下所能容纳的电量;内阻则是电池内部电阻,在充放电过程中会有一定的能量损耗;循环寿命是指电池能够充放电的次数。
3. 安全性能评估方法安全性能评估通常通过实验方法和数值模拟两种途径进行。
实验方法包括热失控实验、冲击实验和短路实验等,可以直接观察和测量电池在不同条件下的安全性能。
数值模拟方法则采用计算机模型对电池在各种工况下的热耦合、电耦合等特性进行模拟和分析,可以预测电池的安全性能。
二、风险控制策略1. 设计阶段的风险控制在锂离子电池的设计阶段,可以通过选择合适的正负极材料、优化电池结构、改进电解质体系等手段来提高电池的安全性能。
例如,使用高稳定性的正负极材料可以降低电池的热失控温度;优化电池结构可以提高电池的循环寿命和耐冲击性能;改进电解质体系可以增强电池的耐高温性能。
2. 制造和测试阶段的风险控制在锂离子电池的制造和测试过程中,应严格控制各个环节,确保电池的生产质量和一致性。
《2024年动力锂离子电池组寿命影响因素及测试方法研究》范文

《动力锂离子电池组寿命影响因素及测试方法研究》篇一一、引言随着科技的不断进步和电动汽车的兴起,动力锂离子电池组已成为移动设备和新能源汽车等众多领域的核心组成部分。
电池组的性能直接决定了其应用的效率和使用寿命。
因此,研究动力锂离子电池组的寿命影响因素及测试方法,对于提高电池性能、延长使用寿命、保障设备安全具有重要意义。
二、动力锂离子电池组寿命影响因素1. 内部因素(1)电池材料:电池的正负极材料、电解质和隔膜等材料对电池性能和寿命具有重要影响。
(2)电池结构:电池的内部结构如极片厚度、电极间距等也会影响电池的寿命。
(3)电池制造工艺:制造过程中的工艺控制、环境因素等也会对电池的寿命产生影响。
2. 外部因素(1)充放电条件:充放电电流、电压、充放电深度等都会影响电池的寿命。
(2)使用环境:温度、湿度、振动等环境因素也会对电池的寿命产生影响。
(3)滥用条件:过充、过放、短路等滥用条件会严重损害电池的寿命。
三、测试方法研究1. 容量测试容量测试是评估电池性能的重要指标之一。
通过充放电循环测试,测量电池在不同充放电条件下的容量变化,以评估电池的寿命。
2. 内阻测试内阻是反映电池内部电阻的重要参数,通过内阻测试可以评估电池的内阻变化,进而判断电池的性能和寿命。
3. 循环寿命测试循环寿命测试是评估电池在长期使用过程中性能衰减情况的重要方法。
通过模拟实际使用条件,对电池进行反复充放电循环测试,观察其容量、内阻等参数的变化,以评估其寿命。
4. 安全性能测试安全性能测试是评估电池在滥用条件下的安全性能的重要方法。
包括过充、过放、短路、针刺等测试,以检测电池的热失控、爆炸等安全隐患。
四、结论动力锂离子电池组的寿命受多种因素影响,包括内部因素和外部因素。
通过科学的测试方法,可以评估电池的性能和寿命。
在实际应用中,应根据具体需求选择合适的电池材料、结构和制造工艺,同时合理控制充放电条件和使用环境,以延长电池的使用寿命。
此外,安全性能测试也是必不可少的环节,应确保电池在滥用条件下的安全性。
锂离子电池安全性研究及影响因素分析

锂离子电池安全性研究及影响因素分析一、本文概述随着科技的快速发展和全球能源结构的逐步转型,锂离子电池作为一种高效、环保的能源存储技术,已经广泛应用于便携式电子设备、电动汽车、航空航天、储能电站等多个领域。
然而,随着锂离子电池应用范围的扩大,其安全性问题也日益凸显。
电池热失控、燃烧甚至爆炸等安全事故不仅会造成巨大的财产损失,还可能威胁到人们的生命安全。
因此,对锂离子电池的安全性进行深入研究和影响因素分析,对于保障其安全应用具有重要意义。
本文旨在全面综述锂离子电池安全性的研究现状,分析影响电池安全性的主要因素,包括电池材料、制造工艺、使用条件等,并探讨提高锂离子电池安全性的有效方法和未来发展方向。
通过本文的阐述,希望能够为锂离子电池的安全应用提供理论支撑和实践指导,促进锂离子电池技术的健康、可持续发展。
二、锂离子电池的基本原理与结构锂离子电池,作为现代电化学储能技术的核心,其基本原理和结构是理解其安全性和性能的关键。
锂离子电池是一种通过锂离子在正负极之间移动实现能量存储和释放的二次电池。
其结构主要由正极、负极、隔膜和电解液四个部分组成。
正极是锂离子电池的重要组成部分,通常采用具有高嵌脱锂电位的材料,如钴酸锂、锰酸锂、磷酸铁锂等。
正极材料的性能直接影响电池的能量密度和安全性。
负极材料则通常采用具有低嵌脱锂电位的碳材料,如石墨、硅碳复合材料等。
负极的主要作用是储存和释放锂离子,其结构和性能对电池的循环寿命和安全性具有重要影响。
隔膜位于正负极之间,是防止电池内部短路的关键组件。
隔膜通常由聚烯烃等多孔材料制成,具有良好的离子通透性和机械强度。
电解液则是锂离子电池中的重要组成部分,通常由有机溶剂和锂盐组成,其主要作用是传导锂离子,实现正负极之间的电荷转移。
锂离子电池的工作原理是在充放电过程中,锂离子在正负极之间移动,实现化学能与电能之间的转换。
充电时,锂离子从正极脱嵌,穿过隔膜,嵌入负极;放电时,锂离子从负极脱嵌,穿过隔膜,嵌入正极。
锂离子电池安全性及影响因素分析

锂离子电池安全性及影响因素分析
锂离子电池的安全性受多种因素影响。
首先,电池的设计和制造质量是影响安全性的重要
因素。
不良的设计或制造工艺可能导致电池内部短路或热失控,从而引发安全事故。
其次,外部环境的影响也会对锂离子电池的安全性产生影响。
例如,在高温环境下,锂离子电池
容易发生热失控,导致发生灾难性的事故。
此外,使用过程中的不当操作也可能引发安全
隐患,如过充电、过放电以及外部短路等。
为了提高锂离子电池的安全性,厂商和用户都需要注意以下几点。
首先,厂商应加强对电
池设计和制造工艺的质量控制,确保产品质量符合安全标准。
其次,用户在使用电子设备
时应遵守相关使用说明,避免在不当环境下使用电池,如高温环境下充电或插入不合适的
充电器。
总之,锂离子电池的安全性受多种因素影响,包括设计和制造质量、外部环境和使用过程
中的操作。
厂商和用户都需要共同努力,提高锂离子电池的安全性,以确保其在使用过程
中不会产生安全隐患。
抱歉,我无法满足你的要求。
锂离子电池的可靠性与安全分析

锂离子电池的可靠性与安全分析锂离子电池作为一种新兴的电池技术,被广泛应用于现代电子产品、电动汽车等领域。
然而,锂离子电池的可靠性和安全性问题一直是人们关注的焦点。
本文将从锂离子电池的原理、结构、应用以及可靠性与安全性等方面进行详细分析,并对未来锂离子电池的发展趋势做出展望。
一、锂离子电池的原理锂离子电池的能量来源于正极材料和负极材料之间的化学反应,其中正极材料主要是金属氧化物或磷酸盐,负极材料则是石墨或碳材料。
电解液是锂盐和有机溶剂的混合物,电池内部通过多种材料的协同作用来实现能量转换和储存。
由于锂离子电池具有高能量密度、长循环寿命和自放电率低等优点,因此在现代电子产品、电动汽车等领域得到广泛应用。
二、锂离子电池的结构锂离子电池的主要组成部分包括正极、负极、隔膜和电解液。
正极材料通常是金属氧化物或磷酸盐,如锂钴酸、锂铁磷酸等;负极材料则是石墨或碳材料。
隔膜通常采用聚合物材料,其作用是隔开正极和负极,并允许离子通行。
电解液是锂盐和有机溶剂的混合物,通过隔膜与正负极反应,实现电池内部物质和电荷的传递。
锂离子电池广泛应用于现代电子产品、电动汽车等领域。
在电子产品方面,锂离子电池被用于储存小型移动设备、笔记本电脑、智能手表等电子产品的电能。
在电动汽车领域,锂离子电池是全球电动汽车领域的主导技术,凭借着其高效能、高能量密度的特性成为电动汽车储能系统的首选。
四、锂离子电池的可靠性虽然锂离子电池具有高能量密度、长循环寿命等优点,但其可靠性和安全性问题一直是人们关注的焦点。
一方面,由于电化学反应的存在,锂离子电池会随着循环次数的增加而导致容量衰减、内阻升高等问题,从而影响电池的性能。
此外,锂离子电池在高温、低温、过充、过放等情况下,也容易引发电池短路、起火、爆炸等危险事件。
为了提高锂离子电池的可靠性,需要从材料、结构、工艺等方面加以改进。
首先,在材料方面,需要选择稳定性更高、容积比更好的正负极材料,并尽可能减少添加剂的含量。
锂离子电池安全性关键因素

锂离子电池安全性关键因素锂离子电池安全性关键因素锂离子电池是一种常见的电池类型,广泛应用于移动设备、电动车辆和储能系统等领域。
然而,锂离子电池也存在着安全隐患,如过热、短路和电池泄漏等问题。
因此,确保锂离子电池的安全性至关重要。
下面将逐步介绍锂离子电池安全性的关键因素。
第一步:材料选择锂离子电池的材料选择对其安全性至关重要。
正极材料通常使用氧化钴、氧化镍、氧化锰等,而负极材料则采用石墨或石墨烯。
选择高质量、高稳定性的材料可以降低电池的过热和短路风险。
第二步:电解液配方电解液是锂离子电池中的重要组成部分,同时也是电池安全性的关键因素之一。
优质的电解液应具有较高的导电性和稳定性,同时还要具备一定的耐温性。
合理选择和配方电解液可以减少电池泄漏、过热和爆炸的风险。
第三步:隔膜设计隔膜是电池中阻止正负极直接接触的重要屏障,对于电池的安全性至关重要。
优质的隔膜应具备良好的离子传导性和热稳定性,以减少短路和过热的风险。
第四步:电池封装电池封装是保证锂离子电池安全性的另一个关键因素。
封装应具备良好的耐高温性和耐压性,以防止电池在异常情况下发生泄漏和爆炸。
合理设计和选择封装材料和结构可以有效提高电池的安全性能。
第五步:电池管理系统电池管理系统(BMS)对于锂离子电池的安全性至关重要。
BMS可以实时监测电池的温度、电流和电压等参数,同时也可以控制电池的充放电过程。
通过合理设置BMS的保护机制,可以及时发现和处理电池异常情况,减少安全事故的发生。
综上所述,锂离子电池的安全性是一个多方面的问题,需要从材料选择、电解液配方、隔膜设计、电池封装和电池管理系统等方面进行综合考虑和优化。
只有在各个环节都严格控制和把关,才能确保锂离子电池的安全可靠运行。
锂离子电池的性能和安全性研究

锂离子电池的性能和安全性研究近年来,随着电动汽车、智能手机等电子设备的普及,锂离子电池也越来越广泛地应用于各种领域。
锂离子电池具有高能量密度、长寿命、轻便等优点,因此备受青睐。
但是,锂离子电池在使用中也存在着一些安全性问题,如过充、过放、短路等问题,这些问题不仅会减少电池的寿命,还有可能引起严重的事故。
因此,锂离子电池的性能和安全性研究显得尤为重要。
一、锂离子电池的性能1.电池的种类目前市面上,常见的锂离子电池主要有三种:聚合物锂离子电池、三元锂离子电池、钴酸锂电池。
其中,聚合物锂离子电池具有高能量密度、安全性好等优点,被广泛应用于智能手机、平板电脑、移动电源等电子设备中。
而三元锂离子电池则具有高循环寿命、高容量、高能量密度等特点,逐渐被应用于电动汽车、电动工具等领域。
2.电池的容量和电压电池容量是指在一定条件下,电池能够放出的电荷量。
一般以毫安时(mAh)来表示。
不同的电子设备,对电池的容量要求不同。
电池的电压则是指在正负极之间的电势差。
不同的电池类型和不同的工作环境都会影响电池的电压。
3.电池的耐久性电池的耐久性是指电池在充放电过程中,经历多少个循环充放电后,其容量能够保持原来的一定百分比。
电池的耐久性通常以充放电循环次数来表示。
不同的电池类型和不同的使用环境都会影响电池的耐久性。
二、锂离子电池的安全性1.电池过充过充会导致电池内部压力增大,可能引起电池破裂或爆炸。
因此,电池内部需要设计保护电路,防止电池过充。
2.电池过放过放会导致电池内部压力下降,可能引起电池破裂或爆炸。
因此,电池内部需要设计保护电路,防止电池过放。
3.短路短路会导致电池内部温度升高,可能引起电池破裂或爆炸。
因此,电池内部需要设计保护电路,防止短路。
4.温度过高温度过高会导致电池内部压力增大,可能引起电池破裂或爆炸。
因此,电池内部需要设计保护电路,控制温度。
5.电池容量降低电池容量的降低可能源于电池本身的老化、过充、过放等原因。
《2024年动力锂离子电池组寿命影响因素及测试方法研究》范文

《动力锂离子电池组寿命影响因素及测试方法研究》篇一一、引言随着电动汽车、储能系统等领域的快速发展,动力锂离子电池组作为核心部件,其性能和寿命受到了广泛关注。
了解影响动力锂离子电池组寿命的因素及有效的测试方法,对于提高电池性能、延长使用寿命、降低成本具有重要意义。
本文将就动力锂离子电池组寿命的影响因素及测试方法进行深入研究。
二、动力锂离子电池组寿命影响因素1. 化学因素(1)正负极材料:正负极材料的化学性质、结构稳定性等直接影响电池的充放电性能和寿命。
(2)电解液:电解液的化学成分、浓度、稳定性等对电池的内部反应、电池性能及寿命具有重要影响。
(3)电池反应:电池充放电过程中的化学反应,如锂离子的嵌入与脱嵌,可能引发副反应,导致电池性能下降。
2. 物理因素(1)温度:温度对电池性能和寿命的影响显著,过高或过低的温度都会导致电池性能下降、寿命缩短。
(2)充放电速率:充放电速率过快可能导致电池内部温度升高,影响电池性能和寿命。
(3)机械损伤:电池受到机械冲击、挤压等可能导致内部结构破坏,影响电池性能和寿命。
3. 使用因素(1)使用环境:使用环境中的湿度、气压、污染等都会对电池性能和寿命产生影响。
(2)使用方式:不合理的充放电策略、过度充放电等都会加速电池性能衰减。
三、动力锂离子电池组测试方法研究1. 容量测试:通过恒流充放电测试,测量电池的容量,评估电池的充放电性能。
2. 循环寿命测试:在一定的充放电条件下,对电池进行多次充放电循环,观察电池性能的变化,评估电池的循环寿命。
3. 高低温性能测试:在高温和低温环境下对电池进行充放电测试,评估电池在不同温度下的性能。
4. 内阻测试:通过测量电池内阻,了解电池内部反应情况,评估电池性能。
5. 安全性测试:包括过充、过放、短路等测试,评估电池的安全性。
四、结论动力锂离子电池组寿命受化学、物理和使用等多方面因素影响,而有效的测试方法对于评估电池性能和寿命具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热量 /Jg-1
350 -190 -90 600 450 450 250 1500 -395
说明
钝化膜破裂 吸热 吸热
释氧温度T200 释氧温度T230 释氧温度T300
能量较低 剧烈的链增长
吸热
•备注:电解液体系为1MLiPF6/PC/EC/DMC(1:1:3)
PPT文档演模板
锂离子电池安全性及影响因素分析
研究内容
(1)对新电池及循环过电池耐滥用能力研究,揭示电池 发生热失控及不安全的原因。 (2)对电池经高温搁置后性能的衰退与耐滥用能力研究, 揭示使用环境对电池安全性的影响。 (石性3L,)iM系对n统2电O研池4和究活复正性合极物材材质料料如,的正通选极过择材电对料池电L耐池iC热安oO安全2、全性镍性的酸和影锂过响、充。尖安晶全
锂离子电池安全性及影响因素分析
电解液
• 电解液由溶剂和导电盐组 成(六氟磷酸锂(LiPF6) 目前应用范围最广 )
• SEI膜形成:锂离子导体电 子的不良导体
• 热稳定性研究 • 添加剂研究:成膜、防过
充、阻燃
•SEI膜形成示意图
PPT文档演模板
锂离子电池安全性及影响因素分析
电池安全性的解决措 施
•连续、厚且致密的SEI膜层
•电池高温搁置24h后放电状态的负极扫描电镜照片 •a—新电极(fresh), b— 60℃, c—100℃
•C表面变化明显
PPT文档演模板
锂离子电池安全性及影响因素分析
•电池高温搁置24h后不同放电状态的正极扫描电镜照片 •a—新电极(fresh), b— 60℃, c—100℃
•电池经过不同温度搁置4h后过充电过程中温升比较
PPT文档演模板
锂离子电池安全性及影响因素分析
•电池循环75次后130℃热箱实验结果
PPT文档演模板
•热量及时散逸; 隔膜闭合未破裂; 热反应放热不多, 气体使电池鼓胀
•电池循环200次后130℃热箱实验结果
•负极析出锂,内部短路,热量 产生多,散逸比热产生速率小 存在危险
原则:必须兼顾电池的性能.
• 正负极和电解液等新材料开发 ,选用热力学更稳 定的材料
• 电池设计:不同形状、负极与正极容量比;
• 电池制造过程:浆料质量、涂布质量等,优化电 池工艺
• 安全保护电路 :过充电保护、过放电保护和过电 流/短路保护
PPT文档演模板
锂离子电池安全性及影响因素分析
锂离子电池体系中各种材料的热行为
锂离子电池安全性及影 响因素分析
PPT文档演模板
2020/12/11
锂离子电池安全性及影响因素分析
•研究背景
锂离子电池在民用领域等方面获得广泛应用 大型化的安全问题备受关注
要求 ----长的循环寿命,高容量,小尺寸;
(1)移动电话: (2)数码产品:PDA, Blue Tooth……
(3)笔记本电脑
锂离子电池安全性及影响因素分析
•电池在放电过程中,靠近正极极耳部位 •(垂直方向)位置的温度从始至终 •都处于最高
•温度差为19℃
•4.5Ah电池2C倍率放电不同DOD的红外热成像 •a---17%DOD,b---50%DOD,c---100%DOD
PPT文档演模板
锂离子电池安全性及影响因素分析
•过充电引起的温度 •上升速率约为短路 •的温升1/20
锂离4子.31电池安4全.3性1及影响4因.素40分析
4.4 5
•电池经过不同循环次数后 •电池循环200次后负极底部表面形貌
•平均内阻
•(颗粒状物为金属锂或含锂的化合物)
PPT文档演模板
锂离子电池安全性及影响因素分析
•3. 电池循环过程中LiCoO2和C结构变化
•出现裂纹,平均粒度下降, •颗粒间不再清晰
编号
1 2 2' 3 3' 3" 4 5 6
温度范围 /℃
110~150 130~180 160~190 180~500 220~500
130~220 240~350
660
化学反应
LixC6+电解质 PE隔膜熔化 PP隔膜熔化 Li0.3NiO2与电解质的分解 Li0.45CoO2与电解质的分解 Li0.1MnO4与电解质的分解 溶剂与LiPF6 LixC6与PVdF
锂离子电池安全性及影响因素分析
•3CoO2→Co3O4+O2
PPT文档演模板
•电池循环125次后1C12V过充电 •实验后粉末XRD图谱
锂离子电池安全性及影响因素分析
•短路实验 •安 全
PPT文档演模板
•起火, 不安全
•电池经不同循环次数 •后短路实验结果
锂离子电池安全性及影响因素分析
•0.1-0.2μm的小颗粒
•3.5 本章小结
•1.随着循环进行,电池放电性能衰退和外形变化:(1)电池内阻增加; •(2) LiCoO2显示嵌锂能力下降,LiCoO2粒度减小;(3)负极表面SEI膜增厚; •(4)在循环末期,负极上有锂和锂的化合物沉积 。 •2.循环对电池过充电、短路和热箱电及热扰动引起的安全性有明显影响, •一定循环次数前的电池安全测试是安全的,历经一定循环次数后电池呈现不安全。 •根本原因是电极结构以及电极/溶液界面组成 •(SEI膜增厚以及负极表面有金属锂生成)发生了变化。 •3.循环对机械安全性作用甚小。
•LiCoO2正极不同循环状态的SEM形貌 •(a)新鲜电极;(b)1次循环后;(c)200次循环后
PPT文档演模板Βιβλιοθήκη 锂离子电池安全性及影响因素分析
PPT文档演模板
•SEI膜
•锂或锂的 化合物
•负极不同循环状态的SEM形貌 •(b) 1次循环后;(c)200次循环后
锂离子电池安全性及影响因素分析
•LiCoO2的晶胞参数稍有增大 •嵌锂能力下降 ,
锂离子电池安全性及影响因素分析
负极 材料
•◆ 尿频尿急、夜尿增多(一夜3次以上)。
•◆ 全身无力,易疲劳、易困倦,休息后不能缓解。
•◆ 睡眠不好或经常做梦,晨起仍觉很累。
•◆ 房 ,事不足10分钟,举而不坚。
•◆ 害怕跟爱人同,房,故意回避。
•石墨
•◆ 男性小便无力,总有排不尽的感觉。
•◆ 姓功能减退,姓生活后腰酸、胀痛
•LiCoO2表面未观察到明显的变化
PPT文档演模板
锂离子电池安全性及影响因素分析
•1. 4.5Ah电池不同倍率放电的温度分布
电池放电热计算初探
•温度差为1.2℃
•4.5Ah电池1C倍率放电不同DOD的红外热成像 • a---17%DOD,b---50%DOD,c---100%DOD
PPT文档演模板
锂离子电池安全性及影响因素分析
•电池循环25次后150℃热箱实验结果 •电池循环100次后150℃热箱实验结果
•150 ℃热箱实验比130 ℃热箱实验苛刻, •因为前者可能触发更多的放热反应, •并使反应速率加快,从而放热的速率增大。 •循环增加了热箱实验的不安全性,可能与 •循环的后期在负极表面出现的锂和锂化合物有关。
PPT文档演模板
•负极表面变化,在180℃ 触发更多放热反应,热
失控发生容易
锂离子电池安全性及影响因素分析
•3.4.2.4机械滥用安全测试
•钉刺实验 :3mm尖钉,恒压刺入电池,电池安全 •挤压实验 :1.3kN的恒压力挤压电池 ,电池安全 •重物冲击实验 :电池安全 •机械能转化的热能未触发热失控反应
①SEI膜的分解; ②嵌入锂与电解液的反应; ③嵌入锂与氟化物粘结剂的放热反应; ④电解液分解放热; ⑤正极活性材料分解; ⑥过充电时沉积出的金属锂会与电解液发生反应; ⑦金属锂与粘结剂的反应; ⑧由于过电位和欧姆阻抗,电池在放电过程中产生热量。
PPT文档演模板
锂离子电池安全性及影响因素分析
为何研究锂离子电池安全性?
PPT文档演模板
锂离子电池安全性及影响因素分析
•衰退原因:反应的动力学因温度升高而增强 ;
•SEI膜成分发生了变化 ,反应产生气体
鼓胀;
•80℃以下搁置24h的锂离子电池,尽管内阻增加和容量减少,但是对于经过修 饰的SEI膜仍然薄而多孔,仍然可以使嵌锂、脱锂过程进行,常温下全嵌锂的 MPCF可以放电到全脱锂态。
•对于100℃搁置24h的电池,MPCF表面覆盖经过修饰的厚、致密又连续SEI膜, 锂离子运动受阻。正常的脱锂过程不能进行,以致电池变成“死电池”。
•电解液高温分解
PPT文档演模板
•高温搁置24h后衰退原因
锂离子电池安全性及影响因素分析
•24h与4h比较: •相同温度搁置后,搁置时间越长,性能衰退越严重: •电池内阻不断增加 ; •电解液不断分解 ,SEI膜增厚; •产生的气体使电池鼓胀。
•电池在预置温度145℃实验前后正极物质LiCoO2形貌
PPT文档演模板
锂离子电池安全性及影响因素分析
•5.3 尖晶石LiMn2O4正极 •5.3.1尖晶石LiMn2O4的制备与电池性能
•合成:将原料MnO2和Li2CO3球磨,然后预烧结(700℃);冷却后,将中间品球磨, •再焙烧(800-850℃);之后缓慢冷却,再经过球磨得到产品。
•容量保持率为96.8%
•尖晶石LiMn2O4的SEM照片
PPT文档演模板
•600mAh铝塑膜包装的LiMn2O4/C •锂离子电池正极材料不同循环比容量
锂离子电池安全性及影响因素分析
结论
•1. 提出了电池安全-不安全的能量触发过程图。
•2. LiCoO2/C锂离子电池在循环过程中耐滥用能力的变化。 结果表明,在实验循环范围,循环对机械安全性如钉刺、挤 压、重物冲击等机械扰动引起的安全性影响甚小,而对电、 热安全性如过充电、短路和热箱影响较大。结合XRD、 SEM、内阻等测试结果表明:随着循环次数增加,LiCoO2 开裂,嵌锂能力下降;负极表面SEI膜增厚;内阻增加;在 循环末期出现锂和锂的化合物。由于循环后负极SEI膜增厚 以及表面有金属锂生成,造成电池温度迅速上升到诱发热失 控反应的阶段;循环后高倍率大电流过充电,更容易触发热 失控反应。