行程问题
小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
行程问题

基本概念: 行程问题是研究物体运动的,它研究的是物体速度、时间、行程 三者之间的关系。 基本公式:
路程=速度×时间 路程÷时间=速度 路程÷速度=时间
相遇问题: 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
相遇路程(直线) 甲的路程+乙的路程等于=总路程
相遇问题(环形) 甲的路程+乙的路程=环形周长
追及问题: 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差
追及问题(直线) 距离差=追者路程-被追者路程 距离差=速度差×时间
追及问题(环形) 快的路程-慢的路程=曲线的周长
流水问题: 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 船速/静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
解题思路:甲车继续行驶3小时到达B地的距离应该是乙车4小时走 的路程。从而求出甲车的速度。
24×4÷3 =96÷3 =32(千米/时)
(32+24)×4 =56×4 =224(千米)
答:A、B两地相距224千米。
练习2: 一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6 小时相遇,相遇后快车继续行驶3小时后到达乙站。已知慢车每小 时行45千米,甲、乙两站相距多少千米?
练习4: 光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起 跑,亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追பைடு நூலகம்晶晶时 两人各跑了多少米?
例5: 一艘轮船的静水速度为每小时18千米,水流速度为每小时3千米, 这艘船从相距3.15千米的两个港口间来回一趟至少需要多少小时?
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
行程问题应用题大全

行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。
在途中,火车经过C地,小明在C地停留了20分钟。
请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。
因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。
2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。
飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。
请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。
在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。
因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。
3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。
汽车在途中经过C地,小李在C地停留了45分钟。
请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。
因此,小李在C地停留的时刻是(t0+6小时)+45分钟。
根据题目要求,我们需要求得小李在A地出发的时刻,即t0。
可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。
4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。
在途中,小张在C地停留了30分钟。
请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。
因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。
5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。
自行车在途中经过C地,小王在C地停留了15分钟。
行程问题

年级六年级学科奥数版本通用版课程标题行程问题(一)编稿老师宋玲玲一校林卉二校黄楠审核高旭东行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都占有非常重要的地位。
行程问题包括:相遇问题、追及问题、流水问题、火车过桥、环形行程、复杂行程等。
每一类问题都有自己的特点,解决方法也各有不同,但是,行程问题无论怎么变化,都离不开“三个量、三个关系”:三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程=速度×时间2. 相遇问题:路程和=速度和×时间3. 追及问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的这三种关系,就会发现解决行程问题还是有很多方法可循的。
要正确的解答有关“行程问题”的应用题,必须弄清物体运动的具体情况。
如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追及)。
两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,它们的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,它们的追及速度就变为“两个物体运动速度的差”(简称速度差)。
例如:甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么AB之间的路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间“相遇问题”的核心是速度和问题。
例1 小陈和小许二人分别从两地同时骑车相向而行。
小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。
求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。
行程问题

行程问题(相遇问题)【例一】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?练习一1.小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?2.一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?3.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程。
【例二】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习二1.兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?【例三】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?练习三1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处于乙相遇。
A、B两地间的距离是多少千米?2.小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
行程问题集锦

行程问题集锦1、根本行程问题:根本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
根本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是屡次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?〔1〕师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?〔2〕甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
乙船每小时行42千米,甲船每小时行多少千米?〔4〕一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
行程问题

行程问题(一)姓名例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人速度各是多少?例3、王欣和陆良两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆良每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆良后,立即回头向王欣跑去,遇到王欣再向陆良跑去。
这样不断来回,直到王欣和陆良相遇为止,狗共行了多少米?例4、甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?例5、甲、乙两人骑车同时从东西两地相向而行,8小时相遇。
如果甲每小时少行1千米,乙每小时多行3千米,这样过7小时就可以相遇。
东西两地相距多少千米?例6、甲乙两车同时从东西两地相对开出,6小时相遇。
如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。
东西两地相距多少千米?例7、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A地40千米处相遇。
A、B两地相距多少千米?1、甲乙两艘轮船分别从A、B两港同时出发而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇。
两地间的水路长多少千米?2、甲乙两车分别从相距480千米的AB两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从城到A城需12小时,两车出发后多少小时相遇?3、甲乙两队学生从相隔18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?4、小东和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同地相背而行,小刚跑6分钟后两人第一次相遇,小东跑一周要8分钟,小刚跑一周要几分钟?5、小明和小军分别从甲乙两地同时出发,相向而行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题、相遇问题专项练习
1.甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两火车相遇?
2.甲乙两人同时从相距27千米的A、B两地相向而行,3小时后相遇,甲比乙每小时多走1千米,求甲乙两人的速度。
3.甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速度是摩托车的1/3,求摩托车和自行车的速度.
4.A, B两村相距2800米,小明从A村出发步行向B村5分钟后,小军骑自行车从B村向A村出以,又经过10分钟后两人相遇,小军骑自行车比小明步行每分钟多走130米,小军每分钟步行多少米?
5.甲乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时后甲乙两人相距32.5千米?
6. 甲乙两车同时从相距480千米的两相对而行,甲车每小时行45千米,途中甲车因故停了1小时,5小时后两车相遇,乙车每小时行多少千米?
7. 甲车从A地开往B地,速度是60千米/小时,乙车从B 地开往A地,速度是90千米/小时,已知A B两地相距300千米,求两车相遇的地方距离A地多远?
8.甲乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,已知甲比乙每小时快1千米,求甲乙两人的速度?
9.一次远足活动,一部分人步行,另一部分人乘坐一辆汽车,两部分人同时出发。
汽车速度是60千米/小时,步行速度是5千米/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人,出发地到目的地的距离是60千米,问:步行者在出发后经过多少时间与回头接他们的汽车相遇?(汽车调头的时间忽略不计)
10.甲乙两地间的距离是900千米,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,已知快车的速度是慢车速度的2倍,慢车需12小时可到达甲地。
(1)求慢车的速度为每小时多少千米?快车的速度为每小时多少千米?
(2)当两车相距300千米时,两车行驶了多少小时?(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,在第二列快车行驶的过程中,当它和慢车相距150千米时,求两列快车之间的距离?
11.一个自行车队进行训练,训练时所有的队员都以35千米/小时的速度前进,突然,1号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合。
1号队员从离队开始到与队员重新会合,经过了多少时间?
行程问题、追击问题专项训练
1.A B 两地相距20千米,甲乙两人分别从A B 两地出发,甲的速度是6千米/小时,乙的速度是8千米/小时,两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?
2.一队学生去郊外进行军事野营训练,他们以5千米/小时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通信员从学校出发,骑自行车以14千米/小时的速度按原路追去。
问通信员多少时间可以追上学生队伍?
3.小明早晨要在7:20以前赶到距家1000米的学校上学。
一天,小明以80米/每分钟的速度出发,5分钟后,小明的爸爸发现他忘记带作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他,问爸爸追上小明用了多少时间?
4.一队学生步行到郊外春游,每小时走4千米,学生甲因故推迟出发30分钟,为了赶上队伍,甲以6千米/小时的速度追赶,问甲用多少时间才可追上队伍?
5.李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7.5米,同时起跑,问王亮跑多少米可以追上李成?
6. 甲乙两要相距100千米,一列慢车和一列快车同时从甲乙两地出发,同向而行,慢车在前,慢车每小时行驶65千米,快车每小时行驶85千米,快车行驶几小时后追上慢车?
7.A B两地相距40千米,上午6时张强步行从A地出发于下午5时到达B地;上午10时王丽骑自行车从A 地出发于下午3时到达B地,王丽是在几点钟追上张强的?
8.已知,甲从A地到B 地需要4小时,乙从B 地到A 地需要10小时,若两人同时出发,同向而行,甲几小时可以追到乙?
9.甲以每小时3千米的速度出门散步,10分钟后,乙沿着甲所走的路线以每小时4千米的速度追赶,乙走了多少小时追上甲?
10.甲乙两车站相距400千米,慢车每小时行驶100千米,快车每小时行驶140千米。
两车同时开出,相向而行,慢车在前,两车出发多少小时后,快车与慢车相距40千米?
11.甲乙两站相距480千米,一列慢车从甲站出发,每小时行80千米,一列快车从乙站开出,每小时行120千米,请分别回答下列问题;
(1)两车同时开出,相向而行,多少小时后两车相遇?(2)两车同时开出,相向而行,多少小时后,两车相距100千米?
(3)慢车先开出1小时,快车再开,两车相向而行,问快车开出多少小时后两车相遇?
(4)两车同时开出,背向而行,多少小时后两车相距600千米?
(5)两车同时开出,同向而行,慢车在前,多少小时后快车追上慢车?
(6)慢车开出1小时后,快车再开出,同向而行,慢车在前,快车开出后多少小时追上慢车?
(7)两车同时开出,同向而行,快车在前,多少小时后两车相距600千米?
(8)两车同时开出,同向而行,慢车在前,多少小时后两车相距600千米?
(9)两车同时开出,同向而行,慢车在前,多少小时后两车相距160千米?。