delayed preconditioning in cardiac myocytes with respect to development
慢性低氧对大鼠左右心室的功能及TRPC亚家族表达的影响

慢性低氧对大鼠左右心室的功能及TRPC亚家族表达的影响陈慧勤;林默君;刘晓如【摘要】目的:探讨慢性低氧3周对大鼠左右心室的影响以及规范性瞬时感受器电位亚家族(TRPC)在慢性低氧诱导的右心室心肌肥厚中的表达.方法:将SD雄性大鼠48只随机分为对照组(CON组)和慢性低氧肺动脉高压模型组(CH组)(n=24),CH组将大鼠置于连续的慢性低氧(10%±0.2%)环境饲养三周以诱导大鼠发生心肌肥厚.通过左、右心室插管法测定右心室内压(RVSP)、左心室内压(LVSP)、心率(HR)、平均体循环动脉压(mSAP)、左、右心室内压力最大上升速率(+ dp/dt/dtmax)、最大下降速率(-dp/dtmax)、右心肥大指数(RVMI)、左心肥大指数(LVMI);HE染色观察左、右心室心肌组织切片;通过SYBR Green荧光定量PCR法检测CON组、CH组大鼠的肥厚侧心室心肌组织编码TRPCl/3/4/5/6/7的mRNA表达;结合real-time RT-PCR结果对mRNA表达有显著变化的TRPC亚型通过免疫印迹法检测相应蛋白的表达.结果:与CON组相比:CH组的RVSP、RVMI、右心室±dp/dtmax显著增高(P<0.01),LVSP、左心室±dp/dtmax无显著变化,LVMI显著降低(P< 0.01);CH组右心室心肌细胞显著增粗(P<0.01),细胞内肌原纤维数量增多,心肌纤维排列紊乱,细胞核深染,形状不整;左心室心肌纤维无明显改变;CH组编码TRPC1的mRNA和蛋白显著增高(P<0.05),而编码其余TRPC亚型的mRNA无显著变化.结论:慢性低氧3周可特异性诱导SD大鼠产生右心室心肌肥厚,上调了编码右心室心肌细胞TRPC1通道蛋白的mRNA和蛋白的表达,TRPC1可能参与了心肌肥厚的发生发展.【期刊名称】《中国应用生理学杂志》【年(卷),期】2014(030)003【总页数】6页(P274-278,后插3)【关键词】低氧;规范性瞬时感受器电位;心肌肥厚;Ca2+【作者】陈慧勤;林默君;刘晓如【作者单位】泉州医学高等专科学校基础医学部,福建泉州362011;福建医科大学基础医学院生理学与病理生理学系,福州350108;福建医科大学基础医学院生理学与病理生理学系,福州350108【正文语种】中文【中图分类】R363慢性肺源性心脏病(chronic pulmonary heart disease,CPHD)是由肺组织、肺血管或胸廓的慢性病变引起肺组织结构和功能异常,肺血管阻力增加,肺动脉压力增高,使右心室扩张、肥厚伴或不伴右心功能衰竭的心脏病。
米诺环素对慢性低氧高二氧化碳模型小鼠小胶质细胞活化的影响

9 %一 1 % a d C 5 1 n O %~6 . f e 2 w e s t e M g o p w s i j c e n r p r t n a l i h s l n % A t r e k h S r u a n e t d i t a e i o e l y w t a i e
M no yc i e n bi s h mi e’ mi r l a i c l n i hi t t e c s c og i ac i at o c s d t v i n au e by h o c y x a h p rc p a KANG c r ni h po i - y e a ni
IA 1 R A M 一 R A的表达。结果 :N B. m N 、M P9 m N C组海 - 区可 见静 息态 、呈树枝状 、胞体 小、突起 多的小胶质 5 细胞 ,M s组可见胞体肥 大、突起较 少的小胶质细胞 ,M M组有散在 的小胶质细胞激活 。与N c组相比 ,M s组
IA1 m N 、M P9m N B 一 R A M 一 R A表达上调;与 M 组相比 ,M s M组 IA 1m N 、M P9 m N B 一 RA M 一 R A表达减 少。结论 :慢性
第 4l卷第 4期 2 年 7月 01 1
温
州
医 学
院
学
报
Vo . o 4 141 N . J 12 u . O11
J u n l o e z o e i a le e o r a f W n h u M d c lCo l g
心脏植入包膜“袋鼠”获得CE许可

心脏植入包膜“袋鼠”获得CE许可
佚名
【期刊名称】《中国心血管杂志》
【年(卷),期】2016(21)4
【摘要】CorMatrix公司的CorMatrix CanGarooECM包膜产品获得CE认证,这种器械可以用于覆盖植入性心脏设备,例如心脏起搏器和心脏除颤仪等,其工作原理是聚集植入电子设备周围的患者自身细胞并促进愈合过程。
【总页数】1页(PI0003-I0003)
【关键词】心脏植入;CE认证;包膜;电子设备;心脏除颤仪;心脏起搏器;愈合过程;自身细胞
【正文语种】中文
【中图分类】R654.2
【相关文献】
1.有机-无机杂化凝胶法合成YAG:Ce3+荧光粉的包膜及其稳定性 [J], 李永绣;闵宇霖;周雪珍;游效曾
2.使用植入物周围组织包膜的皮瓣修复多孔聚乙烯植入体外露 [J], Tawfik
H.A.;Budin H.;Dutton J. J.;王海燕
3.心脏起搏器和抗心动过速装置植入指南——美国心脏病学学院/美国心脏协会心血管疾病诊断和治疗措施评估委员会起搏器植入专题组的报告 [J], Dreifus LS;王惠
4.Carmat人工心脏植入人体首次获得成功 [J], 高超
5.干细胞植入法治疗心脏病手术在湖南获得成功 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
水杨酸钠对大鼠颞皮层神经元延迟整流钾通道的抑制作用

水杨酸钠对大鼠颞皮层神经元延迟整流钾通道的抑制作用刘砚星;李学佩;张海林;徐鸥;王娜;陈雪彦【期刊名称】《中国药理学通报》【年(卷),期】2011(27)4【摘要】目的了解延迟整流钾通道在水杨酸钠导致耳鸣的机制中所起的作用.方法利用全细胞膜片钳技术研究水杨酸钠对急性分离的大鼠颞皮层神经元延迟整流钾通道的影响.结果水杨酸钠能够抑制延迟整流钾通道电流(IK(DR))的幅度,而且此抑制作用具有浓度依赖性(0.1~10 mmol·L-1).水杨酸钠抑制IK(DR)的半抑制浓度(IC50)值为2.13 mmol·L-1.1 mmol·L-1水杨酸钠将IK(DR)的激活曲线向超极化方向移动14 mV,将失活曲线向超极化方向移动17 mV,并将失活后恢复曲线的时间常数(τ)延长为加药前的171%.结论水杨酸钠以浓度依赖的方式抑制IK(DR),而且影响IK(DR)的激活和失活动力学特征.水杨酸钠对IK(DR)的影响可能与水杨酸钠导致耳鸣的机制有关.%Aim To understand what role the delayed rectifier potassium channels play in the mechanism of salicylate-inclucecl tinnitus. Methods The effects of salicylate on the delayed rectifier potassium channels in freshly dissociated auditory cortex neurons of rats were studied, using the whole-cell voltage clamp method.Results Salicylate blocked the delayed rectifier potas -sium current ( IK(DR) ) in a concentration-dependent manner ( 0. 1 ~1 mmol · L-1 ). The half-inhibition concentration (IC50) values for the blocking action of salicylate o n IK(DR) were 2. 13 mmol· L-1. At a concentration of I mmol· L-1 , salicylate significantly shifted the activation curve negatively by 14 mV,shifted inactivation curve of IK(DR) negatively by 17 mV, and delayed its time constant ( τ) of recovery curve fro m inactivation to 171% of the value before salicylate application. Conclusion Salicylate inhibits IK(DR) in rat auditory cortex neurons and significantly affects the ac -tivation and inactivation kinetics of the delayed rectifier potassium channels, which could be related to the mechanism of salicylate -induced tinnitus .【总页数】5页(P482-486)【作者】刘砚星;李学佩;张海林;徐鸥;王娜;陈雪彦【作者单位】河北医科大学药理学教研室,河北,石家庄,050017;北京大学第三医院耳鼻咽喉科,北京,100083;北京大学第三医院耳鼻咽喉科,北京,100083;河北医科大学药理学教研室,河北,石家庄,050017;河北医科大学第二医院耳鼻喉科,河北,石家庄,050000;河北医科大学药理学教研室,河北,石家庄,050017;河北医科大学药理学教研室,河北,石家庄,050017【正文语种】中文【中图分类】R-332;R322.81;R329.24;R764.45;R971.1【相关文献】1.花生四烯酸对大鼠顶叶皮层神经元延迟整流钾电流的抑制作用 [J], 田华;李玉荣;曲丽辉;王伟;金宏波;姚坤;王腾2.大鼠大脑皮层神经元上的延迟整流型钾离子单通道 [J], 吴庆;冯鉴强;陈助华3.乙醇对大脑皮层神经元延迟整流型钾通道的影响 [J], 吴庆4.孤啡肽对大鼠顶叶皮层神经元延迟整流钾电流的抑制作用 [J], 曲丽辉;李玉荣;田华;崔岚巍;金宏波;王伟;姚坤;王腾5.PKC抑制剂chereythrine对大鼠皮层神经元延迟整流钾电流的抑制作用 [J], 宋春雨;田华;刘冬冬;岳子勇;杨雷;曲丽辉;周晋;李玉荣因版权原因,仅展示原文概要,查看原文内容请购买。
“生物药”--Wharton’s jelly源间充质干细胞

“生物药”--Wharton’s jelly源间充质干细胞高连如【摘要】干细胞治疗代表生物冶疗进入到了一个崭新的时代。
间充质干细胞是存在于胚胎或成体组织中来源于中胚层具有多向分化潜能的干细胞。
由于成体间充质干细胞的质量与数量自身缺陷,使之应用受到了很大限制。
Wharton’s jelly组织,是起始于胚胎发育第13天的胚外中胚层组织。
使用基因微阵列分析及功能分析,首次发现Wharton’s jelly源间充质干细胞( Wharton’s jelly derived mesenchymal stem cells,WJMSCs)高表达胚胎早期干性基因及心肌细胞分化早期特异转录因子,可分化心肌细胞等多种细胞。
进而,应用临床级WJMSCs经冠状动脉移植治疗ST抬高型急性心肌梗死患者的随机双盲临床试验,首次证明WJMSCs可明显改善心肌活力及心脏功能。
因此,WJMSCs具有极其重要益处;无伦理涉及,有强的分化潜能,无致瘤性;加之,WJMSCs可作为产品,在任何时候病情需要时立即应用。
为此,WJMSCs作为真正意义上的干细胞族,将最有希望成为具有应用前景的干细胞生物药。
%Cell-based treatment represents a new generation in the evolution of biological therapeutics. Mesenchymal stem cells ( MSCs) are mesoderm-derived multipotent stromal cells that reside in embryonic and adult tissues. The use of adult MSCs is limited by the quality and quantity of host stem cells. Wharton’s jelly of the umbilical cord originates from the extraembryonic and/or the embryonic mesoderm at day 13 of embryonic development. Using Affymetrix GeneChip microarray and functional network analyses, we found for the first time that Wharton’s jelly-derived MSCs ( WJMSCs) , except for their expression of stemness molecular markers in common with human ESCs ( hESCs) ,exhibited a high expression of early cardiac transcription factor genes and could be in-duced to differentiate into cardiomyocyte-like cells. Further, we demonstrated for the first time that intracoronary delivery of prepared clinical-grade WJMSCs was safe in treating patients with an ST-AMI attack by double-blind, randomized controlled trial and could significantly improve myocardial viability and heart function. It is therefore important to consider the benefits of WJMSCs, which are not ethically sensitive, have differentiation potential, and do not have the worrying issue of teratoma formation. Moreover, as the off the shelf product, WJMSCs can be applied immediately, and on de-mand. Thus, WJMSCs constitute a true stem cell population and are promising cells as a biological drug for stem cell-based therapies.【期刊名称】《转化医学杂志》【年(卷),期】2016(005)004【总页数】5页(P193-197)【关键词】间充质干细胞;Wharton’s jelly源间充质干细胞;生物药物【作者】高连如【作者单位】100048 北京,海军总医院心脏中心【正文语种】中文【中图分类】R329.2+4[Abstract]Cell-based treatment represents a new generation in the evolution of biological therapeutics.Mesenchymal stem cells(MSCs)are mesoderm-derived multipotent stromal cells that reside in embryonic and adult tissues.The use of adult MSCs is limited by the quality and quantity of host stem cells.Wharton’s jelly of the umbilical cord originates from the extraembryonic and/or the embryonic mesoderm at day 13 of embryonic ing Affymetrix GeneChip microarray and functional network analyses,we found for the first time that Wharton’s jelly-derived MSCs (WJMSCs),except for their expression of stemness molecular markers in common with human ESCs (hESCs),exhibited a high expression of early cardiac transcription factor genes and could be induced to differentiate into cardiomyocyte-like cells.Further,we demonstrated for the first time that intracoronary delivery of prepared clinical-grade WJMSCs was safe in treating patients with an STAMI attack by double-blind,randomized controlled trial and could significantly improve myocardial viability and heart function.It is therefore important to consider the benefits of WJMSCs,which are not ethically sensitive,have differentiation potential,and do not have the worrying issue of teratoma formation.Moreover,as the off the shelf product,WJMSCs can be applied immediately,and on demand.Thus,WJMSCs constitute a true stem cell population and are promising cells as a biological drug for stem cell-based therapies.[Key words]Mesenchymal stem cells(MSCs);Wharton’s jelly-derived mesenchymal stem cells(WJMSCs);Biological drug21世纪,人类疾病治疗模式在继现代医学——药物、手术、机械辅助等手段后,一个崭新的充满希望的新理念——细胞生物治疗理论诞生了,这将给人类带来什么样的变化与影响,如此快速之进展,正如Science、Nature中所表述的“即使站在世界最前沿的科学家也难以预料”[1-2]。
RatCardiacMyocytes(RCM):大鼠心肌细胞(RCM)

Rat Cardiac Myocytes(RCM)Catalog #R6200 Cell SpecificationThe cardiac myocytes are the most physically energetic cells in the body. They are highly specialized high-oxygen-content cells and house a large number of mitochondria [1].They occupy as much as 75% of the cardiac mass but constitute only about one third of the total cell number in the heart. Differentiated cardiac myocytes have little capacity to proliferate, however, hypertrophic growth has been shown to respond to alpha1-adrenergic stimuli via the Ras/MEK pathway [2]. All cardiac myocytes are capable of spontaneous rhythmic depolarization and repolarization of their membrane. Contraction of cardiac myocytes is myogenic, which is independent of nervous stimulation. There is a complex network of signals in cardiac myocytes regulating the rhythmic pumping of the heart [3]. Cardiac myocyte hypertrophy and apoptosis have been implicated in the loss of contractile function during heart failure. Understanding the signaling network will help reveal the cellular mechanisms leading to cardiac myocyte death. RCM from ScienCell Research Laboratories are isolated from postnatal day 2 rat heart. RCM are cryopreserved at P0 and delivered frozen. Each vial contains >1 x 106cells in 1 ml volume. RCM are characterized by immunofluorescence with antibodies specific to smooth muscle actin, sacromeric alpha-actinin, and tropomyosin. RCM are negative for mycoplasma, bacteria, yeast, and fungi. RCM are guaranteed to further culture under the conditions provided by ScienCell Research Laboratories; however, RCM are not recommended for expanding or long-term cultures since the cells do not proliferate in culture.Recommended MediumIt is recommended to use Cardiac Myocyte Medium (CMM, Cat. #6201) for culturing RCM in vitro.Product UseRCM are for research use only. They are not approved for human or animal use, or for application in in vitro diagnostic procedures.StorageUpon receiving, directly and immediately transfer the cells from dry ice to liquid nitrogen and keep the cells in liquid nitrogen until they are needed for experiments.ShippingDry ice.References[1] Bodyak N, Kang PM, Hiromura M, Sulijoadikusumo I, Horikoshi N, Khrapko K, Usheva A. (2002) “Gene expression profiling of the aging mouse cardiac myocytes.”Nucleic Acids Research. 30: 3788-94.[2] Tamamori-Adachi M, Ito H, Nobori K, Hayashida K, Kawauchi J, Adachi S, Ikeda MA, Kitajima S. (2002) “Expression of cyclin D1 and CDK4 causes hypertrophic growth of cardiomyocytes in culture: a possible implication for cardiac hypertrophy.”Biochem Biophys Res Commun. 296: 274-80.[3] Sambrano GR, Fraser I, Han H, Ni Y, O'Connell T, Yan Z, Stull JT. (2002) “Navigating the signaling network in mouse cardiac myocytes.”Nature. 420: 712-4.Instructions for culturing cellsCaution: Cryopreserved cells are very delicate. Thaw the vial in a 37o C water bath and return the cells to culture as quickly as possible with minimal handling! Initiating the culture:1.Prepare a poly-L-lysine-coated culture vessel (2 μg/cm2, T-75 flask is recommended).Add 10 ml of sterile water to a T-75 flask and then add 15 μl of poly-L-lysine stock solution (10 mg/ml, Cat. #0413). Leave the vessel in a 37o C incubator overnight (or for a minimum of one hour).2.Prepare complete medium. Decontaminate the external surfaces of medium bottle andmedium supplement tubes with 70% ethanol and transfer them to a sterile field.Aseptically transfer supplement to the basal medium with a pipette. Rinse the supplement tube with medium to recover the entire volume.3.Rinse the poly-L-lysine-coated vessel twice with sterile water and then add 15 ml ofcomplete medium. Leave the vessel in the sterile field and proceed to thaw the cryopreserved cells.4.Place the frozen vial in a 37o C water bath. Hold and rotate the vial gently until thecontents completely thaw. Promptly remove the vial from the water bath, wipe it down with 70% ethanol, and transfer it to the sterile field.5.Carefully remove the cap without touching the interior threads. Gently resuspend anddispense the contents of the vial into the equilibrated, poly-L-lysine-coated culture vessel.A seeding density of 5,000 cells/cm2 is recommended.Note: Dilution and centrifugation of cells after thawing are not recommended since these actions are more harmful to the cells than the effect of residual DMSO in the culture. It is also important that cells are plated in poly-L-lysine-coated culture vessels to promote cell attachment.6.Replace the cap or lid of the culture vessel and gently rock the vessel to distribute thecells evenly. Loosen cap, if necessary, to allow gas exchange.7.Return the culture vessel to the incubator.8.For best results, do not disturb the culture for at least 16 hours after the culture has beeninitiated. Refresh culture medium the next day to remove residual DMSO and unattached cells, then every other day thereafter.Maintaining the culture:1.Refresh supplemented culture medium the next morning after establishing a culture fromcryopreserved cells.2.Change the medium every three days thereafter.RCM are not recommended to be subcultured because this cell type will terminallydifferentiate in long-term cultures.Caution: Handling animal derived products is potentially biohazardous. Always wear gloves and safety glasses when working these materials. Never mouth pipette. We recommend following the universal procedures for handling products of animal origin as the minimum precaution against contamination [1].[1] Grizzle WE, Polt S. (1988) “Guidelines to avoid personal contamination by infective agents in research laboratories that use human tissues.” J Tissue Cult Methods. 11: 191-9.。
器官移植病理学临床技术操作规范(2019 版)——总论与肾移植

第10卷 第2期2019年3月Vol. 10 No. 2Mar. 2019器官移植Organ Transplantation【摘要】 为了进一步规范器官移植病理学临床技术操作,中华医学会器官移植学分会组织器官移植专家和移植病理学专家,从移植病理学诊断的基本内容、基本原则、基本方法等方面,制定器官移植病理学临床技术操作规范(2019版)之移植病理学诊断的基本规范;从尸体供肾病理学评估、移植肾活组织检查(活检)病理学临床技术操作规范、移植肾活检病理学诊断临床技术操作规范、移植肾活检电镜诊断临床技术操作规范等方面,制定器官移植病理学临床技术操作规范(2019版)之移植肾脏病理学临床技术操作规范。
【关键词】 移植病理学;器官移植;肾移植;尸体供肾;活组织检查;电子显微镜;扩大标准供者【中图分类号】R617,R36 【文献标志码】A 【文章编号】1674-7445(2019)02-0004-14器官移植病理学临床技术操作规范(2019版)——总论与肾移植中华医学会器官移植学分会DOI: 10.3969/j.issn.1674-7445.2019.02.004基金项目:国家自然科学基金(81873602);国家卫生和计划生育委员会行业科研专项基金(201302009);中国医学科学院中央级公益性科研院所基本科研业务费专项资金(2018PT32018);华中科技大学自主创新基金项目(01-08-540149);西安交通大学第一附属医院临床研究中心面上项目(XJTU1AF-CRF-2018-026)执笔作者单位:430030 武汉,华中科技大学同济医学院附属同济医院(郭晖);郑州大学附属第一医院(刘磊);中南大学湘雅二医院(彭风华);吉林大学白求恩第一医院(吴珊);广州医科大学附属第二医院(马俊杰);中山大学附属第一医院(陈文芳、黄刚);武汉大学人民医院(官阳、李敛);中国人民解放军总医院第八医学中心(韩永);西安交通大学第一附属医院(郑瑾);华中科技大学附属协和医院(苏华);中国人民解放军东部战区总医院(文吉秋、曾彩虹);浙江大学附属第一医院(王慧萍);首都医科大学附属北京友谊医院(马麟麟)通信作者:郭晖,研究方向为移植病理学的基础及应用研究,Email :**************移植病理学(transplantation pathology )是将病理学的知识与方法应用于器官移植医疗和研究的交叉学科[1-2],其主要观察和研究移植物中所出现的相关病理学变化及其发生机制,并在此基础上与临床体检、血生化检测和影像学检查密切结合,以准确、合理地对受者移植前原发性疾病、供者器官质量和受者移植术后出现的多种并发症进行明确诊断,并指导临床予以针对性治疗,以保障移植器官和受者的长期存活。
血清高敏C反应蛋白

doi:10.11659/jjssx.03E023129·临床研究·血清高敏C反应蛋白/白蛋白与急性冠状动脉综合征PCI术后对比剂肾病的相关性薛文平1,秦巍1,刘婷婷2,张爱文1,史菲1 (1. 承德医学院附属医院本部心脏内科,河北承德 067000;2. 承德医学院附属医院门诊部,河北承德 067000)[摘要] 目的 分析血清高敏C反应蛋白(hs-CRP)/白蛋白(Alb)与急性冠状动脉综合征患者经皮冠状动脉介入(PCI)术后对比剂肾病的相关性。
方法 选取我院接受PCI的496例急性冠状动脉综合征患者作为研究对象,根据PCI术后是否发生对比剂肾病分为对比剂肾病组(n=56)和非对比剂肾病组(n=440)。
采用ELISA法检测患者术前血清hs-CRP水平,使用血液分析仪测定术前血清Alb水平,并计算hs-CRP/Alb。
Logistic回归分析急性冠状动脉综合征患者PCI术后发生对比剂肾病的影响因素;受试者工作特征(ROC)曲线分析血清hs-CRP/Alb对急性冠状动脉综合征PCI术后对比剂肾病的预测价值。
结果 与非对比剂肾病组相比,对比剂肾病组患者术前血清hs-CRP水平、hs-CRP/Alb均明显升高(P<0.001),Alb水平显著下降(P<0.001)。
与非对比剂肾病组相比,对比剂肾病组患者术前肌酐水平、对比剂剂量明显升高(P<0.05);对比剂肾病组患者术后肌酐水平显著高于术前(P<0.05),术后血尿酸显著低于术前(P<0.05)。
Logistic回归分析显示,hs-CRP、hs-CRP/Alb、肌酐水平、对比剂剂量是急性冠状动脉综合征患者PCI术后发生对比剂肾病的危险因素(P<0.05),Alb是保护因素(P<0.05)。
ROC曲线显示,血清hs-CRP/Alb预测急性冠状动脉综合征患者PCI术后对比剂肾病的曲线下面积为0.965,截断值为0.19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Introduction A substantial amount of evidence supports the contention that ischemia / reperfusion (I / R)-induced injury to the heart is due, in part, to an acute inflammatory response in the affected tissue [1–4]. A hallmark feature of this inflammatory response is polymorphonuclear neutrophil (PMN) infiltration into the interstitium. Indeed, the severity of myocardial injury induced by I / R is directly related to the extent of PMN accumulation in the tissue [5]. There is some debate, however, over whether PMN infiltration is the cause or result of I / R-induced myocardial injury
* Corresponding author. Tel.: 11-519-685-8300x77055; fax: 11-519667-6629. E-mail address: pkvietys@julian.uwo.ca (P.R. Kvietys).
[1,6,7]. For example, I / R-induced myocardial infarction can be independent of PMN under certain conditions, e.g. prolonged periods of ischemia [6,7]. Furthermore, I / Rinduced myocardial infarction can occur in blood-free heart preparations [6]. On the other hand, there is substantial evidence favoring a role for invading PMN in this pathology. Several studies have shown that interfering with PMN infiltration into the myocardial interstitium affords protection against I / R-induced myocardial injury. Experimental maneuvers aimed to this effect include rendering animals neutropenic [1], immunoneutralization (antibodies) of adhesion glycoproteins on PMN or endothelial cells [8–12], and the use of genetically altered mice deficient in PMN or endothelial cell adhesion molecules
Abstract
Downloaded from by guest on July 8, 2011
Objective: Both superoxide dismutase (SOD) and nitric oxide synthase (NOS) have been implicated in delayed preconditioning (DP) to ischemia / reperfusion (I / R) in the heart. We used isolated cardiac myocytes to test the hypothesis that SOD and NOS may interact in the development of DP. Methods: Mouse neonatal cardiac myocytes were challenged with anoxia / reoxygenation (A / R; an in vitro counterpart to I / R) and normoxia / normoxia (N / N) served as the control. Two indices of inflammation were measured: oxidant stress (DHR oxidation) and polymorphonuclear leukocyte (PMN) transendothelial migration (cell culture inserts). The role of SOD was assessed using an antisense approach and the role of NOS was assessed using iNOS and eNOS deficient myocytes. Results: Cardiac myocytes exposed to A / R (1) produced more oxidants (intracellular fluorescence emission from 2.060.1 for N / N to 3.060.3 for A / R; P ,0.05) and (2) promoted PMN migration (% migration from 8.460.9 for N / N to 14.161.1 for A / R; P ,0.05). DP occurred if the myocytes were pretreated with an A / R challenge 24 h earlier. That is, these A / R-induced responses were significantly reduced (fluorescence emission 1.960.1 and % migration 8.460.7; P ,0.05 as compared to A / R with no pretreatment). Myocyte Mn-SOD, but not Cu / Zn-SOD, activity increased 24 h after the initial A / R challenge. A Mn-SOD antisense oligonucleotide prevented the development of DP. DP occurred in iNOS, but not eNOS, deficient myocytes. A / R increased mRNA for eNOS, but not iNOS, in wild-type myocytes. A / R increased Mn-SOD protein in both iNOS and eNOS deficient myocytes. However, Mn-SOD activity increased only in iNOS deficient myocytes. Conclusions: Collectively, these findings suggest that Mn-SOD and eNOS may act in concert in the development of DP in cardiac myocytes. 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Time for primary review 20 days.
0008-6363 / 03 / $ – see front matter 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved. doi:10.1016 / S0008-6363(03)00502-9
Cardiovascular Research 59 (2003) 901–911 / locate / cardiores
Delayed preconditioning in cardiac myocytes with respect to development of a proinflammatory phenotype: role of SOD and NOS
Tao Rui, Gediminas Cepinskas, Qingping Feng, Peter R. Kvietys*
Vascular Cell Biology Laboratory, Lawson Health Research Institute, 375 South Street, NR Rm. C210, London, Ontario, Canada, N6 A 4 G5 Received 27 January 2003; received in revised form 13 June 2003; accepted 30 June 2003
ቤተ መጻሕፍቲ ባይዱ
902
T. Rui et al. / Cardiovascular Research 59 (2003) 901–911
[13,14]. Our approach to circumvent this cause vs. effect issue has been to use experimental models of I / R-induced inflammation which do not directly cause cell injury [15– 17]. Paradoxically, challenging the heart with I / R renders the myocardium more resistant to a subsequent I / R insult [18–20]. This phenomenon can be subdivided into two distinct phases based on the time course and mechanisms involved. An early phase of protection becomes evident within a few minutes after the first I / R and persists for only 1–2 h (acute preconditioning). This early phase is independent of protein synthesis and relies on activation of existing effector molecules to manifest its protective effects. There is also a later phase of protection that comes into play 24 h or later after the initial I / R challenge and can persist for up to several days (delayed preconditioning). This later phase of protection represents a genetically mediated adaptational response within the myocardium and is dependent on protein synthesis. The focus of the present study was to dissect out the mechanisms involved in the development of delayed preconditioning, with respect to the induction of a proinflammatory phenotype in cardiac myocytes [16]. Both antioxidant enzymes and nitric oxide synthase (NOS) have been implicated as effector systems in delayed preconditioning [4,18,19,21]. Of the endogenous antioxidant enzymes that are up-regulated after the first I / R challenge and may contribute to delayed preconditioning [22], superoxide dismutase (SOD) has received the most attention. In vivo (I / R) and in vitro (simulated I / R) studies indicate that SOD protein and activity is increased after the first challenge and interfering with SOD synthesis (antisense) prevents delayed preconditioning [23–26]. Similarly, both in vivo and in vitro studies indicate that NOS activity is increased after the first challenge and pharmacological inhibition of NOS prevents delayed preconditioning [15,21,27]. In addition, delayed preconditioning does not occur in iNOS deficient mice [28]. Since interfering with either SOD or NOS activity prevents delayed preconditioning, these two enzymes may not be independent effector systems, but interacting ones. The major objective of the present study was to assess the means by which these two enzyme systems interact in the development of delayed preconditioning. To this end, we used a reductionist approach [29], i.e., we exposed isolated cardiac myocytes to anoxia / reoxygenation (A / R; an in vitro correlate to I / R).