光纤技术和应用石顺祥复习资料专题培训课件
光纤技术及应用 石顺祥 复习资料

介质内的光场则为
且 或
1.3 程函方程与光线方程
1. 局部平面波 细光束在局部范围内可看作平面波
2. 程函方程
•将前式带入麦克斯韦方程,得
E B t
是光程
化简得到:
对比前面平面波关系
r
k r
E0
0H0
k H0 E0
得到
也就有
程函方程
光纤技术及应用
教材:光纤技术及应用 石顺祥 华中科技大学出版社 2009
第1章 光传输的基本理论
1.1 麦克斯韦方程组和波动方程
1.1.1 麦克斯韦方程组和边界条件
1 麦克斯韦方程
E B t
H D J t
D
B 0
物构方程
D εE B μH
或者说信息量是指从N个相等可能事件中选出一个事件所需 要的信息度量或含量,也就是在辩识N个事件中特定的一个事 件的过程中所需要提问"是或否"的最少次数.
香农(C. E. Shannon)信息论应用概率来描述不确定性。 信息是用不确定性的量度定义的.一个消息的可能性愈小,其 信息愈多;而消息的可能性愈大,则其信息愈少.事件出现的 概率小,不确定性越多,信息量就大,反之则少。
信道
发送机 接收机
将电信号转化为合适的传输形态,并加载到载波上
载波源 信道耦合器
放 大
模拟调制格式
(
,还
)
器件:
模拟信号:放大、滤波 数字信号:放大、滤波、门限判决
任何一个比 特时间内判 断是0、1
受信者为人:
声音,可视图像
受信者为其他设备:电形态信号
模拟光纤通信系统中不同参考点处的信号
精品课件-物理光学与应用光学_第三版(石顺祥)-第1章

第 1 章 光在各向同性介质中的传播特性 5. 光的电磁理论指出, 光电磁场是一种特殊形式的物质, 既然是物质, 就必然有能量, 其电磁场能量密度为
(1.1-20)
而光电磁场又是一种电磁波, 它所具有的能量将以速度v向外 传播。 为了描述光电磁能量的传播, 引入能流密度——坡印 廷(Poynting)矢量S, 它定义为
21
第 1 章 光在各向同性介质中的传播特性
将(1.1-24)式代入, 进行积分,可得
I
S
1 2
n
0c
E02
1 2
0
E02
E02
(1.1-25)
式中, n 是 比/ 例0 系数。由此可见,在同一种介质中, 光强与电场强2度0c振幅的平2 方成正比。 一旦通过测量知道了光强,
便可计算出光波电场的振幅E0。例如,一束105 W的激光,用透镜 聚焦到1×10-10 m2的面积上,则在透镜焦平面上的光强度约为
(1.1-8) (1.1-9) (1.1-10)
10
第 1 章 光在各向同性介质中的传播特性 即D与E、 B与H、 J与E一般不再同向; 当光强度很强时, 光与 介质的相互作用过程会表现出非线性光学特性, 因而描述介质 光学特性的量不再是常数, 而应是与光场强E有关系的量, 例 如介电常数应为ε(E)、 电导率应为σ(E)。对于均匀的各向同 性介质, ε、 μ和σ是与空间位置和方向无关的常数; 在线 性光学范畴内, ε、 σ与光场强无关; 在透明、 无耗介质中, σ=0; 非铁磁性材料的μr可视为1。
(1.1-23)
19
第 1 章 光在各向同性介质中的传播特性
式中, sz 是能流密度方向上的单位矢量。 因为由(1.1-13)
光纤技术及应用复习题1-5

《光纤技术及应用》复习题第一章1、写出电场强度和磁场强度在两种介质界面所满足的边界条件方程。
(并会证明)2、TE波、TM波分别指的是什么?3、平面光波发生全反射的条件。
当入射角大于临界角时,入射光能量将全部反射4、古斯-哈恩斯位移指的是什么?其物理本质是什么?证明实际光的反射点离入射点有一段距离,称为古斯-哈恩斯位移。
(相隔约半个波长)实质:光的传播不能简单视为平面光波的行为,必须考虑光是以光束的形式传播,即时空间里的一条极细的光束也是由若干更加细的光线组成的5、写出光线方程,并证明在各向同性介质中光为直线传播。
对于均匀波导,n为常数,光线以直线形式传播第二章1、平板波导的结构,分类。
结构:一般由三层构成:折射率n1中间波导芯层,折射率n2下层介质为衬底,折射率n3上层为覆盖层;n1>n2 , n1>n3。
且一般情况下有n1>n2> n32、均匀平面光波在平板波导中存在的模式有:导模、衬底辐射模、波导辐射模(各有什么特点)。
(入射角与临界角之间的关系以及各种模式相对应的传播常数所满足的条件)P12。
P17-18图满足全反射的光线并不是都能形成导模,还必须满足一定的相位条件。
P13(导模的传输条件)3、在平板波导中TE0模为基模,因为TE0模的截止波长是所有导模中最长的。
P144、非均匀平面光波在平板波导中的模式有:泄露模、消失模5、平板波导中的简正模式具有:稳定性、有序性、叠加性、和正交性。
6、模式的完备性指的是?P24在平板波导中,导模和辐射模构成了一个正交、完备的简正模系,平板波导中的任意光场分布都可以看成这组正交模的线性组合。
7、波导间的模式耦合指的是?P31当两个波导相距很远时,各自均以其模式独立地传播,无相互影响;当两个波导相距很近时,由于包层中场尾部的重叠,将会发生两个波导间的能量交换,称之为波导间的模式耦合。
作业题:2-7、2-8第三章1、什么是光纤?光纤的结构,分类,并画出相应的折射率分布。
光纤的基本知识及应用PPT(最新版)

B、光纤检测:
光纤检测的主要目的是保证系统连接的质量,减少故障 因素以及故障时找出光纤的故障点。检测方法很多,主要 分为人工简易测量和精密仪器测量。
a.人工简易测量:
这种方法一般用于快速检测光纤的通断和施工时用来分 辨所做的光纤。它是用一个简易光源从光纤的一端打入可 见光,从另一端观察哪一根发光来实现。这种方法虽然简 便,但它不能定量测量光纤的衰减和光纤的断点。
6.光纤的应用
人类社会现在已发展到了信息社会,声音、图 象和数据等信息的交流量非常大。以前的通讯手 段已经不能满足现在的要求,而光纤通讯以其信 息容量大、保密性好、重量轻体积小、无中继段 距离长等优点得到广泛应用。其应用领域遍及通 讯、交通、工业、医疗、教育、航空航天和计算 机等行业,并正在向更广更深的层次发展。
FC
SC
SC-LC SC-SLCC LC
SC-SC
SC
SC
SC-ST
SC
ST
ST-ST
ST
ST
ST-LC
LC
ST
ST-SC
二、光缆的结构特点、种类 及型号的命名方法
一、光缆结构的特点
光缆的结构与电缆大致相同,但由于 光纤材料的性质和传光特性,所以其结构 与电缆又有不同之处。其特点如下:
膏时,防水效果较好,但连接时防水软膏 (2)它可以用一次涂覆光纤直接放置于骨架槽内,省去二次涂覆过程。
5/125μm,美国标准
的清除比较困难。采用防水带(粉)时, 31μm波长处的衰减值将增大。
活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接 起来的一种方法。 因此,在不久的将来实现全球无中继的光纤通信是完全可能的。
1.光纤理论与光纤结构
【实用】光纤通信技术及应用PPT资料

复用技术 光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光复 用技术是当今光纤通信技术中最为活跃的一个领域,它的技术进步极大地推动光纤通信事业的发展, 给传输技术带来了革命性的变革。波分复用当前的商业水平是273个或更多的波长,研究水平是1022 个波长(能传输368亿路 ),的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏 振模色散复用,OPDM)。据1999年5月多伦多的Light Management Group Inc ofToronto演示报导, 在一根光纤中传送了65536个光波,把PC数字信号传送到200m的广告板上,并采用声光控制技术, 这说明了密集波分复用技术的潜在能力是巨大的。OTDM是指在一个光频率上,在不同的时刻传送不 同的信道信息。这种复用的传输速度已达到320Gb/s的水平。若将DWDM与OTDM相结合,则会使复 用的容量增加得更大,如虎添翼。 放大技术
3. 窄带响应可调谐集成光子探测器 由于DWDM光网络系统信道间隔越来越小,甚至到。为此,探测器的响应谱半宽也应基本上达到这个 要求。恰好窄带探测器有陡锐的响应谱特性,能够满足这一要求。集F-P腔滤波器和光吸收有源层于 一体的共振腔增强(RCE)型探测器能提供一个重要的全面解决方案。 4. 基于硅基的异质材料的多量子阱器件与集成(SiGe/Si MQW) 这方面的研究是一大热点。众所周知,硅(Si)、锗(Ge)是间接带隙材料,发光效率很低,不适合 作光电子器件,但是Si材料的半导体工艺非常成熟。于是人们设想,利用能带剪裁工程使物质改性, 以达到在硅基基础上制作光电子器件及其集成(主要是实现光电集成,即OEIC)的目的,这方面已 取得巨大成就。在理论上有众多的创新,在技术上有重大的突破,器件水平日掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨 (Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤
光纤通信技术应用1光纤光缆认识PPT培训课件

04
光纤通信的优势与挑战
光纤通信的优势
高带宽
光纤通信使用光信号作 为传输介质,具有极高 的带宽,可以同时传输
大量数据。
低损耗
光纤传输过程中的光信 号衰减极小,传输距离 长,降低了中继站的需
求。
抗干扰能力强
光纤不受电磁波干扰, 保证了通信的稳定性和
可靠性。
安全保密
光信号在光纤中传输时 不易被窃取,提高了通
光纤通信技术的发展历程
总结词
起步、突破、普及
详细描述
光纤通信技术自20世纪60年代起步,经历了石英光纤突破和光电器件技术发展等 阶段,逐渐普及应用于通信领域。
光纤通信技术的应用场景
总结词
长距离通信、宽带接入、数据中心、 工业自动化
详细描述
光纤通信技术在长距离通信、宽带接 入、数据中心和工业自动化等领域有 广泛应用,以其高速和大容量的传输 能力满足了各行业的通信需求。
02
光纤与光缆的介绍
光纤的结构与分类
光纤的结构
光纤由纤芯、包层和涂覆层组成。纤芯是传输光信号的主要 部分,包层用于反射光信号,涂覆层起到保护光纤的作用。
光纤的分类
根据纤芯和包层的折射率不同,光纤可分为单模光纤和多模 光纤。单模光纤只传输单一模式的光信号,适用于长距离传 输;多模光纤可传输多个模式的光信号,适用于短距离传输 。
光纤通信在智能交通领域的应用
总结词
光纤通信技术为智能交通提供了实时、高效的信息传 输解决方案,推动了交通行业的智能化发展。
详细描述
智能交通系统需要对大量的数据进行快速、准确的处理 和传输,光纤通信技术以其大容量、高速率的优势,满 足了智能交通系统的需求。通过光纤网络,可以实现交 通信号灯控制、交通监控、车辆调度等系统的实时数据 传输和处理,提高交通运行效率和管理水平,提升交通 安全和减少交通拥堵。同时,光纤通信技术也在无人驾 驶汽车中发挥着重要作用,为无人驾驶汽车的导航、定 位、控制等方面提供了稳定、可靠的信息传输保障。
2024年光纤通信培训资料

一种高速的网络传输中继设备,以光纤作为传输介质,具有传输速 度快、传输距离远、抗干扰能力强等优点。
光端机
将光信号转换为电信号或将电信号转换为光信号的设备,常用于光 纤通信系统的发送端和接收端。
光纤接入网技术
1 2 3
无源光网络(PON)
一种点到多点的光纤接入网技术,由光线路终端 (OLT)、光分配网(ODN)和光网络单元( ONU)组成。
04
光纤通信网络规划与设计
网络拓扑结构设计
星型拓扑
所有节点都直接连接到中 心节点,具有高可靠性和 易于管理的特点。
环型拓扑
节点之间形成一个闭环, 数据在环中单向或双向传 输,具有较高的传输效率 和较低的维护成本。
网状拓扑
节点之间有多条路径相连 ,具有极高的可靠性和灵 活性,但建设和维护成本 较高。
光纤断裂
检查光纤连接处是否松动或断裂,如有断裂需更换光纤。
信号衰减
检查光发射机和光接收机的性能,以及光纤传输过程中的损耗,调 整设备参数或更换设备。
通信故障
检查光纤通信系统的各个组成部分,包括光源、光检测器、光纤等 ,确定故障点并进行修复。
成功案例分享与经验交流
案例一
某运营商成功应用光纤通信技术,实现了高速、稳定的数据传输,提高了网络质量和用户 体验。
光纤传输原理
利用全反射原理,使光在光纤内 不断反射并向前传播,从而实现 信息的传输。
光纤结构及类型
光纤结构
光纤主要由纤芯、包层和涂覆层三部分组成,其中纤芯用于 传输光信号,包层用于将光信号封闭在纤芯内,涂覆层则用 于保护光纤。
光纤类型
根据传输模式的不同,光纤可分为单模光纤和多模光纤。单 模光纤只传输一种模式的光,适用于长距离、大容量的通信 ;多模光纤则可传输多种模式的光,适用于短距离、小容量 的通信。
光纤技术复习资料全

《光纤技术》复习资料第一章 绪论要求:1、了解光纤的基本结构和基本特性;2、充分认识光纤传感和光纤通信在现代工农业生产、军事、科研及日常生活中的作用和地位,明确学习目的;3、了解光纤技术的发展动向;4、知道本课程的学习方法。
具体:1、光纤的定义:光纤是“光导纤维”的简称,是指能够约束并导引光波在其内部或表面附近沿轴线方向传播的传输介质。
2、光纤的结构:主要由纤芯、包层和涂敷层构成。
其中纤芯的折射率比包层要高。
纤芯和包层的折射率差引起光在纤芯内发生全内反射,从而使光在纤芯内传播。
3、通信光纤的标准包层直径是125m μ,涂敷层的直径大约是250m μ。
4、常用的光纤材料有纯石英(2SiO )、玻璃和塑料。
5、列举光纤相对于金属导线的优点(至少5点):如容量大、抗电磁干扰、电绝缘、本质安全;灵敏度高;体积小、重量轻、可绕曲;测量对象广泛;对被测介质影响小;便于复用,便于成网;损耗低;防水、防火、耐腐蚀;成本低、储量丰富等。
6、光纤通信所占的波长范围大概是0817..m :。
7、1953年,在伦敦皇家科学技术学院开发出了用不同光学玻璃作纤芯和包层的包层纤维,由此导致光纤的诞生。
8、1966年,光纤之父高锟博士深入研究了光在石英玻璃纤维中的严重损耗问题,发现这种玻璃纤维引起光损耗的主要原因。
9、目前,F T T H (光纤到户)是宽带接入的一种理想模式,各国发展迅猛。
10、目前流行的“三网合一”指的是将现存三个网络:电信网、有线电视网和计算机网的信号在同一个光纤网络中传输。
11、光纤被喻为信息时代的神经。
第二章 光纤拉制及成缆要求:1、了解光纤的分类方法和光纤的种类,理解各种不同种类光纤之间的区别及每种光纤的特点;2、知道光纤的制作材料及要求;3、了解光纤预制棒的制造原理和工艺;4、知道各种光缆结构和材料的用途。
具体:1、 光纤的分类:按照光纤横截面折射率分布不同分为:阶跃光纤和渐变光纤(折射率在纤芯中保持恒定,在芯与包层界面突变的光纤称为阶跃光纤,折射率在纤芯内按某种规律逐渐降低的光纤称为渐变光纤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方律光纤的光线轨迹和延迟差
光线
轨迹
为什么延迟差 小于阶跃光纤?
K为实数 K为虚数
当v=0时,横模。 1. Ez, Er ,H ≠0,Hz=Hr=0,E =0, TM0。 2. Hz, Hr, E≠0, Ez=Er=0, H =0,TE0 。
r n2 r 1
2 边界条件
n (E 2 E 1) 0, n (H 2 H 1) f , n (D 2 D 1) f , n (B 2 B 1) 0, n (M 2 M 1) M , n (P2 P1) p
如果有
逆向耦合的例子
Δ:结构参数 ~ 0.3%~0.6% 单模光纤;
1%~2% 多模光纤。
Material: SiO2, n1 ~ {1.44, 1.46}
Multimode step-index fiber
Single-mode step-index fiber
Multi-mode graded-index fiber
K为常矢量
k2 0nk0
对应的波动方程-亥娒霍玆方程
2E(r)k2E(r)0
各分量足以下标量方程
2 (x ,y,z) k2 (x ,y,z) 0
2 均匀平面光波
EE0ei(krt)
HH0ei(krt)
振幅为常量,与空间位置无关
• E和H的关系
•由麦克斯韦方程有
与射线光学理论 得到相同结果
,模式的正交可写为 归一化的TE、TM模式的正交
2.4.1 耦合模理论 介电常数的变化可看作理想波导的微扰 假设理想波导的简正模已知 任意光场可表示为 存在微扰时,光场仍可以展开
将上式代入波动方程
——耦合模理论的基本方程
耦合条件
只能实现相同的偏振模式间的耦合 对Ak有贡献的项是:在z>>距离内没有明显变化,使对z积分 平均值不为零。要求条件
常数k1x ,进一步可确定、p、q,完全确定波的传播特性
• m值取整数,对应入射角只能取离散值 • • m一定,
代入方程可得
得到 因此
与射线光学理论得到相同结果
p值变为负数,则场在衬底向外不衰减---衬底辐射模 截止条件: p≤0值
与射线光学理论得到相同结果
p值变为负数,则场在衬底向外不衰减---衬底辐射模 截止条件: p≤0值
光纤技术 和应用 石 顺祥 复习
资料
第1章 光传输的基本理论
1.1 麦克斯韦方程组和波动方程
1.1.1 麦克斯韦方程组和边界条件
1 麦克斯韦方程
E B t
H D J t
D
B 0
物构方程
D εE B μH
各项同性介质
D r E B r H
即光线方程
第二章 平板介质波导
2.1 理想平板波导的射线光学理论
2.1.1 均匀平面波在平面波导中的传输 1. 平板波导中的导模和辐射模
临界角
边界连续性要求,处处相等
因为
,因此
,上下包层光场向外衰减
(2.1) 下界面是部分反射,有如下关系
在包层向外衰减,在衬底中向外辐射 (2.1)
上、下界面都是部分反射,有如下关系
子午光线 Meridional Rays
斜光线 Skewed Rays
波矢分量
Kr=0
焦散面以内衰减, 以外振荡
光在横截面内传播
稳定传播—位相自洽 A沿着圆弧到达B, A经O反射到达B, 位相差=2m
(子午光线) (单位长度) Nhomakorabea数值孔径 NA= (sinc)max NA n12n22 n1 2
EiH H iE
•又由矢量公式 (A ) A + A
得到
E ( E 0 e i ( k r t ) ) i k E
对比前面,得 同理
k E0 0H0 k H0 E0
E H K三者正交,构成右手关系
注:有更严格的求解程函方程的方法,但上述方面也可以直观得到正确的结果
3. 光线方程
程函方程是光程与位矢的关系,现在要找光纤轨迹坐标与位矢的关系
• p点切向单位矢量
注意:光程S大写, 轨迹坐标s小写
• 也是波矢方向,即波阵面或光程的梯度
由以上两式得
p0:曲线坐标原点
对程函方程求导
将
代入上式,得
利用关系: 得
波阻抗
E E HH
1.2.1 平面光波在介质界面上的反射折射 1. 反射与折射定律
入射,反射、折射分别为
边界条件
相位: 振幅:
根据振幅关系,得出
即反射折射定律 在各向同性介质中
1.2.1 平面光波在介质界面上的反射折射 1. 平面光波的全反射
光密介质到光疏介质,超过临界角后发生全反射
1
1.2 平面光波及在介质面上的反射、折射
1.2.1 均匀平面光波
1 亥娒霍玆方程 以一定频率作正弦振荡的波称为时谐电磁波(单色波)
E(r,t)E(r)eit
电、磁场满足以下关系
H(r,t)H(r)eit
EiH H iE
• 平面波
EE(r)ei(krt)
E1t E2t H1t H 2t D1n D2n B1n B2n
它们实质上是边界上的场方程,是Maxwell方 程组在介质交界面上的具体化。
1.1.1 波动方程
•由麦克斯韦方程,推导出
•再根据矢量公式,
推导出
前面是矢量方程,每个分量都满足如下的标量方程
能流密度
S EH
说明:非均匀介质中,只要满足下式,则可用上面的波动方程
在包层和衬底中都向外辐射
从波阵面ABCD,要求所有光线之间的位相延迟差都 是2的整数倍干涉相长
(BC=s1, AED=s2 )
因此要求
图中有几何关系 s2-s1=2acosi 上式改写为 根据关系 得到位相关系
横向衰减系数
本征方程的讨论
对给定的波导和工作波长,不同的m值对应不同的横向传播
沿x方向衰减----倏逝波
介质内的光场则为
且 或
1.3 程函方程与光线方程
1. 局部平面波 细光束在局部范围内可看作平面波
2. 程函方程
•将前式带入麦克斯韦方程,得
E B t
是光程
化简得到:
对比前面平面波关系
k E0 0H0
得到
k H0 E0
也就有
程函方程