受弯构件的强度、整体稳定和局部稳定计算

合集下载

受压构件的整体稳定系数

受压构件的整体稳定系数

风吸力作用下使檩条下翼缘受压,按下面公式计算稳定性
1 (0.638) 6.02 0.718kN m 32 1 M y (0.051) 6.02 0.057kN m 32 Mx
My Mx 0.718106 0.057106 1 39.72N/mm2 f 215N/mm2 4 4 bxWex Wey 0.385 5.38210 1.12510
屋面能阻止檩条侧向失稳和扭转。在风吸力作用下计算檩条的稳定性,在永 久荷载和风吸力作用下使下翼缘受压,下翼缘按有侧向支撑计算。计算受弯构件 的整体稳定系数,由于均布风荷载方向离开弯心,故 ea 取正值。受压构件的整体 稳定系数 bx 按《冷弯薄壁型钢结构技术规范》GB50018—2002 附录 A 中 A.2 计 算 跨中设一道侧向支撑
6、挠度计算 按公式计算两端简支檩条的挠度
y
4 5 pkyl 500 30mm 384 EIx 384 2.06105 5.3821 106
b =0.5
1 =1.35
2 =0.14
b 70 ea =eo -xo + =48.9-20+ =63.9mm 2 2 2 e 2 0.14 63.9 = 2 a = =0.0895 h 200
=
4I 0.165It bl 2 + ( ) h2Iy Iy h
4 4376.18 106 0.165 0.1871 104 0.5 6000 2 = + ( ) =0.9012 2002 5.627 105 5.627 105 200
y
bx = =
l0 6000 240 iy 25
4320Ah 1( 2 + +)( 235 ) fy 2 W y x

【考研 钢结构复试题库】钢结构简答题3

【考研 钢结构复试题库】钢结构简答题3

1. 设计拉弯和压弯构件时应计算的内容?答:拉弯构件需要计算:强度和刚度(限制长细比);压弯构件则需要计算:强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。

2. 什么是梁的整体失稳现象?答:梁主要用于承受弯矩,为了充分发挥材料的强度,其截面通常设计成高而窄的形式。

当荷载较小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯扭屈曲或整体失稳。

10.实腹式轴心受压构件进行截面选择时,应主要考虑的原则是什么?答:(1)面积的分布尽量开展,以增加截面的惯性矩和回转半径,提高柱的整体稳定承载力和刚度;(2)两个主轴方向尽量等稳定,以达到经济的效果;(3)便于与其他构件进行连接,尽可能构造简单,制造省工,取材方便。

16.什么是梁的内力重分布?如何进行塑性设计?答:超静定梁的截面出现塑性铰后,仍能继续承载,随着荷载的增大,塑性铰发生塑形转动,结构内力重新分布,是其他截面相继出现塑性1铰,直至形成机构,这一过程称为梁的内力重分布。

塑形设计只用于不直接承受动力荷载的固端梁和连续梁,是利用内力塑性重分布,充分发挥材料的潜力,塑性铰弯矩按材料理想弹塑性确定,忽略刚才应变硬化的影响。

17.截面塑性发展系数的意义是什么?试举例说明其应用条件答:意义:用来表证截面所允许的塑性发展程度应用条件:(1)需计算疲劳的梁取1.0 (2)承受动力作用时取1.0 (3)压弯构件受压翼缘的自由外伸宽度与其厚度之比18.影响轴心受压杆件的稳定系数ψ的因素答:长细比、截面形式、加工条件、初弯曲、残余应力21.什么情况下不需要计算工字钢简支梁的整体稳定?答:有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连接,能阻止梁受压翼缘的侧向位移时H型钢或工字型截面简支梁受压翼缘的自由长度L1与其宽度b1之比不超过规定数值时。

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。

2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。

实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。

然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。

钢桥受弯构件验算内容-公式

钢桥受弯构件验算内容-公式

一、受弯构件(一)在主平面内受弯的实腹式构件抗弯强度应符合下列规定1、翼缘板弯曲正应力满足下列要求:双向受弯的实腹式构件:f d ≥γ0(M y W y,eff +M z W z,eff )式中:γ0——结构重要性系数;M y 、M z ——计算截面的弯矩设计值;W y,eff 、W z,eff ——有效截面相对于y 轴和z 轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。

2、腹板剪应力应满足下列要求。

闭口截面腹板剪应力应按剪力流理论计算。

γ0τ≤f vd式中:γ0——结构重要性系数;τ——剪应力;f vd ——钢材的抗剪强度设计值。

3、平面内受弯实腹式构件腹板在正应力 σx 和剪应力 τ 共同作用时,应满足下列要求。

γ0√(σx f d )2+(τf vd)2≤1 式中:σx ——x 方向正应力;f d ——钢材的抗拉、抗压和抗弯强度设计值。

(二)受弯构件的整体稳定性应符合下列规定1、等截面实腹式受弯构件,应按下列规定验算整体稳定。

γ0(βm,yM y χLT,y M Rd,y +M z M Rd,z )≤1 γ0(M y M Rd,y +βm,z M z χLT,z M Rd,z)≤1 M Rd,y =W y,eff f dM Rd,z =W z,eff f dλLT,y =√W y,eff f y M cr,y ,λLT,z =√W z,eff f y M cr,z式中: M y 、M z ——构件最大弯矩;βm,y、βm,z——等效弯矩系数;χLT,y、χLT,z——M y和M z作用平面内的弯矩单独作用下,构件弯扭失稳模态的整体稳定折减系数;λ̅̅̅LT,y、λLT,z——弯扭相对长细比;W y,eff、W z,eff——有效截面相对于y轴和z轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。

M cr,y、M cr,z——M y和M z作用平面内的弯矩单独作用下,考虑约束影响的构件弯扭失稳模态的整体弯扭弹性屈曲弯矩,可采用有限元方法计算。

钢结构原理 第五章 受弯构件解析

钢结构原理 第五章 受弯构件解析

xp
pnx
M W F
x
nx
(5 3)
只取决于截面几何形状而与材料的性质无关
F
的形状系数。
X
Y
A1
X Aw
Y 对X轴 F 1.07 ( A1 Aw )
对Y轴 F 1.5
钢结构设计原理
第五章 受弯构件
2.抗弯强度计算 《规范》对于承受静荷载或间接动荷载的梁,梁设 计时只是有限制地利用截面的塑性,如工字形截面 塑性发展深度取a≤h/8。
b
满足:
t
Y
13 235 b 15 235
fy t
fy
时, x 1.0
XX Y
需要计算疲劳强度的梁:
x y 1.0
钢结构设计原理
第五章 受弯构件
(二)抗剪强度
Vmax Mmax
xx
t max
t VS
max
I tw
fv
(5 6)
钢结构设计原理
第五章 受弯构件
(三)局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且
钢结构设计原理
第五章 受弯构件
4.梁的计算内容
承载能力极限状态
强度
抗弯强度 抗剪强度 局部压应力 折算应力
整体稳定
局部稳定
正常使用极限状态 刚度
钢结构设计原理
第五章 受弯构件
5.1.1 截面强度破坏
◎ 抗弯强度 ◎ 抗剪强度 ◎ 局部压应力 ◎ 折算应力
5.1.2 整体失稳
◆当弯矩不大时,梁的弯曲平衡状态是稳定的。 ◆当弯矩增大到某一数值后,梁会突然出现很大的侧向弯曲 并伴随扭转,失去继续承载能力。 ◆只要外荷载稍微增加些,梁的变形就急剧增加并导致破 坏.这种现象称为梁的侧向弯扭屈曲或梁整体失稳。

《钢结构设计原理》——期末考试参考答案

《钢结构设计原理》——期末考试参考答案

《钢结构设计原理》——期末考试参考答案一、单选题1.对于对接焊缝,当焊缝与作用力间的夹角满足( )时,该对接焊缝的可不进行验算。

A.1B.1.5C.2D.0.5正确答案:B2.对于钢结构的局部失稳,一般不采用( )方式。

A.增加翼缘与腹板厚度B.减小翼缘与腹板的宽度C.提高杆件的强度D.设置加劲肋正确答案:C3.钢材拉伸性能试验采用( )进行检测。

A.压力试验机B.弯折仪C.拉拔仪D.万能试验机正确答案:D4.受弯构件的腹板加劲肋设计原则是()。

A.无论如何都要设置腹板加劲肋B.调整腹板的高厚比,尽量不要设置加劲肋C.各种加劲肋的功能是不一样的,要依据情况设置D.要优先设置纵向加劲肋正确答案:C5.为了防止轴心受压构件的局部失稳需( )。

A.规定板件有足够的强度B.规定板件的宽厚比C.规定板件有足够的刚度D.规定板件有足够的厚度正确答案:B6.钢梁腹板局部稳定采用( )准则。

A.腹板局部屈曲应力不小于构件整体屈曲应力B.腹板实际应力不超过腹板屈曲应力C.腹板实际应力不小于板的屈服应力D.腹板局部临界应力不小于钢榭屈服应力正确答案:D7.常用的钢结构连接方法中,广泛应用于可拆卸连接方法是( )。

A.焊接连接B.螺栓连接C.铆接连接D.销键连接正确答案:B8.钢梁腹板加劲肋的主要作用是( )。

A.增强截面的抗扭刚度B.保证腹板的局部稳定性C.提高截面的强度D.提高梁的整体稳定性正确答案:B9.轴的刚度分为( )和扭转刚度。

A.扭矩刚度B.弯曲刚度C.抗震刚度D.机动刚度正确答案:B10.轴心受压构件柱脚底板的面积主要取决于( )。

A.底板的抗弯刚度B.柱子的截面积C.基础材料的强度等级D.底板的厚度正确答案:C11.直角角焊缝连接的计算是根据( )情况不同分类的。

A.焊缝形式B.钢材型号C.受力情况D.结构形式正确答案:C12.钢材塑性破坏的特点是( )。

A.变形小B.破坏经历时间非常短C.无变形D.变形大正确答案:D13.高强螺栓与普通螺栓之间的主要区别是( )。

第五章受弯构件

第五章受弯构件
t w lz
f
lz --集中荷载在腹板计算高度边缘的假定分布长度:
跨中集中荷载: 梁端支座反力:
l z a 5hy 2hR l z a 2.5hy a1
a--集中荷载沿梁跨度方向的支承长度,对吊车轮压可
取为50mm; hy--自梁承载边缘到腹板计算高度边缘的距离;
hr--轨道的高度,计算处无轨道时取0; a1 --梁端到支座板外边缘的距离,按实际取,但不得
两个区域。
(3)塑性工作阶段
弹性区消失,形成塑性铰 。
a
fy
fy
fy
σ
x x
M x Wnx M y f yWnx
a
M xp f yW pnx
M xp f y S1nx S2nx f yWpnx
式中: S1nx、S2nx Wpnx 分别为中和轴以上、以下截面对中 和轴X轴的面积矩; 截面对中和轴的塑性抵抗矩。

解: 根据题意,该梁局部稳定、强度、刚度都能满足要求, 所以按整体稳定计算能够承受的最大荷载p。
设 p 的单位为 kN/m

要求满足
该梁能承受的最大均布荷载 p=81.1kN/m 。
当截面同时作用Mx 、 My时: 规范给出了一经验公式:
My Mx f bWx yWy
y 取值同塑性发展系数, 但并不表示沿 轴以进入 y
a
fy
fy
fy
塑性铰弯矩 M xp f yW pnx 与弹性最大弯矩 M x f yWnx 之比:
M M
F
xp x
W W
pnx nx

F
只取决于截面几何形状而与材料的性质无关 的形状系数。

【干货】受弯构件的计算

【干货】受弯构件的计算

235 fy
,应布置横向加劲肋。
3. 当 h0 1 7 0 2 3 5,(受压翼缘扭转受到约束)
tw
fy
或者 h0 1 5 0 2 3 5 (受压翼缘扭转未受到约束)
tw
fy
应布置横向、纵向加劲肋,有轮压时布置短加劲肋。
简 支 梁 不 需 计 算 整 体 稳 定 的 最大l1/b1值
项次
工字形截面l1 / b1 箱形截面l1 / b0
l1
跨中无侧向支撑点的梁
跨中有侧向支撑点的梁
荷载作用在上翼缘 荷载作用在下翼缘 不论荷载作用在何处
13 235 / fy
20 235 / fy
16 235 / fy
h 6,且l1 95 235/ f
位置:梁腹板 与翼缘交界处
局部承压强度验算
式中:
复合应力状态与折算应力验算
复合应力状态
截面上某一点同时出现 2个及以上的应力分量 对工字形梁,腹板边缘处在不利的应力状态
折算应力 zs
x2
2 y
x y
3
x
2 y
fy
判断复合应力是否 屈服的第四强度理论
规范验算公式
zs
2
2 c
c

3
2
1 f
弯曲应力
(1) 有铺板(各种混凝土板、钢板)密铺在梁的受压翼缘上,
• 并与其牢固连接,能阻止梁受压翼缘的侧向位移时。
(2) 工字形截面简支梁:受压翼缘的自由长度l1与其宽度b1之比
• 不超过下表所规定的数值时。
(3) 箱形截面简支梁:截面尺寸满足h/b。≤6,且l1/b1不超
• 过下表所规定的数值时。
• 不符合以上条件的梁,必须经精确计算来判断是否整体稳定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《钢结构》网上辅导材料受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。

一、强度和刚度计算1.强度计算强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。

(1)抗弯强度荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下:图1 梁正应力的分布1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点f,荷载继续增y加,直至边缘纤维应力达到f(图1b)。

y2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力σ为屈服应力f。

截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。

y3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。

当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。

计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。

若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。

因此规范规定有限制地利用塑性。

梁的抗弯强度按下列公式计算:单向弯曲时f W Mnxx x≤=γσ (1)双向弯曲时f W MW Mnyy ynxx x≤+=γγσ (2)式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==yxγγ;对箱形截面,05.1==yxγγ;f —钢材的抗弯强度设计值。

当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过yf /23515时,取0.1=xγ。

需要计算疲劳的梁,宜取0.1==yx γγ。

(2)抗剪强度主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

v wf It VS ≤=τ(3)式中 V —计算截面沿腹板平面作用的剪力设计值;S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度;f v —钢材的抗剪强度设计值。

当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

(3)局部承压强度图2局部压应力当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。

假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。

梁的局部承压强度可按下式计算f l t Fzw c ≤=ψσ (4)式中 F —集中荷载,对动力荷载应考虑动力系数;ψ—集中荷载增大系数:对重级工作制吊车轮压,ψ=1.35;对其他荷载,ψ=1.0; z l —集中荷载在腹板计算高度边缘的假定分布长度,其计算方法如下跨中集中荷载 z l =a +5h y +2h R 梁端支反力 z l =a +2.5h y +a 1a —集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为50mm ; h y —自梁承载的边缘到腹板计算高度边缘的距离; h R —轨道的高度,计算处无轨道时h R =0;a 1—梁端到支座板外边缘的距离,按实际取,但不得大于2.5h y 。

当计算不能满足式(4)时,在固定集中荷载处,应设置支承加劲肋予以加强,并对支承加劲肋进行计算。

对移动集中荷载,则应加大腹板厚度。

(4)折算应力在组合梁的腹板计算高度边缘处,当同时受有较大的正应力σ、剪应力τ和局部压应力σc 时,或同时受有较大的正应力σ和剪应力τ时,应按下式验算该处的折算应力f cc 12223βτσσσσ≤+-+(5)式中 c στσ,,——腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部压应力。

τ按式(3)计算,c σ按式(4)计算, σ按下式计算nxI My =σ (6)nx I —净截面惯性矩;y —计算点至中和轴的距离;c σσ,均以拉应力为正值,压应力为负值;1β—折算应力的强度设计值增大系数。

当c σσ,异号时,取1β=1.2;当c σσ,同号或cσ=0取1β=1.1。

2.刚度刚度验算即为梁的挠度验算。

按下式验算梁的刚度][v v ≤(7)式中 v —荷载标准值作用下梁的最大挠度;[v ]—梁的容许挠度值,规范规定的容许挠度值。

二、整体稳定1. 整体失稳现象如图3所示的工字形截面梁,荷载作用在最大刚度平面内,当荷载较小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯扭屈曲或整体失稳。

图3 梁的整体失稳 2. 整体稳定系数梁的整体稳定临界应力为crσ,梁的整体稳定应满足下式f f f W Mσb Ry y cr Rcr xxϕγσγσ==≤=式中 b ϕ—梁的整体稳定系数ycrb f σϕ=(8)规范规定等截面焊接工字形和轧制H 型钢简支梁的整体稳定系数ϕb 应按下式计算 ϕb =βbyb y xyf ht W Ah 235])4.4(1[4320212ηλλ++⋅ (9)式中 βb ──梁整体稳定的等效弯矩系数;λy ──梁在侧向支承点间对截面弱轴y -y 的长细比;A ──梁毛截面面积; h ──梁截面的全高; t 1──受压翼缘厚度。

ηb ──截面不对称影响系数: 对双轴对称截面 ηb =0 对单轴对称工字形截面加强受压翼缘 ηb =0.8(2αb -1) 加强受拉翼缘 ηb =2αb -1αb =211I I I +──I 1和I 2分别为受压翼缘和受拉翼缘对y 轴的惯性矩。

当bϕ大于0.6时,梁己进入非弹性工作阶段,必须对bϕ进行修正。

当按式(9)确定的bϕ>0.6时,用下式求得的b ϕ´代替bϕ进行梁的整体稳定计算bϕ´=1.07-bϕ282.0 (10)但b ϕ不得大于1.0 3.整体稳定的计算 整体稳定计算公式f W Mxb x≤ϕ (11)式中 M x —绕强轴作用的最大弯矩;W x —按受压纤维确定的梁毛截面模量; b ϕ—梁的整体稳定系数。

当梁的整体稳定承载力不足时,可采用加大梁的截面尺寸或增加侧向支撑的办法予以解决,前一种办法中以增大受压翼缘的宽度最有效。

三、局部稳定和腹板加劲肋设计组合梁一般由翼缘和腹板焊接而成,如果采用的板件宽(高)而薄,板中压应力或剪应力达到某数值后,腹板或受压翼缘有可能偏离其平面位置,出现波形凸曲,这种现象称为梁局部失稳。

热轧型钢板件宽厚比较小,能满足局部稳定要求,不需要计算。

图4 梁局部失稳1.受压翼缘的局部稳定一般采用限制宽厚比的办法保证梁受压翼缘板的稳定性。

工字形截面梁,由腹板局部稳定临界应力y crf ≥σ得yf tb 23513≤ (12)当按弹性设计,b /t 值可放宽为yf t b 23515≤ (13)箱形梁翼缘板在两腹板之间的部分,由y crf ≥σ得yf tb 23540≤ (14)2.腹板的局部稳定对于直接承受动力荷载的或其他不考虑屈曲后强度的组合梁,以腹板的屈曲为承载能力的极限状态。

对于承受静力荷载和间接承受动力荷载的组合梁,允许腹板在构件整体失稳之前屈曲,并利用其屈曲后强度。

图5腹板加劲肋的配置(1) 腹板配置加劲肋的原则为了提高腹板的稳定性,可增加腹板的厚度,也可设置加劲肋,设置加劲肋更经济。

对于由剪应力和局部压应力引起的受剪屈曲,应设置横向加劲肋,对于由弯曲应力引起的受弯屈曲,应设置纵向加劲肋,局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋。

组合梁腹板配置加劲肋的规定: 1)当h 0/t w ≤80yf /235时,对有局部压应力(σc ≠0)的梁,应按构造配置横向加劲肋;但对无局部压应力(σc =0)的梁,可不配置加劲肋。

2)当h 0/t w >80y f /235时,应配置横向加劲肋。

其中,当h 0/t w >170y f /235(受压翼缘扭转受到约束)或h 0/t w >150y f /235(受压翼缘扭转未受到约束时),或按计算需要时,应在弯曲应力较大区格的受压区增加配置纵向加劲肋。

局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋。

任何情况下,h 0/t w 均不应超过250y f /235。

此处h 0为腹板的计算高度(对单轴对称梁,当确定是否要配置纵向加劲肋时,h 0应取为腹板受压区高度h c 的2倍),t w 为腹板的厚度。

3)梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋。

(2)临界应力的计算 1)弯曲临界应力用于抗弯计算腹板的通用高厚比当梁受压翼缘扭转受到约束时235177/2y w c b f t h =λ (15a )当梁受压翼缘扭转未受到约束时235153/2y w c b f t h =λ (15b )根据通用高厚比b λ的范围不同,弯曲临界应力的计算公式如下:当85.0b ≤λ时 f =cr σ (16a ) 当25.185.0b ≤<λ时 ()[]f 85.075.01b cr --=λσ (16b )当25.1b >λ时 2b cr /1.1λσf = (16c )式中 f —钢材的抗弯强度设计值。

式(16)的三个公式分别属于塑性、弹塑性和弹性范围。

2)剪切临界应力用于抗剪计算腹板的通用高厚比为 23541/y sw 0s f k t h =λ (17)根据通用高厚比s λ的范围不同,剪切临界应力的计算公式如下:当8.0s ≤λ时 v cr f =τ (18a ) 当2.18.0s ≤<λ时 []v s cr )8.0(59.01f --=λτ (18b )当2.1s >λ时 2s v cr /1.1λf =τ (18c ) 式中 v f —钢材的抗剪切强度设计值。

3)局部压力作用下的临界应力用于腹板抗局部压力作用时的通用高厚比为 当5.1/5.00≤≤h a 时 235)/83.1(4.139.1028/y 30w0c f h a t h -+=λ (19a )当0.2/5.10≤<h a 时 235/59.1828/y 0w0c f h a t h -=λ (19b )根据通用高厚比c λ的范围不同,计算临界应力r c c,σ的公式如下:当9.0c ≤λ时 f =cr c,σ (20a ) 当2.19.0c ≤<λ时 []f )9.0(79.01c cr c,--=λσ (21b ) 当2.1c >λ时 2c cr c,/1.1λσf = (21c ) (3) 腹板局部稳定的计算 1) 配置横向加劲肋的腹板仅配置横向加劲肋的腹板,其各区格的局部稳定应按下式计算 crc c crcr,22)()(σσττσσ++≤1 (22)2) 同时配置横向加劲肋和纵向加劲肋的腹板同时配置横向加劲肋和纵向加劲肋的腹板,一般纵向加劲肋设置在距离板上边缘1/4~1/5高度处,把腹板划分为上、下两个区格。

相关文档
最新文档