偏微分方程的L2理论3下

合集下载

偏微分方程答案

偏微分方程答案

第一章. 波动方程§1 方程的导出。

定解条件2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。

由虎克定律有x uE∂∂∣)](),([t v t l u k lx --== 其中k 为支承的刚度系数。

由此得边界条件)(u xuσ+∂∂∣)(t f l x == 其中E k =σ特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xuσ+∂∂∣0==l x 。

同理,若0=x 端固定在弹性支承上,则得边界条件x uE∂∂∣)](),0([0t v t u k x -== 即 )(u xuσ-∂∂∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ 其中h 为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:hx l -=1 所以截面积2)1()(hx x s -=π。

利用第1题,得])1([)1()(2222xuh x E x t u h x x ∂∂-∂∂=∂∂-ππρ 若E x E =)(为常量,则得2222)1(])1[(tuh x x u h x x E ∂∂-=∂∂-∂∂ρ §2 达朗贝尔公式、 波的传抪1. 证明方程()常数011122222 h t uh x a x u h x x ∂∂⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡∂∂⎪⎭⎫ ⎝⎛-∂∂ 的通解可以写成()()xh at x G at x F u -++-=其中F,G 为任意的单变量可微函数,并由此求解它的初值问题:()().,:0x tux u t ψ=∂∂==ϕ 解:令()v u x h =-则()()()⎪⎭⎫⎝⎛∂∂+-=∂∂-∂∂+=∂∂-x v u x h xu x h xv u xu x h 2,))(()()()()[(2222xv u x h x u x h x u x h x v u x u x h x ∂∂+-=∂∂-+∂∂-+∂∂+-=∂∂-∂∂又 ()2222tv t u x h ∂∂=∂∂-代入原方程,得()()222221tv x h a x v x h ∂∂-=∂∂-即 222221t v a x v ∂∂=∂∂ 由波动方程通解表达式得()()()at x G at x F t x v ++-=,所以 ()()()x h at x G at x F u -++-=为原方程的通解。

(整理)偏微分方程word电子讲义.

(整理)偏微分方程word电子讲义.

偏微分方程偏微分方程是一个非常广泛的课题,它包含分析的许多方面内容。

就我们现在的知识水平来说,我们只了解很少一点东西。

从十八世纪初开始,人们就开始结合物理、力学问题来研究偏微分方程,最早研究的几个方程是弦振动方程、热传导方程及调和方程,这部分理论已经被彻底地研究了,而且近乎完备,把它们称为偏微分方程的古典理论。

十八世纪后期在连续介质力学中研究流体的运动规律,在考虑流体的粘性时,描述运动规律的方程称为Navier-Stokes方程组,而在不计流体的粘性时,称为Euler方程组。

在此时期,描述弹性体运动规律的方程称为Saint Venant方程组。

到了十九、二十世纪,人们发现了描述电磁场运动规律的Maxwell方程组,描述微观粒子运动规律的Schrodinger方程及Dirac方程组,广义相对论中确定引力场的基本方程Einstein方程以及基本粒子规范场理论的基本方程Yang-Mills方程,在微分几何中研究极小曲面的极小曲面方程等等。

随着科学理论变得复杂,所提出的偏微分方程就愈多而且更加变化多端,可能出现的偏微分方程和方程组类型之多是出于想象的。

我们的目的是介绍现代偏微分方程理论中用到的一些技巧和方法。

众所周知,一本偏微分方程的书只能包括已有的基本材料的一小部分,因此我们必须作出选择,如何选择不是立足于逻辑基础上的,这种选择的主观性是相当明显的。

偏微分方程的内容是研究偏微分方程解的各种性质。

通常考虑以下问题1.对单个方程或方程组,应配以怎样的初值条件与边值条件使之具有解,这是解的存在性问题。

在研究解的存在性时,要明确解赖以存在的函数类。

2.解的唯一性或究竟有几个解,要明确使解为唯一的函数类。

3.解的正则性或光滑性。

是否为古典解、强解还是弱解?解具有几阶可微性?4.解的连续依赖性,必须明确是什么空间、什么范数实现的。

通常考虑的是解关于初、边值或关于方程系数,或在方程为线性时关于自由项的连续依赖性。

5.定解区域与影响区域。

偏微分方程ppt课件

偏微分方程ppt课件
所谓热传导,就是物体内温度较高的点处的热量 向温度较低点处的流动。 热传导问题归结为求物体内部温度的分布规律。
.
21
1.2 热传导方程的导出
设物体在Ω内无热源。 在Ω中任取一封闭曲面S。 以函数u(x,y,z,t)表示物体在t时刻M=M(x,y,z)处的温度。
.
22
1.2 热传导方程的导出
.
23
1.2 热传导方程的导出
.
24
1.2 热传导方程的导出
.
25
1.2 热传导方程的导出
下面考虑物体内部有热源(例如物体中通有电流,或有化学反应等情况)。 设在单位时间内单位体积中所产生的热量为F(x,y,z,t),则
则有热源的热传导方程为
.
26
1.2 热传导方程的导出
无热源的情况下得到的热传导方程: 有热源的情况下得到的热传导方程:

其中E为电场强度矢量,
n为Ω上的单位外法线向量。
.
31
1.2 泊松方程的导出
又由库仑定律知,静电场是有势的。即存在静电位势u=u(x,y,z),使 E=-grad u
代入上式,得静电位势u满足以下的泊松方程

.
32
1.2 拉普拉斯方程和泊松方程的导出
.
33
1.3 定解条件与定解问题
一个偏微分方程与定解条件一起构成对于具体问题的完整描 述,称为定解问题。 定解问题中的偏微分方程称为泛定方程。
(1.1.1)
(1.1.2)
(1.1.3)
.
8
1.1 基本概念
.
9
1.1 基本概念
.
10
1.1 基本概念
.
11
1.1 基本概念

偏微分方程总复习和课后习题答案

偏微分方程总复习和课后习题答案
复习课
一、基本概念
1. 偏微分方程的定义P1 2. 偏微分方程的阶数,线性、拟线性、完全非线性 偏微分方程的定义P10 3. 偏微分方程的适定性P23
二、方程的导出,分类与化简
三、公式的直接应用题
1. 2. 3. 4. 5. 达朗贝尔公式P36 公式P42 傅里叶(逆)变换P106 P110例 4.1.7结论 泊松公式P112
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
1 2 u ( x t ) 3t xt 2
1 1 xa t C f1 ( x at ) ( x at ) ( )d 2 2a x0 2 1 1 xa t C f 2 ( x at ) ( x at ) ( )d 2 2 a x0 2
1 1 xat u [ ( x at ) ( x at )] ( )d 2 2a x a t
1 u ( x t ) x (1 a )t cos x sin at a
2 2 2
1 ( 7)
解:
2
1 22 1 x at x at x u ( x t ) 5 x t a t 2 (e e 2e ) 3 2a
1 ( 6)
解:
2 2u u 2 1 a f ( x , t ), x R ,t 0 2 2 t x u ( x, 0) ( x), u ( x, 0) ( x), x R1. t
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0

偏微分方程数值解 有限差分法的基本知识2

偏微分方程数值解 有限差分法的基本知识2

u( x j
,
tn
)
o(
),(向前差商)(1.2)
u( x j1 ,
tn) h
u( x j
,
tn )
x
u( x j
,
tn
)
o(h),(向前差商)(1.3)
u( x j
,
tn
)
u(xj1, h
tn
)
x
u(
xj
,
tn
)
o(h),(向后差商)(1.4)
u( x j1 ,
tn) u(xj1, 2h
(1.1)在D上积分,得 D( 到 ut cux)dxdt 0
t
H
L3
G
L4
L2
E
L1
F
o
x
利用 Gree公 n 式,得
(ucu)dxdt
D t x
( L unt cunx)ds0
(1.14)
其中 nx与nt分别L是 的外法向单位 n沿向 x方量 向
与沿 t方向的两个分量。
把(1.14)左端分成在L1,L2,L3,L4,上的四个积分,
得近似方程
~ u1h
cu2~
~ u3h
cu4~
0

u3
u1
c~
h~
(u2
u4 )
(1.15)
这里h~是L1与L3的长度,~是L2与L4的长度,
ui是可按不同方式确定u的在Li上的近似函数值。
在 网 格E中 ,F,G, ,H依 点次 (n为 1,j1), 22
(n1,j1)(,n1,j1)(,n1,j1), 22 22 22
写作风格过于简洁导致许多工作未获更高声誉。

2024年考研数学偏微分方程题目详解与答案

2024年考研数学偏微分方程题目详解与答案

2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。

本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。

一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。

要求求解此偏微分方程。

解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。

此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。

我们可以采用特征线法来求解此类方程。

首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。

将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。

得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。

2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。

偏微分方程数值解PPT课件

偏微分方程数值解PPT课件

t
t
n j
tn j1
x x
EXCEL
0.01, x 0.1
t n1 j
t
n j
2(TW
t
n j
)
3
t
n j
t
n j1
x
t n1 j
0.02TW
0.68t
n j
0.3t
n j1
此微分方程,是在不考虑流体本身热传 导时的套管传热微分方程.由计算结果可 知,当计算的时间序列进行到72时,传 热过程已达到稳态,各点上的温度已不 随时间的增加而改变。如果改变套管长 度或传热系数,则达到稳态的时间亦会 改变。
b2 4ac 0 b2 4ac 0 b2 4ac 0
• 物理实际问题的归类:
• 波动方程(双曲型)一维弦振动模型:
2u t 2
2
2u x 2
• 热传导方程(抛物线型)一维线性热传导方程
u t
2u x 2
• 拉普拉斯方程(椭圆型ux22)稳态y2u2 静 电0 场或稳态温度分布场)
第4页/共32页
un i 1
b
un i1
uin
x
f (ix, nt)
ui0
(i x )
un m1
umn
x
0
u0n 1(nt )
(i 1,2, ,m) (n 0,1, 2, ) (n 0,1,2, )
第13页/共32页
一维流动热传导方程
将上式进行处理得到:
un1 i
t
f
(ix, nt )
(a2
t (x)2
1的)偏t )






数理方程3热传导方程及偏微分化简

数理方程3热传导方程及偏微分化简
∂u = u x cos α + u y cos β + uz cos γ ∂n
3/16
∂u Q1 = ∫ [ ∫∫ k ds ]dt t1 ∂n S
t2
其中:
通过曲面进入导热体的总热量:
Q1 = ∫ [ ∫∫∫ k[u xx + u yy + uzz ]dxdydz ]dt
t2 t1 V
温度升高所需热量:
热传导问题中,如果物体内部没有热源,物体外围温度 不随时间变化,经过相当长时间以后,物体内部的温度 将不再改变,趋于稳定状态。
ut = 0

uxx + uyy + uzz =0 (Laplace方程)
∂ 2u ∂ 2u ∂ 2u ∆u = + 2 + 2 2 ∂x ∂y ∂z
则有
∂ ∂ ∂ ∆= + 2 + 2 (Laplace算子) 2 ∂x ∂y ∂z
2 2 2
8/16
正方形区域上第一边值问题
⎧ u xx + u yy = 0, 0 < x , y < 1 1 ⎪ ⎨ u(0, y ) = u( x ,0) = u( x ,1) = 0 ⎪ u(1, y ) = sin πy ⎩
y
准确解:
shπx u( x , y ) = sin πy shπ
x y z S V
xx
+ u yy + uzz ]dxdydz
u x dydz + u y dzdx + uz dxdy ∂u ds = [u x cos α + u y cos β + uz cos γ ]ds = ∂n
∂u ∫∫ ∂n ds = ∫∫∫ [uxx + u yy + uzz ]dxdydz S V
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档